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One approach to speed up drug discovery is to examine new uses for

existing approved drugs, so-called ‘drug repositioning’ or ‘drug

repurposing’, which has become increasingly popular in recent years.

Analysis of the literature reveals many examples of US Food and Drug

Administration-approved drugs that are active against multiple targets

(also termed promiscuity) that can also be used to therapeutic advantage

for repositioning for other neglected and rare diseases. Using proof-of-

principle examples, we suggest here that with current in silico technologies

and databases of the structures and biological activities of chemical

compounds (drugs) and related data, as well as close integration with in

vitro screening data, improved opportunities for drug repurposing will

emerge for neglected or rare/orphan diseases.

Introduction
Neglected diseases are primarily tropical infections common in Africa, Asia and the Americas.

Infections with Mycobacterium tuberculosis (Mtb) or Plasmodium spp. are often included as

neglected diseases and are estimated to kill over two million people annually [1]. Recent studies

also suggest that over two billion individuals are infected with Mtb alone [2] and this represents

approximately one-third of the global population. These statistics highlight the enormous

economic and healthcare challenges for the countries and governments affected.

There are also thousands of diseases that occur in small patient populations and are not

addressed by any existing treatments (http://rarediseases.info.nih.gov/Resources/Rare_Diseases_

Information.aspx). These diseases are classified as rare or orphan diseases. Traditionally, such

diseases have not been the focus of big pharmaceutical company research as they have small

patient populations in industrialized countries that make it difficult to market drugs that recoup
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the cost of research and development and that are then profitable

over the long term. Consequently, drug discovery for neglected and

rare diseases has occurred mainly in biotech companies and acade-

mia. Rare diseases usually have small patient populations, although

there is no global agreement on what this size is. In the USA, a rare

disease is described as one that affects less than 200 000 people.

Some estimates suggest that this represents over 7000 rare diseases

affecting 25–30 million people [3] or 5000 patients per orphan

disease, with approximately 4000 orphan diseases needing treat-

ment [4]. Such a ‘small’ market size would make drugs for these

diseases less marketable compared with common diseases, such as

cancers, cardiovascular disease and diabetes, with sufferers treated

numbering in the millions annually. However, some have suggested

that profits can be made on smaller patient populations in a perso-

nalized medicine strategy and have called for more academia–

pharma collaborations that are focused on rare diseases [4].

There are considerable challenges with regards to clinical

research applied to rare diseases. Even though over 300 orphan

drugs have been approved since the passage of the US Orphan

Drugs Act in 1983, there is still a long way to go until most rare

diseases have a treatment [3,4].

Neglected and rare diseases as an attractive area for
pharmaceutical companies
Pharmaceutical companies are beginning to view rare or neglected

diseases as an opportunity to bring in more revenue as well as to

improve public relations. Developing treatments for rare or

orphan diseases might necessitate a smaller investment upfront

as, for example, in-licensing deals for an advanced therapeutic

candidate targeting this area are usually less costly than the typical

US$100s of millions for licensing drugs for other diseases (http://

www.crdnetwork.org/blog/big-pharma-moves-from-blockbusters-

to-niche–busters/). Recently, GlaxoSmithKline (GSK) made some

relatively small investments in rare diseases (http://cenblog.org/

the-haystack/2010/10/gsk-highlights-rare-diseases–approach/);

Pfizer (http://www.xconomy.com/boston/2010/09/01/pfizer-

gobbles-foldrx-in-big-pharmas-latest-rare-disease-play-in-boston–

area/) and several other large pharma companies, as well as the

World Health Organization, have been working together, invest-

ing US$150 million in research into neglected disease treatments

(http://thebigredbiotechblog.typepad.com/the-big-red-biotech-

blog/2010/10/big-pharma-and-governments-put-up-150-m-to-

fight-neglected–diseases.html).

These efforts might only be the tip of the iceberg, and more

substantial investments are likely to follow in the near future to

solidify the trend. These investments by pharma for rare diseases

are in addition to their significant investments in neglected or

tropical diseases represented by the GSK Tres Cantos facility

(http://www.gsk.com/collaborations/tres-cantos.htm), the Novar-

tis Institute for Tropical Diseases in Singapore (http://www.novartis.

com/research/nitd/index.shtml), the Lilly MDR-TB Partnership

(http://www.lillymdr-tb.com/), the Lilly TB Drug Discovery Initia-

tive (http://www.tbdrugdiscovery.org/) and The Critical Path to TB

Drug Regimens (http://www.tballiance.org/cptr/).

Drug repositioning
One approach to speeding up drug discovery is to find new uses for

existing approved drugs. This is termed ‘drug repositioning’ or
‘drug repurposing’, and traditionally has occurred by serendipity

[5]. Another strategy is to look at combinations of approved drugs

in the hope of finding synergy [6,7], an approach that has found

some success in cancer, HIV and Mtb treatments. In the neglected

and rare disease space, predominantly academic researchers have

looked at repositioning compounds that are already approved for

other indications (see references in Table 1 and Table 2). Drug

repositioning has been reviewed extensively in the context of

finding uses for drugs applied to major diseases, such as obesity

and Parkinson’s disease [4]. Well-known examples include drugs

such as thalidomide, sildenafil, bupropion and fluoxetine, which

found new uses beyond their initially approved therapeutic indi-

cations [5]. The example of thalidomide specifically suggests that

drugs that were originally withdrawn by manufacturers or

removed by the US Food and Drug Administration (FDA), or other

regulatory organizations, can be resurrected. Thalidomide was

notorious for causing birth defects if taken during the first trime-

ster of pregnancy. However, this adverse effect is not a major issue

in the novel use of thalidomide in treating multiple myeloma, a

disease that is not common in women of child-bearing age.

Benefits for pharma
For pharmaceutical companies, repositioning has significant com-

mercial value as it extends the markets for a compound and finds

new uses for shelved compounds at lower financial risk and in a

shorter time [8]. There has also been much discussion about how

different approaches to repositioning could work, but these have

not focused specifically on neglected diseases [5,9]. Others have

proposed that repurposing could be an invaluable tool for

neglected diseases [10]. The benefits of repositioning include:

working on known druggable targets, the availability of materials

and data (such as on long-term toxicology studies) that can be used

and presented to regulatory authorities; and, as a result, the

potential for a significantly more time- and cost-effective research

and development effort than typically seen with bringing a new

molecular entity to market.

Repositioning for neglected infectious diseases
In both the major-market and neglected infectious disease realms,

the rapid emergence of multidrug-resistant strains of pathogenic

microorganisms provides a sense of urgency to identify new scaf-

folds for antibiotics quickly. This is likely to require the explora-

tion of chemical space beyond known active antimicrobial

compounds. Pharma urgently needs new hits to initiate com-

pound optimization studies. However, productivity of novel anti-

biotic classes over the past 30–40 years has been extremely low and

this is exacerbated by the relatively low hit rates from high-

throughput screening (HTS) and secondary screens [11]. Several

new scaffold search efforts have been recently reviewed [12]. For

example, Pfizer has shown that pyridopyrimidine compounds

derived from a eukaryotic protein kinase inhibitor pharmacophore

were effective against gram-negative pathogens following whole-

cell screening [13]. The approach is an example of screening library

repurposing (counterbalancing the pessimism derived from

recently reported antibacterial-targeted screening efforts [11])

and illustrates the pursuit of bacterial targets with high sequence

or structural similarity to eukaryotic targets, in this case the

bacterial and eukaryotic kinomes. The Pfizer researchers proposed
www.drugdiscoverytoday.com 299
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TABLE 1

Examples of approved drugmolecules identified using low-throughput screeningmethods as having effects against diseases other than
the original targeta

Molecule Original use New use Method of discovery Refs

Aprepitant Nausea: NK-1 receptor
antagonist

Drug-resistant HIV-1 infection:
downregulates CCR5 in macrophages

Initial hypothesis tested with another
NK-1 receptor antagonist in vitro

[99,100]

Cryptosporidiosis in

immunosuppressed hosts

Tested in vivo in immunosuppressed

mice infected with Cryptosporidium

parvum; decreased substance P levels

[101]

Amiodarone Class III anti-arrhythmic Chagas disease: blocks
ergosterol biosynthesis

Literature search [102]

Glybenclamide Antidiabetic Antithrombotic activity in

mouse models IC50 9.6 mM

Common pharmacophore with an

experimental TP receptor antagonist

SQ29,548

[103]

Tamoxifen Antiestrogen Anti-protozoal: Leishmania

amazonensis IC50 11.1–16.4 mM

Focused screening to test hypothesis

and in vivo mice studies

[104,105]

Trimetrexate Antifolate used in Pneumocystis

carinii infection in patients
with AIDS

Inhibitor of Trypanosoma cruzi

DHFR IC50 6.6 nM

Enzyme activity and antiparasite

activity assays for one compound

[106]

Riluzole Amyotrophic lateral sclerosis:

inhibits glutamate release

and reuptake

Currently in clinical trials for treating

melanoma, but might have activity

against other cancers

Treatment of GRM1-positive human

melanoma cells reduced levels of

released glutamate, suppressed

melanoma cell growth and also
suppressed tumor growth in xenograft

model; induced cell cycle arrest,

leading to apoptosis

[107]

Sertraline Antidepressant (selective
serotonin reuptake inhibitor)

Neuroprotective, prolongs survival,
improves motor performance and

ameliorates brain atrophy in the

R6/2 HD model

Previously shown that another
SSRI was neuroprotective

[108]

a Abbreviations: CCR5, chemokine receptor 5; DHFR, dihydrofolate reductase; GRM1, glutamate receptor, metabotropic 1; NK-1, neurokinin-1 receptor; SSRI, selective serotonin reuptake

inhibitors.
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that targets with high sequence and structural homology to

known human drug targets are more likely to find inhibitors in

the compound libraries. Others have suggested that the libraries of

inhibitors for ion channel and prenyltransferases would be a good

starting point for such library repurposing [14] and for finding

chemotypes for novel antimicrobials.

It is unclear how extensively approved drugs are screened

against multidrug-resistant strains of bacteria and it might be

possible to find new acceptable treatments among them. Clearly,

more could be done to reposition existing FDA-approved drugs,

and the following sections survey these efforts to find new activ-

ities. To date, these studies have traditionally focused on in vitro

screening; however, computational screening (‘in silico’ [15])

methods might also be applicable. Hence, it is proposed that a

combined in silico–in vitro approach leveraging databases of mole-

cular structures and their related information from the literature

[such as absorption, distribution, metabolism, and excretion

(ADME)/Tox [16], targets, clinical trials, etc.] could be a viable

strategy for accelerating research in the treatment and prevention

of rare, neglected and common diseases.

Searching FDA-approved drugs for new activities
Using HTS
It is suggested that there are over 10 000 drugs that have been

tested in clinical medicine. This could be reduced to approxi-

mately 9000, given that many represent combinations of other
300 www.drugdiscoverytoday.com
drugs, different salt forms of the same molecule, or biologics (large

proteins or antibodies) [17]. However, a physical library of this size

does not exist for known drugs that could be screened and a virtual

library of these compounds is also lacking (to our knowledge).

Such a virtual library could be assembled using some of the public

domain databases.

Some companies, such as Cerep (http://www.cerep.fr), have

screened 2500 of the FDA drugs and reference compounds against

159 enzymes, receptors, ion channels and transporters, and have

created a database called BioPrint [18], which is a commercial

product with a cost that is likely to be out of reach of most

academic researchers. To date, multiple groups have screened

1000–2000 drugs against different targets or cell types. The John

Hopkins Clinical Compound Library (JHCCL) consists of plated

compounds available for screening at a relatively small charge and

has been used by some groups [19]. For example, 17 novel inhi-

bitors of Mtb were found after screening 1514 compounds from

the JHCCL [19]. Several new uses for FDA-approved drugs have

been identified by screening this or other commercially available

libraries of drugs or off-patent molecules (e.g. the Microsource US

Drug Collection and Prestwick Chemical library) (Table 2). The

accumulation of large databases of published data and compounds

screened against G-protein coupled receptors (GPCRs), such as the

psychoactive drug screening program (PDSP) receptorome profile,

represent good starting points for finding compounds that are

active against receptors of interest. One example described is a

http://www.cerep.fr/
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TABLE 2

Examples of approved drug molecules identified using HTS or in silico screening methods as having effects against diseases other than
original targeta

Molecule Original use New use Method of discovery Refs

Itraconazole Antifungal: lanosterol
14a-demethylase inhibitor

Inhibition of angiogenesis by
inhibiting human lanosterol

14a-demethylase; IC50 160 nM

In vitro HUVEC proliferation
screen against FDA-approved

drugs (JHCCL)

[109]

Astemizole Non-sedating antihistamine

(removed from US market

by FDA in 1999)

Antimalarial IC50 227 nM against

Plasmodium falciparum 3D7

In vitro screen for P. falciparum

growth of 1937 FDA-approved

drugs (JHCCL)

[110]

Mycophenolic acid Immunosuppressive

drug: inhibits guanine

nucleotide biosynthesis

Inhibition of angiogenesis by

targeting type 1 inosine

monophosphate dehydrogenase;

IC50 99.2 nM

In vitro HUVEC proliferation

screen of 2450 FDA- and

foreign-approved drugs (JHCCL)

[111]

Entacapone and tolcapone Parkinson’s Disease:

catechol-O-methyltransferase

inhibitors

Antitubercular: entacapone inhibits

InhA; IC50 80 mM

Used a chemical systems biology

approach

[77]

Nitazoxanide Infections caused by Giardia
and Cryptosporidium spp.

Antitubercular: multiple potential
targets

Screens against replicating and
non-replicating Mtb

[112]

(�)-2-amino-3-
phosphonopropionic acid

Human metabolite,

mGluR agonist

Antimalarial: inhibits HSP-90; IC50
0.06 mM against P. falciparum 3D7

HTS screening of 4000 compounds [113]

Acrisorcin Antifungal Antimalarial: inhibits HSP-90; IC50
0.05 mM against P. falciparum 3D7

HTS screening of 4000 compounds [113]

Harmine Anticancer Antimalarial: inhibits HSP-90; IC50
0.05 mM against P. falciparum 3D7

HTS screening of 4000 compounds [113]

Acetophenazine, fluphenazine
and periciazine

Antipsychotics–D2

and 5-HT2 inhibitors

Human androgen receptor

antagonists acetophenazine

(Ki 0.8 mM), fluphenazine(Ki
0.8 mM), periciazine (Ki 3.0 mM)

Docking of known drugs into

androgen receptor followed by

in vitro screening

[96]

Levofloxacin, gatifloxacin,
sarafloxacin, moxifloxacin
and gemifloxacin

DNA gyrase Active against ATCC17978; inactive

against BAA-1605 MIC �0.03–0.04
(mg/l)

Screening of 1040 drugs from

microsource drugs library versus

Acinetobacter baumannii

[114]

Bithional, bortezomib,
cantharidin, chromomycin A3,
duanorubicin, digitoxin,
ectinascidin 743, emetine,
fluorosalen, manidipine HCl,
narasin, lestaurtinib, ouabain,
sorafenib tosylate,
sunitinib malate, tioconazole,
tribromsalen, triclabendazolum
and zafirlukast

Various NF-kB inhibitors; IC50 0.02–39.8 mM Screening of NCGC pharmaceutical
collection of 2816 small molecules

in vitro

[115]

Pyrvinium pamoate Anthelmintic Antitubercular: Alamar blue assay

MIC 0.31 mM

In vitro screen against 1514 known

drugs; many other previously
unidentified hits found

[19]

Anti-protozoal: Cryptosporidium

parvum IC50 354 nM

In vitro screen for P. falciparum

growth of 1937 FDA-approved

drugs hypothesized to be active
because they are confined to

intestinal epithelium

[116]

Anti-protozoal: against Trypanosoma

brucei;IC50 3 mM

Screening of 2160 FDA-approved

drugs and natural products from
Microsource; 15 other drugs active;

IC50 0.2–3.0 mM

[117]

Riluzole ALS: inhibits glutamate

release and reuptake

Enhanced Wnt/b-catenin signaling

in both the primary screen in HT22
neuronal cells and in adult

hippocampal progenitor cells; GRM1

regulates Wnt/b-catenin signaling

Screening of 1857 compounds (1500

unique) in vitro; treating melanoma
cells with riluzole in vitro enhanced

the ability of WNT3A to regulate

gene expression

[118]

Closantel A veterinary anthelmintic
with known proton

ionophore activities

Onchocerciasis (river blindness);
IC50 1.6 mm; Ki 468 nM

Screening of 1514 FDA-approved
drugs (JHCCL) against the chitinase

OvCHT1 from Onchocerca volvulus

[119]

www.drugdiscoverytoday.com 301

R
ev
ie
w
s
�
K
E
Y
N
O
T
E
R
E
V
IE
W



REVIEWS Drug Discovery Today � Volume 16, Numbers 7/8 �April 2011

TABLE 2 (Continued )

Molecule Original use New use Method of discovery Refs

Nitroxoline Antibiotic used outside

USA for urinary tract
infections

Antiangiogenic agent inhibits

MetAP2 (IC50 54.8 nM) and HUVEC
proliferation; also inhibits sirtuin 1

(IC50 20.2 mM) and sirtuin 2 (IC50
15.5 mM)

Screening of 2687 FDA-approved

drugs (JHCCL) for inhibition of
HUVEC cells; also found the same

compound in HTS of 175 000

compounds screened against
MetAP2; active in mouse and

human tumor growth models

[120]

Glafenine Analgesic Inhibits ABCG2 (IC50 3.2 mM); could

be used with chemotherapeutic

agents to counteract tumor
resistance

Screening of FDA-approved drugs

(JHCCL) with bioluminescence

imaging HTS assay; discovered
37 previously unknown ABCG2

inhibitors

[121]

Tiagabine Antiepileptic (enhances

gamma-aminobutyric
acid activity)

Neuroprotective in N171-82Q and

R6/2 mouse models of HD

Initial screen of NINDS Microsource

database of drugs (1040 molecules)
against PC12 cell model of HD

found nipecotic acid, which is

related to tiagabine

[122]

Digoxin, oubain and
proscillardin A

Cardiac glycosides used
to treat congestive heart

failure and arrhythmia

Anticancer: inhibition of hypoxia-
inducible factor 1; IC50 �400 nM

3120 FDA-approved drugs (JHCCL)
screened against reporter cell line

Hep3B-c1; digoxin also tested

in in vivo xenograft models

[123]

Tacrine, carvedilol,
hexamethyleneamiloride
and phenoxybenzamine

Acetylcholinesterase
inhibitor, b2-adrenergic

blocker, diuretic,

a1-adrenergic blocker,

respectively

Prevention of hearing loss: lowest
dose tested that shows protection is

10 mM

Initial screen of NINDS Microsource
database of drugs (1040 molecules)

against neomycin induced hair cells

in zebrafish. Tacrine was also active

in mouse utricle

[124]

Ceftriaxone b-lactam antibiotic Neuroprotection. ALS: increases

GLT1 expression; EC50 3.5 mM. Other

b-lactams also active

Screen of NINDS Microsource

database of drugs (1040 molecules)

against rat spinal cord cultures

followed by immunoblot for GLT1
protein expression. Also tested in

ALS mouse model: delayed neuron

loss and increased survival

Flufenamic acid Non-steroidal
anti-inflammatory

drug

Familial amyloid polyneuropathy:
inhibits transthyretin

Screening library not described [125]

a Abbreviations: ABCG2, ATP-binding cassette sub-family Gmember 2; ALS, amyotrophic lateral sclerosis; GLT1, glutamate transporter 1; GRM1, metabotropic glutamate receptor; HSP-900,

heat shock protein 90; HD, Huntingdon’s disease; HUVEC, human umbilical vein endothelial cells; InHa, inhibin, alpha; MetAP2, type 2 methionine aminopeptidase; mGluR, metabotropic

glutamate receptor; NCGC, National Clinical Guideline Centre; NF, nuclear factor; NINDS, National Institute of Neurological Disorders and Stroke.
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potent 5-HT2A ligand that could block the JC virus [20], which can

cause the neurologic disease progressive multifocal leukoencepha-

lopathy if untreated. A second example suggested side effects for

known drugs mediated by the 5-HT2B receptor [20]. The number of

examples of groups finding new uses for approved drugs by HTS

appears to be growing (Table 2) on a laboratory-by-laboratory

basis. It is intriguing to ponder whether an organized effort to

screen experimentally the set of all known drugs against all known

targets validated for a given disease would be feasible. Certainly,

the potential for success with one disease, let alone many human

diseases, appears to be significant.

Using in silico methods
In silico methods, including target- and ligand-based strategies, are

an excellent complement to experimental techniques, and are

widely used in industry and academia [15,21]. There have been

many studies establishing relationships between ligand molecular

structures and broad biological activities, both on and off target

[22–25]. Several examples using pharmacophore-based studies and

searching databases of FDA drugs [26] to find new transporter
302 www.drugdiscoverytoday.com
inhibitors in vitro, represent attempts at understanding off-target

effects, which is analogous to drug repositioning. For example,

pharmacophores for various transporters, such as the human

peptide transporter 1 (hPEPT1) [27], P-glycoprotein (P-gp) [28],

the human organic cation/carnitine transporter (hOCTN2) [29,30]

(Fig. 1) and the human apical sodium-dependent bile acid trans-

porter (ASBT) [31], have been used to search a subset of FDA-

approved drugs compiled from A Small Physician’s Handbook

(SCUT, structures available as a supplemental file) [26] and to

identify previously unknown inhibitors based on in vitro testing

(Table 3). Interestingly, for each transporter, inhibitors were found

that belonged to different therapeutic classes and these repre-

sented molecules with overlapping pharmacophores. What has

not been examined to date is whether the distinct therapeutic class

hits for a single transporter are also shared by other common

biological activities. These transporters were selected because of

the inhibition of hPEPT1 or P-gp involved in drug–drug interac-

tions [28], the putative role of hOCTN2 inhibition in rhabdomyo-

lysis [29,30] and the potential for drugs inhibiting ASBT to

promote several adverse drug reactions (ADRs), including colon
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FIGURE 1

Transporter pharmacophores for hOCTN2. (a) Cetirizine. (b) Cetirizine mapped to a catalyst pharmacophore based on three actives and two inactives for OCTN2

[30]. The pharmacophore contains two hydrophobic features (cyan) and a positive ionizable feature (red). (c) Cetirizine mapping to a catalyst pharmacophore

derived from 22 drugs with Ki data for OCTN2 (observed and predicted data described in [29]). The pharmacophore contains two hydrophobic features (cyan), a

hydrogen-bond acceptor (green) and a positive ionizable feature (red).

TABLE 3

FDA-approved compounds found by an in silico–in vitro approach to inhibit transportersa

Compounds Transporter Biological effect Pharmacophore features Refs

Aspartame, fluvastatin and repaglinide hPEPT1 Inhibit uptake of natural

substrates and other drugs
that are substrates

Two hydrophobic and one hydrogen

bond acceptor; one hydrogen bond
donor; one negative ionizable feature

[27]

Acitretin, cholecalciferol, misoprostol, nafcillin,
repaglinide, salmeterol and telmisartan

P-gp Decrease clearance of drugs by

inhibiting efflux into intestine

of P-gp substrates.

Three hydrophobic features

and two hydrogen bond

acceptor features

[28]

Thioridazine, vinblastine, clozapine, amlodipine,
gefitinib, trifluoperazine, dibucaine, tamoxifen,
amiodarone, atracurium, nefazodone, argatroban,
nelfinavir, proclorperazine, raloxifene, metoclopramide,
desloratidine, duloxetine, carvedilol, olanzapine,
amitriptyline, imatinib, desipramine, quinine,
quinidine, haloperidol and bromocriptine

OCTN2 Inhibition may cause
rhabdomyolysis.

Three hydrophobic features
and one positive ionizable feature

Two hydrophobic features,

one positive ionizable feature

and one hydrogen bond acceptor.

[30]
[29]

Nimodipine, fluvastatin, latanoprost,
lovastatin, pentamidine, simvastatin,
pioglitazone and tioconazole

ASBT ASBT inhibition can cause

diarrhea, hyperglyceridemia,
gallstone disease and

colon cancer.

Two hydrophobic features, two

hydrogen bond acceptors and shape
restriction around mesoridazine

[31]

a Additional examples of transporter pharmacophore searches can be found in [126].
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cancer [31]. The transporters also represent a class of proteins for

which in vitro models might be limited in throughput and where in

vivo study is even more complicated owing to the presence of

multiple transporters with overlapping substrate specificities.

Therefore, the in silico–in vitro approach has value in targeting

compounds with a high probability of activity.

Computational pharmacophores and molecular
similarity methods for drug repositioning
Pharmacophores and 3D database searching could be readily used

for drug repositioning. 2D approaches might, however, be more

readily available for both similarity and substructure searching and

have been used with success for finding metabolite mimics for Mtb

[32] and in studies to predict the cross-reactivity of drugs and drug

metabolites with immunoassays used in clinical medicine [33–36].

Common applications of immunoassays include drug of abuse

(DOA) screening, endocrinology testing and therapeutic drug

monitoring (TDM). Immunoassays can be limited by the occur-

rence of false positives (or ‘cross-reactive’ compounds). For exam-

ple, drugs with structural similarity to amphetamine and

methamphetamine, such as ephedrine and pseudoephedrine,

can cross-react with DOA screening assays designed to detect

the presence of amphetamine or methamphetamine. Diagnostic

companies manufacturing clinically used immunoassays often test

a limited number of compounds for cross-reactivity against their

immunoassay, although there is a potentially large array of com-

pounds (metabolites, herbals and environmental chemicals) that

could possibly interact. Consequently, cross-reacting compounds

are discovered on a case-by case basis [33,34].

Similarity searching examples
Computational 2D similarity (using the MDL public keys finger-

print descriptors) of test compounds to that of the antigen used in

immunoassays, has been used to predict cross reactivity [33–36].

The SCUT database of frequently used FDA-approved drugs was

used for similarity searching and was supplemented with some

metabolites of drugs (see Online Supplementary Information).

This relatively simple computational approach showed a statisti-

cally significant separation between cross-reactive and non-cross-

reactive compounds for TDM immunoassays [33,34] and DOA/

toxicology immunoassays [35,36]; the approach was further used

to identify novel inhibitors of DOA/toxicology immunoassays

[36]. These examples show how in silico methods can build on

existing data and focus in vitro testing.

The examples above also illustrate how 2D similarity alone

might be useful for finding compounds that could have pharma-

cophore features that are similar to those of other drugs. This raises

the question of whether such similar molecules might share over-

lapping biological activities. Simple similarity searching could be a

component of a compound-repositioning strategy, using compu-

tational methods to predict probable cross-reactive compounds by

similarity followed by a quick confirmation with immunoassays

that are commercially available. Other computational approaches

comparable to searching by similarity, such as those involving

LASSO descriptors [37], can make use of large, publicly available,

databases, such as ChemSpider [38], to compare existing drugs

with virtual libraries. Comparable methods, such as PASS (predic-

tion of activity spectrum for substances) could also be used to
304 www.drugdiscoverytoday.com
predict potential new bioactivities for existing drugs [39]. Com-

putational methods that account for molecular shape might be

generally useful for searching for compounds with common bioac-

tivity [40]. Molecular docking is one example that has been used

successfully to find molecules with complementary shape and

electrostatic interactions with known protein active sites. For

example, docking approaches have been used to dock 1055 known

drugs (from DrugBank) into 78 unique human drug targets and the

authors found 52 interactions of interest (although no experi-

mental verification was reported) [41].

Using networks and systems biology for drug
repositioning
During the past decade, understanding of biological mechanisms

has been significantly enhanced by the curation of vast ligand–

and protein–protein interaction databases and the use of top-

down and bottom-up network modeling leading to a systems

biology approach [42–46]. During the past five years alone, 2D

ligand-based approaches have been increasingly used along with

sophisticated algorithms and networks. This approach has been

used for drug repositioning and for understanding the off-target

effects of drugs. Fliri et al. used biological spectra for a cross section

of the proteome [47]. They implemented hierarchical clustering of

the biological activity spectra similarity and created a relationship

between structure and bioactivity before extending this to identify

receptor agonist and antagonist profiles [48]. The same group from

Pfizer took this concept further and applied a probabilistic

approach to link adverse effects for drugs with biological spectra

(similar molecules had overlapping profiles, in the same way that

they had similar biological spectra), thus linking preclinical with

clinical effects [49].

Promiscuity networks and insights for repositioning
There have been many efforts to look at compound or protein

promiscuity or polypharmacology that could lead to the discovery

of new uses for existing molecules. Specifically, there has been

considerable discussion of predicting undesirable drug interac-

tions with promiscuous proteins in silico. This is a particular issue

for hydrophobic compounds that might bind to cytochrome P450

(CYP) 3A4, the pregnane X receptor (PXR), P-gp or the human

ether-à-go-go-related gene (hERG) [50]. Quantitative structure–

activity relationship (QSAR) models for these proteins have been

used to predict potential molecule protein interactions and then

visualize this as a node on a network, simultaneously showing

other endogenous and exogenous ligand–protein interactions

[45,46,51] as well as allowing overlay of any gene expression or

other high content data [52–54]. Such an approach could be useful

for ensuring that repurposed compounds do not have negative

effects on biological networks through binding other off-targets. A

global mapping of pharmacological space focusing on a polyphar-

macology network of 200 000 molecules with activity against 698

proteins has also been produced [55]. A further published study

created a drug–target network of approved drug data for 890

molecules from DrugBank [56] and OMIM (http://www.ncbi.nlm.

nih.gov/omim), with over half of these molecules forming the

largest connected network with multiple target proteins (also

illustrating polypharmacology or promiscuity) [57]. Such net-

works might help understand probable nodes involved in toxicity

http://www.ncbi.nlm.nih.gov/omim
http://www.ncbi.nlm.nih.gov/omim
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and add to the similarity maps for enzymes and receptors [58] and

human polypharmacology networks [55] that have also been

developed to date. A recent study from Abbott introduced a

sequence-independent kinome inhibitor interaction map [59],

whereas another study established links between over 44 000 small

molecules and 160 cardiovascular targets, with kinases having, on

average, seven connections to cardiovascular targets [60]. An

example from Berg et al. has merged chemical target and pathway

toxicity mechanisms that can be defined from profiling in primary

human cell systems covering many readouts and enabling known

reference compounds to be mapped by functional similarity [61].

Using chemical substructures to understand side effects and
assist repositioning
A complimentary approach taken by a group at Novartis uses

chemical substructures relevant for toxicology-related adverse

effects [62] for approximately 4000 molecules with side-effect

information from the World Drug Index. The same group related

promiscuity of compounds to their safety [63]: for a given com-

pound, the number of biological targets inhibited to a significant

extent typically correlates with a higher incidence of effects. More

recently, the group has related over 4000 MedDRA (http://

www.meddramsso.com/) terms for ADRs for over 1800 drugs using

the ECFP_4 descriptors and Bayesian models [64,65]. This resulted

in a map of ADRs in chemical space and an approach that could be

used to predict, in silico, the ADR likelihood for new molecules

based on substructures. Interestingly, the recent similarity ensem-

ble analysis described by Keiser et al. also used the ECFP_4 descrip-

tors and Bayesian models to predict off-target effects of 3665 FDA-

approved drugs and investigational compounds [66]. This study

clearly showed the promiscuity of many compounds. Their in vitro

validation of the computational predictions focused on com-

pounds with predicted GPCR activity other than the known

targets. The approach could be particularly useful for understand-

ing the potential targets for compounds where these have been

previously unknown.

Using machine learning and databases for drug repositioning
Machine-learning models have also been applied with various

types of literature data on drugs that could also assist in their

repositioning. Decision tree induction has been used to predict the

adverse drug reactions for 507 drugs from the Swiss Drugs Registry,

and resulted in models that looked internally predictive [67]. A

machine-learning method has also been used with a set of 390

drugs to demonstrate that anatomical therapeutic chemical clas-

sification, a system used for drug repurposing, can be predicted by

using a binary feature vector derived from extraction of drug

property data from text alone [68]. Chiang and Butte compiled

a drug-disease knowledge base (DrDKB) to capture the 3517 FDA-

approved drug indications and 8130 off-label uses of 2022 distinct

drugs used to treat each of 726 diseases [69]. They were able to

make 57 542 unique novel drug use suggestions and, leaving out

10–20% of the data as a test set, resulted in over 85% recovery of

the drug uses [69]. Others have generated a database called PRO-

MISCOUS (http://bioinformatics.charite.de/promiscuous/index.

php?site=drugdev) representing a set of 25 000 withdrawn or

experimental drugs annotated with 21 500 drug–protein and

104 000 protein–protein relationships, using public resources
(e.g. DrugBank, SuperTarget, etc.) and text or data mining [70].

These data can be searched using a network visualization tool and

several anecdotal examples were provided of molecule or side-

effect similarity, although no prospective testing was described

[70]. Another tool suggested to be useful for drug repositioning is

IDMap, which integrates the Elsevier MDDR database, Asinex

compounds, PASS and molecular descriptors from Cerius2 [71].

Text mining was used to compare PASS and MDDR bioactivity and

provide a co-occurrence frequency, although, again, no prospec-

tive testing was shown [71]

Integration of methods for repositioning
By connecting data on drugs, proteins and diseases, these various

databases, networks and computational methods might be useful

not only for understanding and identifying promiscuity, polyphar-

macology and toxicity mechanisms, but also potentially for repur-

posingmolecules for newuses thatcould focusand accelerate in vitro

screening efforts [17,20,72–74] as previously described with trans-

porters [27–31]. For some researchers, finding molecules with man-

ageable ADRs might be useful and lead to new indications. Many of

these examples illustrate how molecules can be put into a biological

context through networks. The integration of different computa-

tional and experimental approaches along with published data

could lead to a more complete understanding than using a single

approach in isolation and could enable network-based drug dis-

covery described elsewhere [75,76]. Others have also suggested that

data integration platforms for systems biology (whether using

ligand [58,66] or binding site similarity [77]) could support reposi-

tioning and drug discovery, although no solid examples of bringing

new treatments into the clinic have been provided as yet [78].

Examples using in silicomethods for drug repositioning
in neglected infectious diseases
As a proof of principle that computational methods could help

accelerate neglected disease research, a machine-learning method

has been used and validated with multiple data sets. Bayesian

classifier models are computationally fast and have been used

widely for several drug discovery applications in recent years,

including with Mtb [79]. Bayesian classification methods [80] have

been previously used for CYP, transporter and toxicity models

[31,81–84] as well as to identify substructures that are important in

recent TB screening data sets [85]. The Mtb Bayesian models

(training sets from 2000 to �200 000 molecules) have been vali-

dated with external compounds using the published National

Institute of Allergy and Infectious Diseases (NIAID), GVKbio data

sets (which include known drugs and other experimental com-

pounds) and a set of 102 000 compounds [Tuberculosis Antimi-

crobial Acquisition and Coordinating Facility (TAACF)-NIAID

cannabinoid receptor 2 (CB2)] containing 1702 molecules with

�90% inhibition at 10 mm (representing a hit rate of 1.66%) [86].

Tenfold enrichments were shown in finding active compounds in

the top-ranked 600 molecules for the TAACF-NIAID CB2 [86],

which came from the same source [84,87] as the training sets used

in the original models and represents an ideal scenario from

modeling to limit any experimental variability. The three test sets

ranged from 2880 to over 102 000 compounds. The largest test set

also contained a more realistic percentage of hits representative of

HTS screens.
www.drugdiscoverytoday.com 305

http://www.meddramsso.com/
http://www.meddramsso.com/
http://bioinformatics.charite.de/promiscuous/index.php%3Fsite=drugdev
http://bioinformatics.charite.de/promiscuous/index.php%3Fsite=drugdev


REVIEWS Drug Discovery Today � Volume 16, Numbers 7/8 �April 2011

[()TD$FIG]

0

20

40

60

80

100

0 20 40 60 80 100

Test set screened (%)

H
it

s 
id

en
ti

fi
ed

 (
%

) 

Drug Discovery Today 

FIGURE 2

Receiver operator characteristic plot for the FDA-approved Mtb hits (n = 21)

used as a test set (n = 2108) for a previously published Bayesian model [89].
Key: purple, best rate of finding hits; yellow, Bayesian model; blue, random

rate of finding hits.
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More recently, the JHCCL set of 1514 known drugs were used to

screen experimentally against Mtb and the minimum inhibitory

concentration (MIC) values determined using the Alamar blue

susceptibility assay (published by others [19]). Of the actives

identified, 21 were used as a test set in a larger set of 2108 FDA-

approved molecules downloaded from the Collaborative Drug

Discovery database (CDD) database. After removal of compounds

that were also in the Bayesian models, it was shown that the

Bayesian models initially had approximately tenfold enrichments.
TABLE 4

A subset of the �20 CDD publicly available antimalarial and TB dat

Database name/source Description

US Army survey An extensive collection of antimalarial dru

etc., published originally by the US Army

St Jude Children’s
Research Hospital

Supplemental data for [127]: structures te

protocols: Bland–Altman analysis, calculat
sensitivity, synergy and enzyme assays, as

Novartis Malaria Data from [128] Plasmodium falciparum st

quinine-, pyrimethamine-, cycloguanil- an

tested in an erythrocyte-based infection a

by selected compounds

Johns Hopkins-Sullivan Percent inhibition of approved drugs at 1

MLSMR A diverse collection tested by the Southe

active compounds have dose-response an

TB efficacy data from the
literature

TB efficacy data from >300 published lite

targets, cells and organisms tests, MIC, %

TAACF–NIAID–CB2 Results of a commercial compound librar

inhibit the growth of Mycobacterium tube

Novartis Mtb Aerobic and anaerobic hits versus M. tube

a Abbreviations: ADMET, absorption, distribution, metabolism, excretion, and toxicity; MR4, M
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One model identified �60% of the drug hits in the top 14% of

compounds (S. Ekins and J.S. Freundlich, in press; Fig. 2). The

Bayesian models were also used to suggest drugs with a high

probability of predicted Mtb activity that could be tested in vitro

in future (S. Ekins and J.S. Freundlich, in press).

Resources for in silico repositioning of molecules for
neglected and rare diseases
CDD
If researchers are going to accelerate rare/orphan and neglected

disease research in silico, what resources are currently available and

what are still needed? One accessible tool is the CDD database [88]

with a focus on neglected diseases, which has been recently

described in detail [86,89,90]. Chris Lipinski (Melior Discovery)

provided a database of 1055 FDA-approved drugs with designated

orphan indications, sponsor name and chemical structures. In

addition, David Sullivan (Johns Hopkins University) collated

and provided a database of 2815 FDA-approved drugs. Bryan Roth

(University of North Carolina) provided the PDSP database, which

currently consists of nearly 1500 molecules structures that have

been screened against an array of GPCRs [20,58,73,74]. These data,

in addition to the>20 screening data sets for malaria and TB (Table

4), have enabled recent analysis of the physicochemical properties

of active compounds [86,91,92] and filtering with readily available

substructure alerts or ‘filters’ [86,91,92]. All these data sets allow

for free access of substructure, similarity or Boolean searches upon

registration (e.g. http://www.collaborativedrug.com/register). The

data have also been used for validating similarity searching and

pharmacophore approaches to find mimics of essential metabo-

lites for Mtb [32].

In addition, a license to CDD can enable download of data sets

that are not freely available. This might be advantageous if they

need to be searched with third-party cheminformatics software

(e.g. pharmacophore models or QSAR methods, etc.) (Fig. 3). This

suggests an additional approach for repurposing using in silico
a setsa

Molecules

g animal SAR data, including structures, bioactivity

in 1946

12 318

sted in a primary screen, with additional data in eight

ed ADMET properties, phylochemogenetic screen,
well as a thermal melt analysis

1524

rains 3D7 (drug-susceptible) and W2 (chloroquine-,

d sulfadoxine-resistant), obtained from MR4, were

ssay for susceptibility to inhibition of proliferation

5695

0 mM 2693

rn Research Institute against Mtb H37Rv; the most

d cytotoxicity data

214 507

rature sources; data include PubMed citations,

inhibition, EC50, IC50, etc.

6771

y screening by the Southern Research Institute to

rculosis strain H37Rv

102 634

rculosis 283

alaria Research and Reference Reagent Resource Center.

http://www.collaborativedrug.com/register
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A repositioning strategy using the CDD (http://www.collaborativedrug.com/register), ChemSpider (http://www.chemspider.com) or other databases (bioactivity data

for target or disease of interest and FDA drug data set) in combination with computational methods (pharmacophore, similarity assessment, machine learning, etc.).
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models to find compounds of interest in the FDA-approved drugs

set. For instance, models generated with data from one or more

public data sets (or the user’s own private data) could be used to

search other data sets and find new molecules for screening (Fig. 3).

Other tools
The same strategy described previously could be readily taken with

other databases and software tools taking advantage of freely

available content and tools in databases such as ChemSpider

[38], PubChem [93], DrugBank [56] and ChEMBL (http://www.

ebi.ac.uk/chembldb/index.php) or others [16,94,95]. This overall

approach is analogous to the pharmacophore approach taken with

transporters searching the SCUT database of commonly used drugs

(Table 3), similarity searching for drugs cross-reactive with DOA

and TDM immunoassays [33–36] and with Mtb Bayesian models

[86,91] for searching the FDA-approved drugs. Recent efforts to

validate the Bayesian models with data from other laboratories

(described above) would indicate that the in silico approach cer-

tainly has merit for neglected diseases.

The missing piece
What is still needed is a single comprehensive resource that has

validated chemical structures (and properties) of both FDA- and

internationally approved drugs, as well as those that are either no

longer used or are removed from the market. A database contain-

ing information on studies in which these compounds show

activity (e.g. enzyme, receptor, whole cell data, etc. similar to
Tables 1 and 2) as well as clinical data would be invaluable. Such

a database could then be linked with other mining tools that

enable 1D–3D similarity searching. Once created it could be used

as the authoritative virtual screening database for repurposing

before testing physical compounds in whole cells or target assays.

Summary
Analysis of the literature suggests that, by using HTS, there are

many examples of FDA-approved drugs that are active against

additional targets that can be used to therapeutic advantage for

repositioning. For example, there are several examples for

neglected diseases, including compounds with antimalarial, anti-

tubercular, trypanosomal and Chagas disease activity (Table 2). To

date, there are fewer such examples where in silico approaches have

derived new uses for approved drugs (Table 2) [77,96]. However,

with current technologies and databases, as well as a close inte-

gration with in vitro screening, this will change. Although com-

putational approaches, such as ligand- and structure-based

methods, have been widely used for searching libraries of com-

mercial compounds for neglected diseases [97], few have tried to

use already existing drugs with computational methods [77]. A

recently described apparent gap has been noted in the Mtb com-

munity between the generation and utilization of computational

models for drug discovery [98]. These in silico models are not well

disseminated and certainly not widely used for repositioning FDA-

approved drugs. This situation needs to be rectified. Another

important consideration should be the quality of the structures
www.drugdiscoverytoday.com 307
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in the databases used, whether of FDA drugs or other molecules, as

these will impact the in silico results [94]. If neglected diseases can

benefit from in silico methods so too can rare or orphan diseases as

well as more common diseases. Repositioning approved drugs

brings with it other incentives, such as seven-year market exclu-

sivity [98], whereas new approved drugs or vaccines for a neglected

disease can qualify for an FDA priority review voucher (US Medical

Device User Fee and Modernization Act). In our opinion, some or

all of the aforementioned in silico approaches should be used

alongside in vitro methods to drug repurposing, if for no other

reason than to speed up the process of drug discovery at little

additional cost.
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Supplementary information
Supplemental information is available at http://www.4shared.

com/account/file/MzCpwWw-/SCUT_Monkey_CLEANED.html

or available from the corresponding author upon request. The

updated SCUT database is provided as an sd file as used in recent

similarity studies and pharmacophore searches [30,31,33,35,36].
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