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The occurrence of drug resistance in oncology accounts for treatment failure and relapse of diverse

tumor types. Cancers contain cells at various stages of differentiation together with a limited number of

‘cancer-initiating cells’ able to self-renew and divide asymmetrically, driving tumorigenesis. Cancer-

initiating cells display a range of self-defense systems that include almost all mechanisms of drug-

resistance. Different molecular pathways and markers, identified in this malignant sub-population, are

becoming targets for novel compounds and for monoclonal antibodies, which may be combined with

conventional drugs. These interventions might eliminate drug-resistant cancer-initiating cells and lead

to remission or cure of cancer patients.
Cancer-initiating cells and drug resistance
Though of clonal origin, tumors contain cells at various stages of

differentiation, which differ in their phenotypic markers and

proliferation ability. This heterogeneity has been recently ascribed

to a hierarchical organization of cancer, similar to that of normal

tissues, with a limited number of ‘cancer stem cells’ (CSCs) driving

tumorigenesis. In analogy with their normal counterpart, CSCs are

often quiescent, able to self-renew and may divide asymmetrically

giving rise to more differentiated cells, which represent most of the

tumor mass. CSCs, firstly described in acute myeloid leukemia [1],

have been successfully isolated from different cancers such as

breast, brain, colon, head and neck, ovary, pancreas and other

solid tumors [2–8]. CSCs are mainly identified by their ability to

replicate the original tumor heterogeneity (phenocopy) upon

xenotransplantation in immunodeficient mice and are therefore

defined as cancer initiating cells (CICs). However, because the

murine microenvironment may differ from that of the original

tumor, the engraftment might be limited and selection of cancer

cells may occur [9,10]. In addition, the residual natural immunity

present in nude and non-obese diabetic (NOD)/SCID mice may

influence the growth of xenografts. Interleukin-2 receptor-gchain

null NOD/SCID (NOG) mice, which have a broad defect of both
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specific and natural immunity, represent a more suitable animal

model for studying CIC xenografts [9].

Despite several controversial aspects, substantial evidence for

CIC relevance in the biology of cancer and in the clinical setting

has been obtained [11]. Conventional anti-cancer treatments are

mainly directed to the highly proliferating cells, whereas the great

majority of CICs are mostly quiescent and poorly responsive [12].

Indeed, several reports indicate that CICs, displaying stem cell-like

markers, are intrinsically resistant to chemotherapy or radiother-

apy [13,14]. These observations suggest that CICs may not be

adequately targeted by the conventional anti-cancer treatments

and are involved not only in resistance to therapy but also in

tumor relapse. Different cellular mechanisms of drug resistance

have been identified such as increased DNA damage detection and

repair, overexpression of ATP-binding cassette (ABC) transporters,

alterations of cell cycle checkpoints and impairment of apoptotic

pathways [15,16]. Additional mechanisms are related to the pecu-

liar acidic and hypoxic environment of the niches where CICs

reside. Several developmental signaling pathways, such as

NOTCH, Wnt/b-catenin, Sonic hedgehog, BMI-1, SOX-2, and

OCT-4 play an important role in normal stem cell as well as CIC’s

survival and/or self-renewal. These pathways have been the object

of recent reviews and will not be discussed here [16,17], although

some of the clinical trials using drugs that target these pathways

are listed in Table 1.
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TABLE 1

Molecules expressed in CICs which are targeted by anti-cancer drugs that entered clinical trials

Target Drug Cancer type Clinical trial

ALDH1* Disulfiram, disulfiram

plus copper gluconate,

disulfiram plus arsenic trioxide

Refractory solid tumors of liver,

prostate and metastatic melanoma

I/II (NCT00742911)

ABCG2§ Dofequidar fumarate (MS-209) Breast cancer III

ABCB1* Tariquidar (XR9576) Different solid cancers I/II (NCT00069160,
NCT00001944)

g-Secretase* MK-0752 Stage IV pancreatic cancer that

cannot be removed by surgery

I/II (NCT01098344)

g-Secretase* RO4929097 Advanced solid tumors, melanoma stage IV I/II (NCT01198535)

Hypoxia PR-104 and docetaxel or gemcitabine Solid tumors I (NCT00616213,
NCT00616213)

Hypoxia PR-104 and docetaxel NSCLC II (NCT00862134)

Hypoxia Indisulam (E7070) Kidney neoplasms carcinoma,

renal cell adenocarcinoma, CRC

II (NCT00059735)

Hypoxia Monoclonal antibody G250 Kidney cancer III (NCT00087022)

Hypoxia (TrxR) TH-302 Advanced solid tumors I (NCT00495144)

Hypoxia (TrxR) TH-302 and doxorubicin Sarcoma I/II (NCT00742963)

Hypoxia (TrxR) TH-302 and gemcitabin Pancreatic adenocarcinoma II (NCT01144455)

Wnt* Resveratrol Colon cancer I/II (NCT00256334)

Smo* IPI-926 and gemcitabine Metastatic pancreatic cancer I/II (NCT01130142)

Smo*,^ BMS-833923 (XL139) Advanced or metastatic cancer I (NCT00670189)

Smo* LDE225 Advanced solid tumors I (NCT00880308)

Shh plus g-secretase* GDC-0449 and RO4929097 Advancer breast cancer I (NCT01071564)

PKCi* Myochrysine (aurothiomalate) Lung cancer I (NCT00575393)

AMPK/mTOR/S6K1 Metformin Lymphoma and solid tumors I (NCT00659568)

mTOR* Sirolimus and vinblastine Recurrent or refractory solid tumors

including central nervous system tumors

I (NCT01135563)

Topoisomerase II* Banoxantrone (AQ4N),

temozolomide and radiotherapy

Glioblastoma I/II (NCT00394628)

CD3+T cells on EpCAM
positive tumors

Catumaxomab Ovarian cancer, malignant ascites,
EpCam positive cancers and CNS

II/III (NCT01065246,
NCT00822809)

* See: http://clinicaltrials.gov.
§ Ref. [34].
^American Society for Clinical Oncology (ASCO) 2010 (see: http://www.asco.org).
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In the present article, we will briefly review different approaches

to override the drug-resistance mechanisms of CICs and for

increasing the efficacy of current cytotoxic treatments. We will

focus our attention to the new anti-CICs based therapies that have

entered clinical trials (Table 1). In addition, we will discuss the

possible role of CICs in tumor immune-escape as well as their

targeting by immunotherapy strategies.

DNA repair and detoxifying enzymes
Resistance to chemotherapy may be due to the overexpression of

cellular DNA repair and detoxifying enzymes. Various DNA repair

inhibitors combined with chemotherapy have shown promising

results in preclinical studies and clinical trials are in progress [17].

For instance, the elevated expression of the O6-methylguanine

DNA methyltransferase (MGMT) in CICs protects them from the

effects of alkylating agents such as temozolomide and bis-chlor-

onitrosourea (BCNU) [18]. O(6)-Benzylguanine (O6-BG) is an irre-

versible inactivator of MGMT, which sensitizes cancer cells to the
436 www.drugdiscoverytoday.com
antitumor effects of alkylating agents including the orally active

temozolomide used for glioma treatment. Clinical trials are

ongoing to evaluate the ability of O6-BG to efficiently inactivate

MGMT and potentiate the antitumor effects of temozolomide.

However, emerging results are not conclusive yet and need to be

substantiated by additional data [19].

Aldehyde dehydrogenase-1 (ALDH1) is a detoxifying enzyme,

which catalyzes the irreversible oxidation of intracellular alde-

hydes, thereby mediating self-protection and resistance to some

alkylating agents used in cancer therapy [20]. Moreover, ALDH1 is

implicated in the biology of normal as well as cancer stem cells, as

it plays a role in the metabolism of retinol to retinoic acid, which

initiates a program of cellular differentiation [21]. Previous results

suggested that the use of specific inhibitors of ALDH1, such as

disulfiram and cyanamide (antialcoholism drugs) in association

with cyclophosphamide, overcomes chemoresistance [22] and

disulfiram alone or associated with copper is presently tested in

several clinical trials (Table 1).

http://clinicaltrials.gov/
http://www.asco.org/
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ABC transporter inhibitors
ABC transporters are a large family of transmembrane proteins and

are classified in seven subclasses (A–G) based on sequence and

structural homology. The functional unit of these molecules con-

tains two transmembrane and two ATP-binding domains, which

provide ATP energy for the efflux of different molecules [23]. Some

members of this family act on a wide range of substrates, while

others have a more limited specificity. Five ABC transporters have

been described in different CICs such as ABCA2 [24], ABCA3 [25],

ABCB1 [24], ABCB5 [8], ABCC1 [15,26], and ABCG2 [6,24].

High expression of ABC transporters on CICs corroborates the

hypothesis of an intrinsic drug-resistance present in the tumors

since its origin. It is of note that CICs from different cancers may

display diverse types of ABC transporters and therefore be

endowed with resistance to a different and not always overlapping

spectrum of drugs. Attempts to reverse MDR with transporter

inhibitors disclosed interesting effects in vitro but quite disappoint-

ing results in the clinical setting [27]. First generation inhibitors of

ABCB1 such as cyclosporine, verapamil and nifedipine showed

some benefit in clinical phase I/II trials [28], but no efficacy in

subsequent studies [29]. Valspodar (PSC-833), a second generation

ABCB1 inhibitor, displayed elevated toxicity due to pharmacoki-

netic interactions with anti-cancer drugs [30]. The third genera-

tion ABCB1 inhibitor Tariquidar (XR9576), an anthranilic acid
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Schematic representation of targeted pathways involved in hypoxia-induced drug 

nucleus, resulting in up-regulation of stem-cell associated Nanog, OCT-4 and SOX

mediated by NOTCH, a transmembrane receptor, which is cleaved by g-secretase upo

(NCID) crosses the nuclear membrane and induces a cascade of gene activation. g-Se

red. Drugs targeting the hypoxia-inducible molecules Thioredoxin (TRX) and carb
Banoxantrone (AQ4N) and PR-104 are hypoxia activated pro-drugs with different 
derivative, had no significant side effects and pharmacokinetic

interactions [31], but a phase II study showed limited clinical

activity in restoring sensitivity to anthracycline or taxane in

advanced breast cancer [32]. Results of phase III trials in non-small

cell lung cancer (NSCLC), combining Tariquidar with conven-

tional anticancer drugs, are not available yet. Recently, dofequidar

fumarate (MS-209) an inhibitor of the ABCG2 transporters sensi-

tized breast CICs to chemotherapeutic drugs [33]. A phase III

clinical study of dofequidar in advanced or recurrent breast cancer

reported a prolonged progression-free survival, which was signifi-

cant in pre-menopausal patient who did not receive prior therapy

or were stage IV with an intact primary tumor [34].

More recently, salinomycin, a monocarboxylic polyether anti-

biotic, was found to specifically target CICs, by using a high-

throughput screening method [35]. Salinomycin, besides acting

as a potent inhibitor of ABCB1 [36], interferes with normal potas-

sium channel regulation and activates a distinct apoptotic path-

way in cancer cells (independent of p53 and caspase activation)

[37]. Moreover, salinomycin reduces CICs by >100-fold as com-

pared to paclitaxel, a standard drug frequently used in breast

cancer treatment. In this perspective, salinomycin should be

regarded as a potential anti-CICs compound to be tested in asso-

ciation with standard chemotherapy in preclinical and clinical

studies.
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The role of hypoxia in CICs
Hypoxia plays a central role in normal development and in a

variety of pathological conditions, including solid tumors where it

has been involved in resistance to radiotherapy and chemother-

apy. Indeed, hypoxic niches may regulate survival and differentia-

tion of CICs within tumors, as well as that of stem cells in normal

tissues. Low oxygen levels, commonly found at the perivascular

region and surrounding necrotic tissue of solid tumors, may also

induce a fraction of cells to acquire a stem-like condition that

sustains tumor growth [38,39].

Cells respond to hypoxia through hypoxia-inducible factors

(HIFs) that induce the expression of CICs markers such as

CD133 [40] and stemness related genes such as NANOG, OCT-4

and SOX-2 [39]. Furthermore hypoxia potentiates the biological

effect of Notch, a signaling molecule involved in stemness main-

tenance in lung adenocarcinoma cell lines and, at the same time,

makes tumor cells more susceptible to the action of g-secretase

inhibitors, which affect the Notch pathway [41]. Phases I and II

trials of the g-secretase inhibitors MK-0752 and RO4929097 are

ongoing in different solid cancers (Table 1).

Several strategies have been undertaken to overcome resistance

in tumor hypoxic areas such as oxygen delivery enhancers,

hypoxic radiosensitizers (agents that mimic the radiochemical

effects of oxygen) and pro-drugs preferentially activated by

hypoxia-dependent metabolic pathways (Fig. 1).

Tirapazamine (TPZ) is the most widely studied hypoxia-acti-

vated pro-drug. In preclinical investigations TPZ improved the

cytotoxicity of cisplatin and selectively killed hypoxic cells [42].

However, TPZ in combination with cisplatin/radiotherapy failed

to improve overall survival in a recent phase III trial for advanced

head and neck cancer [43].

PR-104 is a ‘pre-prodrug’, which becomes activated to a dini-

trobenzamide nitrogen mustard cytotoxin by nitroreduction in

hypoxic regions of tumors. PR-104A penetrates into hypoxic

tumor tissue more efficiently than TPZ and is activated, at tenfold

lower oxygen concentrations than for TPZ. PR-104 showed marked

antitumor activity in xenograft models, both as monotherapy and

in combination with radiotherapy or chemotherapy [44]. Clinical

trials evaluating the effectiveness of PR-104 alone or in combina-

tion with docetaxel or gemcitabine in patients with solid tumors

are currently ongoing (Table 1). In addition, a randomized, multi-

center, open-label, study of PR-104 vs PR-104/docetaxel in NSCLC

has been terminated and results are awaited.

Banoxantrone (AQ4N) is a prodrug that, within hypoxic tissues,

is enzymatically converted to AQ4, a topoisomerase II inhibitor

and DNA intercalator [45], which was designed to specifically

target the treatment-resistant fraction of cells in tumor hypoxic

regions [46]. In preclinical and clinical studies, AQ4N was well

tolerated and increased the antitumor activity of standard radio-

therapy and chemotherapy treatments. In view of its ability to

cross the blood–brain barrier, it has been included in treatment

regimens of primary and metastatic brain cancers [47].

Carbonic anhydrase IX (CA IX) is induced by HIF-1 and Notch

signaling and supports breast CIC’s survival in hypoxic conditions

[48]. CA IX is a membrane-bound enzyme, which catalyzes the

hydration of CO2 to bicarbonate and protons [49]. Thus CA IX,

together with increased anaerobic glycolysis, contributes to the

generation of an extracellular acidic pH particularly in hypoxic
438 www.drugdiscoverytoday.com
area. The action of CA IX and of proton pumps maintains a

relatively alkaline intracellular pH, thus generating a pH gradient

across the cell membrane, which hampers the entrance of slightly

basic cytotoxic drugs into the cell [50]. As a result, therapeutic

strategies aimed at increasing extracellular pH, through proton

pump or CA IX inhibitors [49], may improve tumor response to

specific anticancer compounds [51] In particular, indisulam, a

sulfonamide anti-cancer drug has entered phase II clinical trials

and a human–mouse chimeric anti-CA IX monoclonal antibody

G250 (Rencarex) [49,52] is currently evaluated in a phase III

clinical trial (Table 1).

Thioredoxin reductase (TrxR), is a hypoxia-inducible disulfide

reductase that regulates cell proliferation and redox homeostasis

in several cell types, including vasculogenic stem cells involved in

neoangiogenesis [53]. Indeed, increase in thioredoxin levels has

been observed in many human malignancies and contributes to

enhance cancer cell growth [54]. Thus, lowering thioredoxin levels

might help reverting resistance to some antitumor agents as

cisplatin [55]. TH-302 is a promising antineoplastic prodrug,

whose effects are associated with both DNA alkylation and mod-

ulation of TrxR in a mouse hepatoma model [56]. Clinical studies

showed that TH-302 dose-limiting toxicities were oral and gastro-

intestinal mucositis but not myelosuppression [57]. TH-302 mono-

therapy showed some activity in refractory small cell lung cancer

and in metastatic melanoma. In addition, TH-302 with doxoru-

bicin or with gemcitabine are currently tested in advanced soft

tissue sarcoma and in pancreatic adenocarcinoma, respectively

(Table 1).

Targeting CICs through immunotherapy
Given the ability of the immune system to recognize tumor-

associated antigens (TAAs) and to potentially eliminate tumor

cells, specific vaccines have been used in mouse models and

clinical trials to stimulate the host anti-tumor response. However

tumors, and in particular CICs, seem capable to escape the

immune surveillance and to activate a series of immune suppres-

sive mechanisms, which may hamper immunotherapy. For exam-

ple, melanoma CICs do not express TAAs such as MART-1 or have

low expression of HLA molecules, which are required for antigen

presentation to T lymphocytes [58]. Other mechanisms such as

production of cytokines stimulating M2 immune suppressive-type

macrophages, lack of co-stimulatory molecules, presence of inhi-

bitory molecules and ability to stimulate the expansion of regu-

latory T cells might be involved in CIC’s immune escape [59–61].

The identification of relevant markers, preferentially expressed

on the cell surface of CICs of different types of tumors such as

EpCAM [62], CD44 [63] and CD133 [64] has allowed their specific

targeting by monoclonal antibodies as biological weapons (Fig. 2).

Antibodies targeting CICs’ surface antigens may be used alone and

as immuno-conjugates with cytotoxic or radioactive compounds.

Epithelial cell adhesion molecule (EpCAM) represents the most

common antigen in epithelial cancer, as it is expressed by CICs in

breast, colon, prostate and pancreatic tumors and is regarded as a

good target for immunotherapy [62]. Catumaxomab, is a trifunc-

tional bispecific (anti-CD3-anti EpCAM) chimeric antibody, able

to target CD3+ T lymphocytes on EpCAM positive tumor cells and

to bind through its Fc portion to FcR+ effector cells of natural

immunity, such as macrophages and natural killer (NK) cells. It
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FIGURE 2

CICs targets for antibody or cell-based immunotherapy. Antigens or auto-para-crine loops of CICs medianting survival, EMT, or immune-regulation represent

potential targets for antibody or cell-based immunotherapy. Drugs (Zoledronate), antibodies (anti-IL-4, -6, -TGFb, -VEGF and -CD133), antibody-conjugates

(aurisatin/anti-CD133, CNT-anti-CD133) and adoptive immunotherapy (HER-2-specific T cells) are indicated in red characters. NILL (near-infrared laser light) is used

to activate thermal lysis of CICs by CNT (carbon nanotubes) delivered to CICs via anti-CD133 mAb. Zoledronate in combination with IL-2 activates TCRg/d+

lymphocytes to lyse CICs. Catumaxomab is a trifunctional antibody, which simultaneously triggers CD3+ T cells and FcR+ macrophages/NK cells to kill

EPCAM + CICs.
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efficiently activated T cell-mediated anti-tumor reactivity and

innate immune response in vitro and in preclinical studies

[65,66]. By intraperitoneal treatment of carcinoma associated with

malignant ascites, catumaxomab was able to induce partial tumor

response and increase the mean survival time [67]. Catumaxomab

has entered several phase II/III clinical trials and was approved in

the European Union in April 2009 for the treatment of patients

with malignant ascites.

Monoclonal antibodies anti-CD44, a signal-transducing mole-

cule expressed by most CICs, have been also used for CIC targeting

[63]. These antibodies are close to entering clinical trials for

pancreatic cancer patients [68,69]. Phase I trials were performed

with bivatuzumab, a humanized monoclonal antibody recogniz-

ing CD44v6, a splice variant of CD44 expressed in squamous cell

carcinoma and in normal squamous epithelium. Immunoconju-

gates with the microtubule inhibitor mertansine were used in head

and neck cancer patients [70] and radiolabelled bivatuzumab in

patients with early-stage breast cancer [71]. However, both com-

pounds showed serious skin toxicity with some fatal events and

these studies were therefore discontinued [72].

Antibodies directed to CD133 conjugated to a cytotoxic drug,

auristatin, effectively inhibited the growth of Hep3B hepatocel-

lular cancer in vitro and in vivo upon transplantation in SCID mice
[64]. Carbon nanotubes (CNTs), coupled to antibodies targeting

tumor cells, can selectively deliver drugs, even though further

studies to verify their potential toxicity are needed. Recently Wang

et al. showed that single-walled CNTs functionalized with CD133

monoclonal antibody selectively destroyed CD133 + glioblastoma

stem cells upon irradiation with near-infrared laser light in vitro

and in a xenotransplant model [73].

Recent evidence indicates that the high tumorigenic potential

and metastatic properties of CICs may relate to paracrine cytokine

networks and support their therapeutic targeting through neutra-

lizing antibodies or other inhibitory molecules. In fact, auto- or

para-crine production of interleukin (IL)-4 was reported to confer

resistance to apoptosis in breast, thyroid, colon, lung and pancreas

cancer CICs, which express IL-4 receptor (R) [74]. Indeed, neutra-

lizing antibodies to IL-4 partially restored sensitivity to che-

motherapeutic drugs, in vitro and in preclinical models, in

colon-rectal carcinoma CICs releasing IL-4 [75]. Other cytokine/

receptor autocrine loops involving IL-6/IL-6R [76], stem cell factor

(SCF)/c-kit [77] or IL-8/CXCR1 [78] play an important role in

survival and proliferation of CICs in several cancers and may

represent suitable targets for antibody-based therapy.

Cytokines have also been involved in the induction of epithelial

mesenchymal transition (EMT), a process inducing loss of polarity
www.drugdiscoverytoday.com 439
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of epithelial tumor cells and gain of invasive properties. EMT is

governed in breast, alveolar, ovarian, esophageal, liver cancer cells

by a variety of cytokines and growth factors including transform-

ing growth factor-b (TGF-b), basic fibroblast growth factor (bFGF),

epidermal growth factor (EGF), hepatocyte growth factor (HGF),

Wnt ligands and vascular endothelial growth factor (VEGF) [79–

84]. EMT inducers are presently evaluated as new molecular targets

in the attempt to inactivate drug resistance and eradicate CICs.

In a prostate cancer model [85], IL-6 produced by cancer cells

induced an activated phenotype of fibroblasts and secretion of

several metalloproteinases, which elicited EMT through disrup-

tion of E-cadherin [86]. In another prostate model, an increased

autocrine expression of VEGF during the transition from VEGF-R+

prostate intraepithelial neoplasia (PIN) to invasive carcinoma

induced TGFb-RII expression on malignant cells and induction

of EMT [87]. Moreover TGF-b1 increased the expression of VEGF in

an autocrine loop mode [88]. Therapeutic inhibition of VEGF/TGF-

b1 network might impair tumor angiogenesis and early dissemi-

nation of malignant cells.

Besides antibody-based therapies targeting CICs’ surface anti-

gens and cytokine-growth factor loops, several strategies are being

developed to stimulate CIC’s recognition and killing by immune

effector cells. Adoptive transfer strategies were developed in glio-

blastoma multiforme (GBM) patients to target CICs, aggressive

and resistant to conventional therapies. Stimulation of GBM

patients’ T lymphocytes with HER2 + autologus tumor cells

resulted in the generation of HER2-specific T cells able to kill

autologous CICs expressing HER2 and xenografted in SCID mice

[89].

Interestingly, a previous report showed that ALDH1-deriving

epitopes are recognized by antigen-specific T cells in human

ALDH1+ lung cancer cells [90]. It would be therefore important

to determine whether ALDH1-specific T cells may be suitable to

target the CICs’ compartment in other tumors.

Recently it was shown that the bisphosphonate zoledronate,

approved for treating bone metastases, stimulates the proliferation

and activation of Vg9Vd2 T lymphocytes, which recognize and

lyse colon CSCs. In addition, zoledronic acid sensitizes CICs to the

T cell-mediated cytotoxicity [91]. Interestingly, a phase I clinical

trial of zoledronate in combination with IL-2, which further sup-

ports Vg9Vd2 T lymphocyte expansion, showed good tolerability,

disease stabilizations and a decrease of PSA levels in some meta-

static prostate cancer patients [92].

A clinical phase I/II trial is evaluating the association of adoptive

T cell immunotherapy with IL-2 and zoledronic acid (Table 1) in

kidney cancer and lung metastases patients. To more efficiently

amplificate Vg9Vd2 T lymphocyte population, a new protocol,

which includes the use of autologous dendritic cells pretreated

with zoledronate has been developed [93].

In a different phase I clinical trial, currently recruiting partici-

pants, patients intradermally receive autologous brain tumor stem

cell (BTSC) mRNA-loaded DC vaccine. Nonetheless, further studies
440 www.drugdiscoverytoday.com
are required for a better understanding of the role of central

nervous system immune privilege and of glioma-mediated immu-

nosuppression to optimize the procedure of DC generation, load-

ing and administration [94].

In general it is hoped that a better knowledge of CICs antigenic

profile and of their mechanisms of tumor immune-evasion, may

allow the development of a more efficient immune intervention

through the combined use of immune-enhancing approaches,

such as vaccines, together with agents which selectively target

immune-escape mechanisms.

Conclusion
Cancer-initiating cells display a rich repertoire of self-defense

systems, which include almost all known mechanisms of can-

cer-drug-resistance. It seems therefore conceivable that targeting

this subpopulation of tumor cells might result in the eradication

and cure of cancer. However, the definite identification and char-

acterization of CICs in different types of solid tumors is still far

from being accomplished. Each type of tumor may contain CICs

exhibiting different molecular properties and markers, which need

to be extensively investigated and validated. At the moment, the

concept of CICs is mainly operative: it is largely dependent on the

potential ability of a limited number of tumor cells to grow in

animal models.

Nevertheless, despite several difficulties and controversies, the

introduction of the cancer stem cells concept in cancer biology has

contributed to find ways for a new philosophy of anti-cancer

therapy. To this end, relevant molecules expressed by CICs such

as ABC transporters are being evaluated as therapeutic targets,

though more efforts are required to increase ABC inhibitors spe-

cificity and to avoid toxicity against normal stem cells.

As the cross-talk of CICs with the microenvironment contri-

butes to their survival and resistance, new pro-drugs specifically

activated in low oxygen environment are being developed to

target their hypoxic niches. The identification of new auto-

crine/paracrine cytokine and growth factor loops supporting CICs’

proliferation within their niche also provides new candidate tar-

gets for antibody-mediated blockade. In addition, the identifica-

tion of CICs’ antigenic markers may further allow the

development of immunotherapy strategies. Finally, as CICs may

display several mechanisms of drug resistance and immune-eva-

sion, a range of multiple drugs and approaches will be necessary to

eliminate this highly malignant cell population and achieve

tumor eradication or long-term remission.
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