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Drug resistance has become one of the biggest challenges in drug discovery and/or development and has

attracted great research interests worldwide. During the past decade, computational strategies have been

developed to predict target mutation-induced drug resistance. Meanwhile, various molecular design

strategies, including targeting protein backbone, targeting highly conserved residues and dual/multiple

targeting, have been used to design novel inhibitors for combating the drug resistance. In this article we

review recent advances in development of computational methods for target mutation-induced drug

resistance prediction and strategies for rational design of novel inhibitors that could be effective against

the possible drug-resistant mutants of the target.
Introduction
With the development of computer science and structure biology,

structure-based drug design has become one of routine approaches

of drug discovery today. Aided by structure-based design, many

pharmacologists usually focus on improving the potency of drug

candidates from micromolar to nanomolar and even picomolar

level. However, the stronger the selection pressure, the more

rapidly resistance develops because drug target has been proved

to be plastic [1]. Take HIV-1 virus as an example, it has been

estimated that there are 104–105 mutations every day for each

single residue in an untreated HIV-1 infected individual [2].

Hence, it is an interesting task and urgent demand to develop

new strategies to combat drug resistance.

Generally speaking, drug resistance can be divided into several

categories (Fig. 1) [3], such as target mutation, epigenetic mod-

ifications represented by gene expression variations of the target

protein [4] and drug bypass signaling [5,6]. It is desirable to

account for the possible drug resistance in the course of drug

discovery to overcome the drug resistance as much as possible.

Thus, it is interesting to computationally predict the possible

target mutation-induced drug resistance and design possible

inhibitors that are also effective against the resistant variants

(RVs) inhibitors. In this review we focus on recent advances of
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structure-based approaches to drug resistance prediction and

molecular design strategies to combat target mutation-induced

resistance.

Structure-based prediction of mutation-induced drug
resistance
The fast and precise prediction of drug resistance mutations could

help to avoid therapy failure and/or facilitate therapy redesign

after failure. Hence, various computational methods have been

used to carry out mutation-induced drug resistance prediction

based on the known RV of the target. Commonly, the side chains

of amino acids in the target protein structure are replaced by the

corresponding ones in a mutant during the computational mod-

eling which aims to model the mutant structure. Molecular dock-

ing [7,8], molecular dynamics (MD) simulation [9–13] and

computational mutation scanning (CMS) [14,15] methods have

been used to determine the binding structures of a drug in various

mutants.

Because of the high efficiency of the computation, molecular

docking is a good choice for the resistance prediction of a large

number of mutants or compounds. For a potential problem, the

simple docking cannot deal with the highly flexible protein–

inhibitor complex structures very well. MD simulation has an

advantage in conformational flexibility sampling and researchers

can peer into the motion at atom level from the obtained MD
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FIGURE 1

Drug resistance mechanisms. Drug resistance can be divided into two main categories: target mutation and non-target mutation. Target mutation affects the

binding of the inhibitor (1). Non-target mutations include epigenetic modifications (2) and drug bypass signaling (3). Epigenetic modifications can be grouped
into DNA methylation, histone modifications and nucleosome positioning. A representative is gene expression variations of the target protein (2). Resistance can

also occur on drug bypass signaling pathway, which results in less drug accumulation by increasing drug elimination or metabolizing (3).
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trajectories. On the down side, the MD method is relatively more

time-consuming and might not be suitable for simulating a large

number of mutants.

To predict mutation-induced shift of the binding free energy for

a given mutant, Hao et al. [15] developed a novel drug resistance
TABLE 1

Computational drug resistance prediction capability

Year Method Target 

Phenotypic predictions
2008 Molecular dynamics HIV protease 

2008 Molecular modeling protocols HIV protease 

2008 Vitality value calculation HIV protease 

2008 Molecular dynamics with

free energy/variability value

HIV protease 

2009 Molecular dynamics Epidermal growth factor recep

2009 Molecular dynamics ACCase 

2009 Molecular dynamics PPO 

2009 Proteochemometric modeling HIV protease 

2009 Molecular interaction energy

components and support

vector machine

HIV protease 

2010 Computational mutation scanning HIV protease 

Genotypic predictions
2006 Decision trees, neural networks, support

vector regression, least-squares regression
and least angle regression

HIV protease and

reverse transcriptase

2006 Recurrent neural networks HIV protease 

2007 Item set boosting HIV reverse transcriptase 

2008 Support vector machine, the radial
basis function network, and

k-nearest neighbor

HIV protease and
reverse transcriptase
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prediction method – CMS, which is a reasonable combination of

the MD simulation on wild-type (WT) protein target and subse-

quent mutational scanning (one-step perturbation) for a larger

number of mutants. For the possible limitation of the methodol-

ogy, the CMS method can be accurate only under a presumption
Reported prediction accuracya Refs

Criterion 1 Criterion 2 Criterion 3 Criterion 4

<1.5 kcal/mol [12]
R2 = 0.61 [8]

<1.2 kcal/mol [43]

88% [44]

tor (EGFR) R2 = 0.84 [45]

R2 = 0.74 [46]

R2 = 0.84 [13]
R2 = 0.92 [47]

86–93% R2 = 0.81–0.92 [17]

96% 82% R2 = 0.75 [15]

80.1% [48]

81.4–94.7% [49]

R2 = 0.55–0.94 [50]

88.0% [51]
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TABLE 1 (Continued )

Year Method Target Reported prediction accuracya Refs

Criterion 1 Criterion 2 Criterion 3 Criterion 4

2009 Artificial neural network,

random forest, and support

vector machine committee

HIV reverse transcriptase R2 = 0.73 [52]

The consensus predictions
2008 Multivariate statistical procedures HIV reverse transcriptase

and protease

65–80% [53]

2008 Fitness landscape HIV protease R2 = 0.47–0.84 [54]
a Various criteria used to represent the prediction accuracy in the references cited:Criterion 1: Percentage of the correctly predicted resistance and non-resistance mutations.Criterion 2:

Percentage of the correctly predicted drug resistance levels (high, middle, low and no resistance) in which the low resistance level means less than tenfold resistance (in terms of the IC50
value increase), the middle resistance level means less than 100-fold but higher than tenfold resistance and the high resistance level means higher than 100-fold resistance.Criterion 3:

Correlation coefficient (R2) for the linear correction between the computational binding free energy changes and the corresponding experimentally derived binding free energy

changes.Criterion 4: Standard deviation of the computational binding free energies from the corresponding experimentally derived binding free energies.
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FIGURE 2

Various strategies used to design novel inhibitors for combating the drug

resistance. (a) Inhibitors designed to have strong hydrogen-bond interactions

with the backbone atoms of the target protein can probably reserve important

interactions with the mutants and, thus, effectively combat drug resistance. (b)
Designing inhibitors that have significant interactions mainly with the

conserved residues interacted with the substrate can minimize the

dependence of the activity on the non-conserved residues. (c) Dual/multiple

targeting strategy, which uses a single molecular entity to inhibit multiple
protein targets, could significantly reduce the likelihood of drug resistance.
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that the mutation does not considerably change the binding mode

of the drug. In other words, the CMS calculation could signifi-

cantly overestimate the drug resistance associated with the mutant

when the mutation actually causes a considerable change in the

binding mode. Based on the CMS calculations, the mutation-

induced drug resistance mechanisms include the following cate-

gories: (i) decrease in the enthalpy contribution to the binding

affinity, (ii) decrease in the entropic contribution to the binding

affinity, (iii) decrease in both the enthalpy and entropic contribu-

tions, (iv) no significant change in the enthalpy and entropic

contribution, (v) decrease in the enthalpy contribution compen-

sated with increase in the entropic contribution and (vi) decrease

in the entropic contribution compensated with increase in the

enthalpy contribution.

Statistical learning methods [16] have also been used for

sequence-based drug resistance predictions. By using these purely

empirical approaches, one only needs to know the primary structure

(sequence) of the target protein, but a large number of known

resistance and non-resistance mutants are required for the model

training. Well-trained models could have satisfactory predictive

ability which is measured by the prediction accuracy of the resis-

tance level (Table 1).

Furthermore, there have been efforts to develop other effective

computational approaches to the drug resistance prediction based

on a combined use of structure- and sequence-based methods [17].

In particular, Zhang et al. [18] proposed a unique procedure that

combines Bayesian statistical modeling with MD simulations to

investigate complex interactions of drug resistance mutations of

the HIV-1 protease and reverse transcriptase. They presented a

statistical procedure that first detects mutation combinations

associated with drug resistance and then the molecular basis of

their statistical predictions was further studied by carrying out MD

simulations and free energy calculations to infer detailed interac-

tion structures of these mutations. Their proof-of-concept study

has demonstrated that the insights obtained from the MD simula-

tions guided by the Bayesian inference can shed light on how to

improve the potency of drugs to combat the resistance.

Table 1 summarizes the results associated with different meth-

ods reported in recent years. Predictive ability of these studies is

mainly evaluated by qualitative or quantitative indicators. Quali-

tatively, drug resistance can be divided into different levels, in

which prediction accuracy is in the range of 82–96% for structure-

based methods, 80–95% for sequence-based methods and 65–80%
www.drugdiscoverytoday.com 1123
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for consensus methods. Quantitatively, the predictive ability can

also be evaluated by the prediction accuracy or standard deviation

of the computational values from the corresponding experimental

values. In the quantitative analysis, correlation coefficient (R2) and

the standard deviation between the computational and experi-

mental binding affinities are widely used. Usually, the R2 value

ranges from 0.61 to 0.92 in structure-based methods, 0.55–0.94 in

sequence-based methods and 0.47 and 0.90 in consensus methods.

The standard deviation of the binding energy calculation is usually

under 1.5 kcal/mol.

Structure-based design of RV inhibitors
It is interesting to design and develop more effective drugs that can

be active for both the WT protein target and its possible variants.

Detailed analysis on a wide range of X-ray crystal structures of

protein–drug complexes, along with biological data on drug-resis-

tant mutations, has identified structural factors important for

rational design of new inhibitors whose binding affinity with

the target is not (or less) affected by the target mutations.

Targeting protein backbone
Amino acid mutations change the side chains of mutated residues,

but do not change the backbone. Inhibitors designed to have
(a)     Targ eting  prot ein  ba ckbon e

(b)     Targeting  high ly conser ved  residue s

(c)      Dual/ mul tip le t argeting
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Chemical structures of known representative inhibitors (designed by using differe
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strong hydrogen-bond interactions with the backbone atoms of

the target protein can probably reserve important interactions

with the mutants and, thus, effectively combat drug resistance

(Figs 2a and 3a) [19–22]. For example, a series of 1-[(2-hydro-

xyethoxy) methyl]-6-(phenylthio)thymine (HEPT) analogs were

computationally designed and synthesized [23] to form two

hydrogen bonds with the backbone carbonyl group of Lys101 of

HIV-1 reverse transcriptase. Most of these compounds are highly

potent inhibitors of WT HIV-1 reverse transcriptase and its resis-

tant mutants.

It is well known that darunavir displayed ultrahigh HIV pro-

tease inhibitor potency (Ki = 16 pM) and retained the potency

against many highly drug-resistant HIV mutants by forming

hydrogen bonds between bis-tetrahydrofuran (bis-THF) moiety

and the backbone NH groups of Asp29 and Asp30 [24]. Ghosh et al.

[25] further predicted that the incorporation of another tetrahy-

drofuran ring on the bis-THF ligand could provide additional

favorable binding with the backbone atoms. The prediction

guided them to design and synthesize a series of novel oxatricyclic

ligands that ‘displayed potent activity against a variety of

multidrug-resistant clinical HIV-1 strains, with EC50 values ran-

ging from 0.6 to 4.3 nm, a nearly tenfold improvement over

darunavir’ [25].
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nt strategies) that are potent toward WT and many drug-resistant mutants.
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Targeting highly conserved residues
The analysis of the reported resistant mutants demonstrated that

few drug-resistant mutations happened on highly conserved resi-

dues [26]. Hence, another widely accepted strategy is to design

inhibitors that have significant interactions with only the highly

conserved residues so as to minimize the dependence of the

activity on the non-conserved residues (Figs 2b and 3b) [27–30].

b-Lactam antibiotics have long been used for the treatment of

bacterial infections because they bind irreversibly to penicillin-

binding proteins (PBPs) that are vital for the cell wall biosynthesis.

Many pathogens express drug-insensitive PBPs to render b-lactams

ineffective, which reveals a need for new types of PBP inhibitors

that are active against the resistant mutants. Contreras-Martel

et al. [31] identified boronic acid inhibitors that are active against

clinically relevant pathogens and may overcome b-lactam resis-

tance by mimicking the tetrahedral catalytic intermediate.

In addition, Schiffer et al. developed a ‘substrate envelope’

hypothesis that inhibitors located within the overlapping con-

sensus volume of the substrates were less likely to be susceptible to

drug-resistant mutations than inhibitors that protrude beyond

this envelope [32]. As mutations impacting such inhibitors would

simultaneously impact the process of substrate perception [33–37].

For an ideal inhibitor located within the substrate envelope, there

will be no chance for drug resistance mutation except for the rare

coevolution of the protein and substrate [38]. To evaluate this

hypothesis, more than 130 new inhibitors of HIV-1 protease were

designed and synthesized with and without the substrate-envel-

ope constraints [37]. In general, inhibitors that fit within the

substrate envelope have flatter profiles with respect to drug-resis-

tant protease variants than inhibitors that protrude beyond the

substrate envelope. Thus, the acquired results from testing this

hypothesis are encouraging as they have demonstrated that com-

bining the substrate-envelope hypothesis with structure-based

drug design may result in new inhibitors that are less susceptible

to drug-resistant mutations.

Dual/multiple targeting
It has been well known that drug combination (combination

therapy) is an effective strategy to overcome drug resistance. To

improve patient compliance, two or more drugs can also be

coformulated into a single tablet. On the down side, complex

pharmacokinetic (PK) and/or pharmacodynamic (PD) profiles and

unpredictable drug–drug interaction could have a significant

impact on the risks and costs of developing multicomponent drugs

[39]. Dual/multiple targeting strategy, which uses a single mole-

cular entity to inhibit multiple protein targets, could significantly

reduce the likelihood of drug resistance without the extra patient

compliance problem (Figs 2c and 3c). For a particular example,

ABCB1 (ATP-binding cassette, sub-family B, MDR1) overexpression

protects leukemia cells from drug-induced apoptosis and decreases
sensitivity of leukemia cells to cytotoxic chemotherapeutic agents.

Mutations in ABCB1 are one of the mechanisms for chemoresis-

tance common to a wide spectrum of cancers. Recent studies

showed that myeloid cell leukemia sequence 1 (BCL2-related) gene

(MCL1) was upregulated in numerous hematological and solid

tumor malignancies. Ji et al. demonstrated that MCL1 mediated

drug resistance through a different mechanism and the depletion

of both MCL1 and ABCB1 showed an additive effect in reversing

drug resistance and promoting drug-induced apoptosis [40]. So,

simultaneous targeting of MCL1 and ABCB1 could be an effective

approach to overcome drug resistance in leukemia. However, a key

challenge of dual/multiple targeting is attaining a balanced activ-

ity at each target of interest while simultaneously achieving a

wider selectivity and a suitable PK profile.

Concluding remarks
Recent studies have revealed that the efficacy of many small

molecule drugs can be hampered by the rapid emergence of drug

resistance mutations on the target proteins and that the battle

against mutation-induced drug resistance has become increasingly

intense [41,42]. Rational strategies to combat mutation-induced

drug resistance should be accounted for in the course of drug

discovery and/or development to prevent the emergence of resis-

tance as much as possible.

The structure-based methods are particularly useful for compu-

tational prediction of resistant mutants and RV inhibitor design.

The primary challenge of structure-based drug resistance predic-

tion is how to appropriately balance the prediction accuracy and

computational efficiency. It would be an ideal approach to effi-

ciently predict the drug resistance level and understand the resis-

tance mechanism associated with each resistant mutant through

an appropriately combined use of structure-based methods and

statistical learning methods. Besides, targeting protein backbone,

targeting highly conserved residues, and dual/multiple targeting

have been recognized as effective strategies for rational design of

novel inhibitors with reduced resistance risk. Structure-based drug

design could eventually lead to the discovery and development of

novel, more potent and safer drugs with potentially different

resistance profiles compared to the existing drugs. It would be

interesting to further develop and validate novel strategies and/or

make an appropriately combined use of available strategies. One

can reasonably expect that the use of structure-based methods

will become more and more popular in the battle against drug

resistance.
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