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The utilization of the kinetic and thermodynamic signatures of preclinical
leads is proving pivotal in their triage and rational optimization towards

clinical candidates with maximal in vivo efficacy devoid of adverse events.

Target–drug interactions: first principles
and their application to drug discovery
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In this review, we begin by introducing the basic principles of kinetics

and thermodynamics of target–drug binding within the context of

drug discovery. In addition, we present a meta-analysis of the recent

literature describing the kinetic and thermodynamic resolution of

successful clinical candidates with diverse mechanisms of action.

We finish by discussing the best practices in the triage and chemical

optimization towards clinical candidates with maximal in vivo

efficacy devoid of adverse events.

Introduction
A considerable portion of drug discovery focuses on the lead finding and optimization of

ligands (drugs) by evaluating, among other properties, their affinity to the primary target [1].

Typically, large libraries are screened against the primary target at a high ligand concentra-

tion. Subsequently, affinity and/or efficacy thermodynamic equilibrium constants are derived

for the most active primary hits by way of dose response determination, leading to a top-

ranked list of chemical entities. In practice, the in vitro affinity of a ligand to the primary target

is regarded as an acceptable surrogate of its in vivo efficacy. Yet, the attrition rates of promising

leads for validated targets that meet primary in vitro pharmacodynamic (PD) criteria are

considerable owing to their failure to meet in vivo end points [2]. This finding led the scientific

community to realize that advancing compounds (ligands) based on their primary in vitro

binding profile might be too simplistic a strategy. In effect, the exclusive use of steady-

state metrics in the triage and advancement of best leads towards the clinic has become

obsolete.

Kinetic signature of target–drug binding
Binding kinetics is concerned with the rate constant of ligand association (kon) and ligand

dissociation (koff). The ratio of the dissociation to the association rate constants establishes the

equilibrium dissociation metric of the ligand (Kd = koff/kon), which determines the fraction of

receptor occupancy at specific ligand concentrations; Kd, koff and kon are intrinsic to the target–

drug interaction in question.
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There are two general binding mechanisms for a target–drug

pair. In mechanism 1, the receptor (R) and ligand (L) combine to

form a binary complex RL with association/dissociation rate con-

stants k1 (kon) and k2 (koff), respectively (Eqn (1)):

R þ L @
k1

RL (1)

In mechanism 2, the ligand encounters the receptor (R) in a

conformational state that is suboptimally complementary to the

ligand for binding. Subsequent to the initial encounter (RL), the

receptor undergoes a conformational change to a more committed

state (R*) where the new binary complex (R * L) has a more

competent binding affinity than RL (Eqn (2)).

R þ L @
k1

k2

RL @
k3

k4

R � L (2)

Two equilibrium dissociation constants are required to describe

this so-called ‘induced fit’ mechanism. Hence, the value of koff for

mechanism 2 is not defined by a single microscopic rate constant.

Instead, koff entails an array of diverse rate constants associated

with both RL and R * L, such that koff = k2k4/(k2 + k3 + k4). In most

instances, it is the reverse isomerization rate constant k4 that is rate

limiting with respect to R * L dissociation. This isomerization step

adds significant potential for a more enduring partnership

between the target and the ligand (Table 1). In fact, most ligands

with resilient kon and koff rates are dictated by mechanism 2, in

which a temporal isomerization (e.g. tautomerization) of the

target (and/or ligand) to a novel state is most suitable for tar-

get–drug binding to occur [8,9].

At this point, it is important to highlight two common scenarios

where a target and its ligand physically encounter each other in

solution. The first is termed the ‘closed system’, where the total

receptor and ligand concentrations are constant over time. In this

scenario, the only change in concentration that takes place over

time is the concentration of free and bound species as the system

approaches equilibrium. Thereafter, the measurements of equili-

brium dissociation constants are performed [5]. In this case, the

target–drug complex lifetime is approximated by the equilibrium

dissociation constant [1]. The second scenario is the open system,

which is more relevant to physiological conditions. Here the

receptor is typically kept at a fixed concentration whereas the

ligand concentration is allowed to vary, mirroring factors such as

metabolic clearance or diffusion through cellular compartments.

Thus, the open system is characterized by continuous changes in

the flux of ligand that is available for encounter with the receptor.

Because the concentration of the ligand continuously changes in

an open system, equilibrium measurements are not feasible.

Measuring kinetics
Optical biosensors are the most popular means of studying bind-

ing events, because they enable label-free, high-throughput bind-

ing measurements in real time. Kinetic characterization by way of

surface plasmon resonance (SPR) is the most established method,

although other equally valid methods have been reported [10]. In

SPR, the protein of interest is immobilized on a coated gold film

surface, which is then exposed to the analyte or drug in flow

(Fig. 1) [11]. Analyte binding induces a change in the refractive

index on the sensor surface. This change is linear to the number of

molecules bound, making SPR a quantitative technique.
Typical SPR sensorgrams, where the change in refractive index

due to analyte binding is monitored as a function of time, are

shown in Fig. 2. The rate constants kon and koff are estimated by

regression of the association and dissociation gradients at different

ligand concentrations. For mechanism 1, both steady-state equili-

brium and kinetic phase characterization can be performed with

sensorgrams. In particular, the kinetic binding constant can sim-

ply be derived by Kd = koff/kon. The steady-state constant can be

determined by plotting the response at equilibrium against the

ligand concentration, where the Kd equals 50% of the maximum

response. For mechanism 2, SPR appears to be less suited because

the post-binding conformational change does not affect the signal

of the SPR apparatus based on a change in mass. This is because the

ligand remains bound. Moreover, induced fit effects are expected

to occur on a much faster time scale (nano- to millisecond) than

SPR can measure [12]. Post-binding conformational changes have

nevertheless been reported for drugs using SPR (e.g. the acetylcho-

line binding protein [13]); whether these observations are artifacts

remains to be seen.

Biosensor-based methods are not free of experimental limita-

tions. First, the SPR signal is highly sensitive to temperature

variations and changes in bulk solvent. Measurements need to be

performed under highly stable conditions and with a fully dis-

solved ligand. Furthermore, the effect of mass-transport limita-

tion (MTL), where the association rate is faster than the ligand

diffusion rate from the bulk solvent into the biosensor surface, is

often observed [14]. This results in a lower ligand concentration

in the vicinity of the sensor surface when compared with the

bulk, which leads to an underestimated association rate. More-

over, because a fast kon predisposes to the ligand rebinding event,

a ‘retention zone’ can be formed, and this leads to an under-

estimation of koff. Thus both kon and koff might appear lower in

magnitude owing to the MTL effect. It has been established that

the upper limit for kon determination by SPR is 106 M�1 s�1,

whereas the fastest koff that can be accurately measured is

approximately 10�1 s�1 [15]. Another factor that might result

in a misleading kinetic readout is surface binding site hetero-

geneity [14].

A closer look at the association/dissociation rates
The association rate of a target–drug complex is determined by

both the magnitude of kon and the ligand concentration at the

receptor site. As mentioned above, the ligand concentration can

easily vary under physiological conditions (i.e. an open system) as

a result of factors, such as absorption, clearance or promiscuous

binding to alternative partners. Although the kon value varies

among target–drug pairs, this rate constant is ultimately limited

by physicochemical steps, such as the diffusion rate of the binding

partners or desolvation penalties. Diffusion coefficients depend

acutely on the physicochemical properties of the binding partners.

Hence, within a series of closely related chemical analogs, the

diffusion coefficients are expected to be nearly identical, leading to

comparable kon rates [16]. Accordingly, drugs tend to have intrin-

sically large on-rate constants (103–109 M�1 s�1) because these are

merely limited by pharmacokinetic (PK) processes. Also, fast asso-

ciation kinetics can favor rebinding (or reassociation) between the

target and the ligand, leading to a higher target occupancy and,

thus, in vivo pharmacological action [6,17].
www.drugdiscoverytoday.com 11
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TABLE 1

Compounds with fast, slow or irreversible dissociative half-lives

Compound Mechanism of action Half-life (t1/2s) Refs.

Deoxyconformycin Adenosine deaminase 40 hour [3]

Candesartan AT1 receptor 2–3 hour [4]

Olmesartan AT1 receptor 72 min [4]

Telmisartan AT1 receptor 1.3 hour [5]

Formestane Aromatase Mechanism based [4]

Maraviroc C–C Chemokine receptor 5 136 hour [6]

Rofecoxib Cyclooxygenase-2 9 hour [3]

Aspirin Cyclooxygenase Irreversible [4]

Celecoxib Cyclooxygenase-2 Irreversible [4]

Trimethoprim Dihydrofolate reductase 8 min [3]

Methotrexate Dihydrofolate reductase 35 min [3]

Saxagliptin Dipeptyl peptidase IV 212 min [5]

Haloperidol Dopamine 2 receptor 40 min [5]

Clozapine Dopamine 2 receptor 0.5 min [5]

Quetiapine Dopamine 2 receptor 0.3 min [5]

Lapatinib Epidermal growth factor receptor 5 hour [4]

Vigatatrin GABA transaminase Irreversible [4]

Sufugolix Gonadotropin-releasing hormone receptor 2.7 hour [5]

NBI 42902 Gonadotropin-releasing hormone receptor 4.3 hour [5]

Procarbazine Guanine alkyltransferase Irreversible [4]

Omeprazole H+K+ ATPase Irreversible [4]

Lansoprazole H+K+ ATPase Irreversible [4]

Desloratadine Histamine 1 receptor >8.7 hour [6]

GSK1004723 Histamine 1 receptor 5.8 hour [6]

Darunavir HIV-1 protease >235 hour [5]

Nelfinavir HIV-1 protease 0.8 hour [5]

Lopinavir HIV-1 protease 1.2 hour [5]

Compactin HMG-CoA reductase 15 min [3]

Geldanamycin Heat shock protein 90 4.6 hour [3]

Amlodipine L-type calcium channel 77 min [4]

Selegiline Monoamine oxidase Irreversible [4]

Tranylcypromine Monoamine oxidase Irreversible [4]

Tiotropium Muscarinic M3 receptor 7.7 hour [6]

Ipratropium Muscarinic M3 receptor 0.16 hour [6]

Aprepitant Neurokinin 1 receptor 3.6 hour [6]

Orlistat Pancreatic lipase Irreversible [4]

Immucillin PNP 8 min [7]

DADMe-ImmH PNP 20 min [7]

DADMe-ImmG PNP 2 hour [7]

Finasteride Steroid 5a-reductase Mechanism based [4]

Melagatran Thrombin 36 s [5]

Argatroban Thrombin 2 s [5]

Lepirudin Thrombin 11 hour [5]

Oseltamivir Viral neuroaminidase 33–60 min [4]

Allopurinol Xanthine oxidase 5 hour [3]

Buprenorphine m-Opioid receptor 166 min [4]

Alvimopan m-Opioid receptor 30–44 min [6]

N-Methylnaloxone m-Opioid receptor 0.46 min [6]

12 www.drugdiscoverytoday.com
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TABLE 1 (Continued )

Compound Mechanism of action Half-life (t1/2s) Refs.

Clavulanate b-Lactamase Irreversible [4]

Sulbactam b-Lactamase Irreversible [4]

Tazobactam b-Lactamase Irreversible [4]
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By contrast, the dissociation rate is entirely dependent on the

intermolecular complementarity within the bimolecular complex.

The dissociation rate for a binary complex is first-order and, hence,

independent of the ‘unbound’ ligand concentration gradient.

Typical koff values range from 10�6 to 1 s�1 [18]. In the context

of this review, the residence time is defined as the reciprocal of the

dissociation rate constant for the target–drug complex. The resi-

dence time of a ligand on its target has been interpreted as the

difference in free energy between the ground and transition states

of the reaction co-ordinate [7]. Residence times of substrates

bound to an enzyme are, in general, relatively short [19]. By

contrast, enzymatic inhibitors with binding affinities in the nano-

molar range present longer residence times and, therefore, sus-

tained inhibitory effects (Table 1).

Association and dissociation rate constants are not intrinsically

related to one another, but they are individually correlated with

structural features of the compounds. The kinetic profile of struc-

turally different compounds can consequently reveal features and

aspects of compound–target interactions and aid optimization.

The potential to ameliorate off-target toxicities with such ligands

is equally important; this is explained below [20].
Flow channel

Prism

Polarized
light

Sensor surface
with gold film

and
surface coating

FIGURE 1

Basic configuration of a surface plasmon resonance (SPR) sensor. It consists of a pris
on the side opposite the prism is coated and contains the immobilized target protei

SPR makes use of the excitability of oscillating electrons at the metal film surface by

quantum energy level of the metal electrons, a plasmon is created. This is a grou

conditions where incident light energy is absorbed and plasmons are created (i.e. a
The wavelength at which this occurs is termed the ‘plasmon resonance wavelength

field, on both sides of the metal surface. This field decays exponentially, the strong

SPR instrumentation exploits a unique feature of this plasmon field: any change 

evanescent field causes a change in the conditions at which light couples with th
surface impacting the refractive index within the evanescent wave. The resulting sh

measured as a change in resonance angle or resonance wavelength. The magnitude

SPR instrumentation exploits exactly this dependency of the SPR signal on the che

potential binding partners.
Reproduced, with permission, from General Electric.
In most physiological situations, the duration of the biological

effect produced by a target–drug complex is directly related to the

lifetime of the binary complex; the longer the ligand is in residence

at its receptor, the longer the biological effect lasts [1,21]. In

essence, given a comparable Kd, the factor that differentiates

ligands in terms of efficacy is primarily determined by the con-

centration-independent koff constant to the primary target. Thus,

the thermodynamic equilibrium constant of a ligand does not

necessarily define the efficacy and duration of biological action;

rather, it is the lifetime of the binary receptor–ligand complex that

largely dictates the effect in the cellular context. Incidentally, koff

usually finds better correlation with Ki than does its counterpart

kon [3,5,16,22].

When the residence time of the biological complex is long, a

significant level of receptor occupancy (and pharmacological effi-

cacy) can be sustained, even when the systemic level of ligand has

diminished significantly [5,23]. This has been demonstrated with

various PK/PD simulations where the target occupancy of rapidly

reversible ligands is entirely dependent on the ligand concentra-

tion at the target vicinity, which is in turn determined by its PK

profile [7]. As such, ligands with half-lives (t1/2) �1 hour precipi-
Reflected
light

Resonance
signal

Angle

Intensity

Time

Sensorgram

I

I

I

II
II

II

Drug Discovery Today 

m mounted on a sensor chip with a thin gold film. The surface of the gold film
n. The latter is exposed to the drug via a microfluidic flow channel. In essence,

 light. When the quantum energy carried by light photons exactly equals the

p of excited electrons that behave as a single electrical entity. Under the

ttenuated total reflection), a dip in the intensity of reflected light is observed.
’. The plasmon created generates an electrical field known as an evanescent

est being at the metal surface with a limited range of approximately 300 nm.

in the chemical composition of the environment within the range of the

e plasmon. This includes biomolecular interactions occurring at the sensor
ift in the wavelength of light, which is absorbed rather than reflected, can be

 of the shift is quantitatively related to the magnitude of the chemical change.

mical environment of the metal film carrying immobilized ligand exposed to
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FIGURE 2

(a) A typical surface plasmon resonance (SPR) sensorgram. During sample injection, the drug binds to the surface-attached protein, resulting in an increase in

signal. When the pulse of drug continues long enough, steady state is reached, as illustrated in the sensorgram as a flattening of the response. At the end of the

injection, the sample is replaced by a continuous flow of buffer, and the corresponding decrease in signal reflects dissociation of the drug from the surface-bound
complex. In this example, the response is expressed as arbitrary response units (RU). Reproduced, with permission, from General Electric. (b) By plotting the

response units (RU) at equilibrium against the ligand concentration, the Kd can be derived: the Kd is equal to the ligand concentration at which the half maximal

response is reached.
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tate a prompt decay in target occupancy, whereas the percentage

of target occupancy is longer for ligands with t1/2 > 1 hour. In

essence, it is not the t1/2 itself but rather the koff and t1/2 window,

which determines whether the binding occupancy of a quasi-

irreversible ligand will uphold that of the readily reversible one.

Finally, it has been suggested that ‘kinetic selectivity’ could

provide a more informative metric for the therapeutic window. A

drug that displays long residence time at its primary target and

short residence times at collateral receptors will display a higher

degree of target selectivity over the course of dosing. This will

probably translate into a safer toxicological profile. Thus, the

shorter the duration of the promiscuous residence at alternative

partners, the safer the profile of the drug.
14 www.drugdiscoverytoday.com
Long or short residence time?
Compounds exhibiting comparable target binding affinities do

not necessarily have similar association and dissociation rates. By

resolving their kinetic endowment, a differentiation among other-

wise indistinguishable compounds can be made to steer com-

pound prioritization and optimization. Whether to aim for, or

shun, long residence times is a crucial consideration in early-phase

discovery, because a long residence time can have both beneficial

and detrimental outcomes. As such, two general approaches exist

towards extreme target residence times. The first subscribes to the

notion that longer ligand residence times confer enduring PD

effects that outlast opposing PK factors. At the other extreme, it

has been postulated that ligands with elusive residence times are
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Stirring
syringe
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Feedback
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Sample
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FIGURE 3

Basic configuration of an isothermal titration calorimetry (ITC) instrument. A
pair of identical cells is located within an adiabatic jacket. Both the reference

and sample cells contain identical buffer system, and the latter also contains

the protein of interest. A constant power is applied to the reference cell to

maintain a set temperature. The power applied to the sample cell (feedback
power) is variable and equal to the power needed to maintain a constant

temperature difference between the reference and sample cell. When a

precise amount of ligand is titrated to the sample cell via the syringe, the heat
evolved or absorbed owing to binding is reflected as a change in the

feedback power. This differential power is proportional to the temperature

differences between the reference and sample cell. Exothermic and

endothermic interactions are characterized by negative and positive change
in feedback power, respectively.

Adapted from [49].
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desirable because they represent a good compromise between

efficacy and mechanism-based toxicity [4]. Various examples are

presented herein, demonstrating the kinetic preference for a

diverse mechanism of action (MoA).

Short residence time
For pharmacological mechanisms requiring the endogenous

ligand to perform routine physiological functions, a fast-binding

exogenous ligand displaying short-lived intervention might be

advisable.

Ion channel antagonism

A N-methyl-D-aspartate (NMDA) receptor antagonist is currently a

first-line treatment for moderate and advanced Alzheimer’s dis-

ease. It is a low-affinity, open channel blocker, which swiftly

dissociates from the receptor. This enables the latter to return

quickly to the resting state [24]. By contrast, the NMDA receptor

antagonist ketamine and MK-801 block the channel with high

affinity and slow dissociation rates. This results in mechanism-

based adverse events and limits their clinical use.

Dopamine receptor antagonism

Dopamine-2 receptor antagonists (typical antipsychotics) are a

first-line treatment in psychosis. However, because they often

have adverse events [25,26], the use of atypical antipsychotics,
such as risperidone, has increased owing to their minimal risk of

adverse effects. It has been proposed that the factor that can best

account for atypicality is the faster dissociation rate from the

dopamine-2 receptor. Rapid and competitive koff rates are needed

to prevent mechanism-based toxicity for dopamine-2 receptor

antagonists [26].

Cyclooxygenase inhibition

Ibuprofen and naproxen are cyclooxygenase inhibitors that are

used as anti-inflammatory agents; they differentiate from their

analog acetylsalicylic acid (aspirin) by their rapid reversible inhi-

bition. The irreversible binding profile of aspirin translates into

long-lasting inhibitory effects, which platelets cannot overcome,

thereby increasing the risk of bleeding events [27].

Immune response

Slow dissociation of ligands from their target receptors is often

associated with a ligand-induced receptor conformational change

that forces the compound into a conformation optimized for

favorable interactions [20]. A ligand with a long residence time

on such a receptor increases the duration of antigen presentation,

and, therefore, might increase the chance of an immune response

[28].

Long residence time
For therapies requiring enduring target occupancy, quasi-irrever-

sible binding might be the most appropriate strategy. This is often

termed ‘insurmountable antagonism’, where the ligand antago-

nizes the target function in a semi-irreversible manner [29]. The

efficacy of ligands with ‘ultimate physiological inhibition’ is even-

tually overcome by the resynthesis of new target molecules [30].

The dosing interval required for effective ligand action in this case

is therefore governed by this occurrence. In general, ligands with

long residence time represent a majority and are considered to be

of higher biological efficiency than are ligands with short resi-

dence time [1].

Angiotensin II type 1 antagonism

An example of a ligand with an exceptional dissociation rate

constant is the angiotensin II type 1 (AT1) receptor antagonist

candesartan, which differentiates from the ‘surmountable’ AT1

receptor antagonist losartan [31,32]. Although the underlying

mechanism of the unsurmountability of candesartan is not yet

completely understood, in vitro binding studies suggest that its

long dissociative half-life relates to a two-step receptor isomeriza-

tion. The slow koff rate of candesartan has been attributed to its

enhanced long-lasting blood pressure lowering effects in vivo,

which have been reported to persist even after candesartan plasma

concentration has become undetectable.

Trypsin inhibition

Vincent et al. measured the association and dissociation rate

constants for several trypsin inhibitors [33]. Among different

proteinase–inhibitor combinations, the association rate constants

varied only 55-fold, from 104 to 106 M�1 s�1. By contrast, the koff

values spanned a 105-fold range, corresponding to residence times

from 22 min to 6 months. Thus, overall complex lifetime was

almost exclusively determined by their residence times and
www.drugdiscoverytoday.com 15
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appeared to be an important factor in inhibition specificity for

these systems.

HIV inhibition

Darunavir is the most recently Food and Drug Administration

(FDA)-approved HIV protease inhibitor. It differentiates itself from

its protease inhibitor analogs by an extremely long enzyme–inhi-

bitor residence time. Importantly, the authors of the study linked

this property to the highly potent antiviral activity of darunavir

and the high genetic barrier to the development of resistance

[34,35]. In another study with a panel of human and mouse

antibodies specific to the V3 loop of the HIV-1 envelop glycopro-

tein gp20, VanCott et al. illustrated, that the variation in kon across

the antibody panel was only fourfold, whereas the values for koff

varied more than 100-fold [36]. The authors concluded that koff

correlated well with cellular potency, whereas no correlation was

found between kon and cellular potency.

Epidermal growth factor receptor inhibition

Wood and co-workers provided experimental evidence for the

extended duration of cellular efficacy that can be achieved with

inhibitors of the epidermal growth factor receptor (EGFR) tyrosine

kinase receptor, which have long residence times [37].

Purine nucleoside phosphorylase inhibition

Genetic deficiency of human purine nucleoside phosphorylase

(PNP) causes T-cell immunodeficiencies. DADMe-ImmG(H), a

second-generation transition-state inhibitor, achieves greater in

vivo efficacy than the first-generation analogs (ImmH). Lewando-

wicz et al. attribute this enhanced biological efficacy to the ulti-

mate physiological inhibition of DADMe-ImmG(H), where the

recovery of PNP enzymatic activity occurs primarily by resynthesis

of new target molecules [30].

Ion channel agonism

In the cases where receptor desensitization represents an efficacy

liability, repetitive ligand binding (i.e. fast kon and koff rates) could

be detrimental. Examples are the nicotinic a7 receptor, and the g-

aminobutyric acid (GABA) receptor, for which partial agonism or

even positive allosteric modulator (PAM) might prove a better

approach to activate the ion channel.

In summary, the traditional drug discovery dogma that strives

for affinity improvement might benefit from some level of kinetic

input. The preference for long or short residence time is highly

dependent on the MoA and the relevant pharmacological context.

Making any statement on this aspect might not be possible at an

early stage of drug discovery for a novel MoA. Thus, kinetic

interrogation of the MoA with pharmacological tools spanning

a range of residence times should be initiated as early as the target

validation stage and maintained throughout all discovery phases.

Lastly, a koff selectivity window against secondary targets is advi-

sable to avoid off-target adverse events. All these considerations

warrant kinetic studies for the identification of clinical candidates

with optimal in vivo efficacy devoid of mechanism-based toxicity.

Thermodynamic signature of target–drug binding
Binding thermodynamics provides a comprehensive view of the

various types of molecular force that drive binding. These encom-
16 www.drugdiscoverytoday.com
pass the target and ligand desolvation, the restriction of the

protein and ligand conformational freedom, among other factors.

Most medicinal chemistry strategies gravitate towards optimiza-

tion of DG, the Gibbs free binding energy. DG is the sum of two

energetic terms, the enthalpy change (DH) and the entropy change

(DS), such that DG = DH � TDS. The equilibrium dissociation con-

stant is dictated by the Gibbs energy of binding, Kd = e-DG/RT, where

R is the universal gas constant and T is the absolute temperature.

To achieve extremely high binding affinity a change in both

binding enthalpy and entropy is required to contribute construc-

tively [38–41]. Although the simultaneous optimization of

enthalpy and entropy is the clear goal, medicinal chemists often

find this objective is challenging to achieve. Rational enthalpic

optimization is notoriously difficult and, if an enthalpic improve-

ment is actually achieved, it is often not reflected in better affinity,

because the enthalpy gain is compensated by an entropy loss. This

is often described as enthalpy–entropy compensation [42]. In this

context, numerous attempts have been made to measure the

(de)solvation contributions; although there might not be many

experimental approaches, several significant advances are being

made computationally [43–47]. Thus, the benefits of using the

individual thermodynamic binding terms in drug discovery are

becoming more appreciated [48].

Measuring thermodynamics
Isothermal titration calorimetry (ITC) measures the binding

enthalpy change by detecting the heat absorbed or released along

the binding reaction co-ordinate (Figs. 4). The raw data generated

by the instrument are converted to a binding isotherm, enabling

direct or indirect extraction of the thermodynamic parameters,

the stoichiometry n and Ka (1/Kd), (Fig. 3). To determine all

parameters precisely, the curve needs to be sufficiently sigmoidal

[50]; this shape is governed by Ka and the concentration of binding

sites (i.e. the product of n and the protein concentration [M]t). This

dependency is often referred as the Wiseman c-parameter (c = n[M]t
Ka,), which optimally has a value between 10 and 100.

ITC is a widespread technique that demands minimal method

development; however, there are several limitations to its applica-

tion, namely for very low or high potency ligands and entropy-

driven ligands. In addition, a recent study highlights the signifi-

cant variability in inter-lab ITC experiments [51]. With regards to

low-affinity ligands, a borderline c-value and solubility limitations

might hamper the derivation of thermodynamic data. However,

parameter determination might still be possible under certain

conditions [50] or by performing competition studies [52]. With

regards to high-affinity ligands, although they enable accurate

determination of their entropic and stoichiometry contributions,

the derivation of Ka is problematic owing to the steepness of the

binding isotherm. In this case, displacement titrations could prove

helpful in determining the complete thermodynamic signature

[53,54]. Finally, entropic-driven ligands with a negligible enthal-

pic contribution make the thermodynamic analysis almost

impractical; an illustrative example is the 3-hydroxy-3-methyl-

glutaryl-CoA (HMG-CoA) reductase inhibitor fluvastatin [55].

Additional practical considerations need to be addressed when

embarking on experimental ITC work. Both protein and ligand

should reside in identical buffers to prevent large heats of dilution

masking the true enthalpy. The solubility of both binding partners
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FIGURE 4

Raw data captured by a typical isothermal titration calorimetry (ITC)

experiment (a). The differential power is a function of time as the equilibrium
of binding needs to set in after each consecutive titration step. The time

integral of the peak therefore yields a measurement of thermal energy (DH)

accompanied by each injection. The heat released or absorbed is in direct
proportion to the amount of binding that occurs. When the protein in the cell

becomes saturated with added ligand, the differential power signal

diminishes until only the background heat of dilution is observed. The latter

needs to be subtracted before accurate thermal analysis can be performed.
To extract the different thermodynamic parameters, the heat formation is

plotted against the molar ratio of ligand/protein (b). By using data fitting for

the suitable binding model, the change in enthalpy DH, the stoichiometry n,

and the association constant Ka can be determined directly. The change in
enthalpy corresponds to the intercept of the two asymptotic lines

corresponding to the minimal and maximal heat formation, n controls the

position of the inflection point, and the slope at the inflection point reflects

the association constant (Ka = 1/Kd). The terms DS and DG are subsequently
derived from these data.

Adapted from [49].
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should be sufficiently high, keeping in mind that the concentra-

tion of the ligand is generally 15–20 times higher than the protein

concentration.

A closer look at the enthalpic/entropic terms
Two major terms contribute to the entropy of binding, first, the

desolvation entropy change and, second, the conformational

entropy change. The desolvation entropy is favorable and originates

from the release of water molecules as the ligand and the binding

cavity undergo binding-driven desolvation. Favorable desolvation

entropy is often the predominant force associated with the binding

energy of hydrophobic groups. The desolvation event destroys the
organized water network around the ligand, resulting in a signifi-

cant entropic gain [56,57]. A prevalent chemical design strategy is to

add hydrophobic functionalities to an initial lead skeleton to attain

more favorable entropy. By contrast, the conformational entropy

change is usually unfavorable because the binding event entails the

conformational rearrangement of the ligand and the target [40]. As

such, molecular recognition of the ligand by the target limits the

external rotational and translational freedom of both partners,

leading to a conformational entropy penalty. In practice, this con-

formational entropy loss can be minimized through chemical con-

straints that make the unbound conformation of the ligand similar

to its bioactive conformation. A widespread medicinal chemistry

effort is to rigidify the skeleton to attain more favorable entropy.

This could be achieved by the introduction of either a covalent bond

or an intramolecular hydrogen bond. Apart from pre-organization,

an added benefit of the latter might be that the enthalpic desolva-

tion penalty of additionally populated extended conformations is

partly compensated by the enthalpic gain of the intramolecular

hydrogen bond upon binding. Because the main cause of entropy

loss originates from structuring regions of the protein adjacent to

the bound ligand, newly formed bonds should be aimed at pre-

existing structured protein regions [58]. During lead optimization,

the entropic term tends to increase; a recent ITC analysis of 250

target–ligand interactions revealed that, on average, synthetic

agents present a greater favorable entropic contribution compared

with biological ligands [59]. This is likely to reflect the ease with

which medicinal chemists can manipulate the entropy term during

lead optimization.

Although less pronounced in optimized compounds, enthalpic

contributions are very familiar to medicinal chemists. They are in

fact often the focus of structure–activity relationships during the

iterative process of ligand optimization. However, the optimiza-

tion of this parameter is very difficult even in the presence of X-ray

crystallographic data [60], as described below.

There are two major contributors to the binding enthalpy. The

first involves factors related to the formation of noncovalent

interactions, such as intra- and intermolecular hydrogen bonds

and van der Waals contacts. Whereas the former are always

favorable, the latter can also be unfavorable (clashes and non-

complementary interactions). The second major contributor

involves the unfavorable factors, which are governed by the

desolvation of polar moieties. Discrete noncovalent interactions

are based on hydrogen bonds and/or electrostatic interactions. A

favorable enthalpic term indicates that the target–drug complex

engages in an intricate interaction network that upholds the

unfavorable desolvation enthalpy. The enthalpy penalty asso-

ciated with the desolvation of polar groups is in the order of

8 kcal mol�1, about one order of magnitude higher than that of

nonpolar groups [61]. In essence, the enthalpy provides the intrin-

sic signature of the forces that control the specific binding mode of

a compound to its target. Medicinal chemists often observe that

unfavorable enthalpies arise from ill-positioned polar groups in

the compound [62–64]. Thus, merely adding hydrophilic moieties

hoping to establish polar interactions can considerably reduce the

overall enthalpy. It is not the number of polar groups present in

the ligand that matters, but the quality of the newly formed

noncovalent interactions. In this respect, several computational

techniques have been applied to optimize the binding enthalpy
www.drugdiscoverytoday.com 17
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(specificity) by optimizing the electrostatic charge complementar-

ity between the target and the drug [65,66]. The reason why lead

optimization is characterized by an increased entropy contribu-

tion now becomes evident: the chemical design of a net positive

number of polar bonds between a protein and a lead compound is

exceptionally complex. Importantly, Freire et al. demonstrated the

lack of correlation between the binding thermodynamic para-

meters (DH, DS) and Lipinski’s rule of five [67].

An improvement in the binding enthalpy does not necessarily

produce a higher binding affinity. The enthalpy–entropy compen-

sation phenomenon implies that enthalpy gain can often be

masked by entropy loss, resulting in a negligible enhancement

of binding affinity. An enthalpic gain can be compensated by three

main entropic factors: first, the loss of conformational freedom of

highly flexible ligands; second, the structuring of protein regions

by newly formed noncovalent interactions, resulting in a loss in

conformational entropy; and third, the overexposure of hydro-

phobic groups, resulting in a loss in solvation entropy [68,69].

Entropic or enthalpic-dominant binding profile?
Compounds exhibiting comparable target binding affinities might

have disparate enthalpic/entropic profiles. By resolving their ener-

getic endowment, a differentiation among otherwise indistin-

guishable compounds can be made to steer compound

prioritization and optimization. The question is: which thermo-

dynamic profile has the greatest likelihood of displaying both high

potency and off-target selectivity? To this end, it has been recently

postulated that enthalpy-driven ligands are more selective, and

achieve much higher binding affinities than do their entropically

driven analogs [70]. This shows that comparative thermodynamic

analysis of lead candidates could help identify enthalpically

favored starting points. To illustrate this thesis, several examples

are presented below that show the relevance of enthalpy and

enthalpy contributions for various MoAs.

HIV-1 protease inhibition
Examination of the evolution of FDA-approved human immuno-

deficiency virus 1 (HIV-1) protease inhibitors indicated a trend

towards enthalpy-driven agents. This profile is responsible for their

high efficacy and low propensity to adaptability owing to mutations

associated with drug resistance, and low toxicity [38,71–73].

HMG-CoA reductase inhibition
Statins, for which complete thermodynamic information has been

published, suggest that a best-in-class compound entering the

clinical setting is enthalpically better optimized than the original
H3C
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FIGURE 5

Chemical structures of the studied human D-amino acid oxidase (DAAO) inhibitor
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first-in-class compound. It appears that the molecular interactions

reflected in a better binding enthalpy are crucial for the develop-

ment of improved ligands. It seems that compounds with extre-

mely high affinity, good selectivity and superior drug resistance

profiles are those with favorable binding enthalpies [55,74,75].

The individual thermodynamic variables have often been

neglected as guiding tools in drug development because of experi-

mental challenges. However, recent developments in instrumen-

tation allow for the rapid and inexpensive derivation of

thermodynamic parameters, which are then incorporated into

optimization strategies. In other words, measuring enthalpic

and entropic terms can provide priceless information for decision

making in drug discovery.

Interpreting thermodynamic and kinetic data: lessons
learnt
Test case: D-amino acid oxidase
A recent comparative study of six D-amino acid oxidase inhibitors

has shed some light on how the thermodynamic and kinetic

signatures of leads can be used to explain their MoA and select

optimal tool compounds (Fig. 5) [76]. Both signatures were gen-

erated for all inhibitors. The derived Kd values found a good

congruence with inhibition constants derived from a biochemical

assay. Here, we describe a thorough kinetic and thermodynamic

analysis for this system.

Thermodynamic signature

A mixture of enthalpic- and entropic-driven profiles were observed

(Fig. 6). The rigid nature of the six inhibitors suggests low overall

conformational entropy loss for the ligands. With respect to the

target, in silico docking studies and X-ray analysis suggest a mini-

mal loss of receptor conformational freedom upon binding. These

data imply a negligible conformation entropy loss. By contrast, the

desolvation entropic contribution is always favorable. These obser-

vations are in concurrence with the observed positive entropic

contribution to the binding energy for all inhibitors.

Distinct differences in the thermodynamic signatures of the

chemically related inhibitors 3 and 4 were observed, which dif-

fered by a single atom. Molecular dynamics simulations implied

that interactions with water in the binding site were at the root of

their dissimilar thermodynamic endowment. Inhibitor 3 dis-

played a richer hydrogen bond interaction network with active

site waters, which reflects its higher enthalpic contribution. Con-

versely, the preservation of the structured water-network in the

binding pocket upon binding implies opposing receptor confor-

mational and desolvation entropy contributions, which results in
CO2HN
H

N
H

CI

R

O

OHX
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FIGURE 6

Thermodynamic profile of the binding of six human D-amino acid oxidase

(DAAO) inhibitors based on isothermal titration calorimetry (ITC)

measurements. The measured parameters include the Gibbs free energy of
binding (DG), the enthalpy change (DH) and the temperature dependent

entropy change (�TDS).
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inhibitor 3 having a lower entropic term than inhibitor 4. Inhi-

bitors 3 and 4 are thus an elegant example of the enthalpy/entropy

compensation phenomenon. A lesson learnt from this test case is

that for this enzyme, the susceptibility of the inhibitors to interact

with active site water molecules should be acknowledged and

integrated in the optimization strategies.

Unlike inhibitors 3 and 4, inhibitors 5 and 6 did behave in line

with the expectations. Their thermodynamic signatures were akin
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FIGURE 7

Second-order rate constant kon plotted versus first-order-rate constant koff of D-am

measurements. The diagonal lines represent equal dissociation constant (Kd) leve
in accordance with their similar physicochemical properties, such

as log D, solubility and number of rotational bonds.

Kinetic signatures

A range of kon and koff constants were observed for the six inhi-

bitors, which were all within the ordinary values observed for

other biological systems (Fig. 7). As observed for other target–drug

interaction complexes, the association rate constants demon-

strated a modest deviation in magnitude (16-fold). This was

expected because the diffusion rates of the different inhibitors

are probably similar, given their similar physicochemical proper-

ties. By contrast, dissociation rates varied largely (1000-fold),

giving rise to distinct Kd values. Interestingly, no dependency

between koff values and their respective enthalpy terms was found,

which is in disagreement with observations by Tummino et al. that

longer residence times are a direct consequence of enhancing the

enthalpic contributions of protein–ligand interactions [5].

To establish the preferred kinetic profile, it was recommended

that several inhibitors with a wide range of residence times should

be followed up in vivo, which might give clues to the best kinetic

profile that leads to maximal in vivo efficacy with minimal off-

target side effects.

Intriguingly, a much lower association rate constant was mea-

sured for inhibitor 1. This finding was rationalized by the presence

of two tautomers of inhibitor 1 in solution, where the less ener-

getically favored one binds to the receptor. Upon binding of the

sparsely populated active tautomer of inhibitor 1, the equilibrium

is ‘slowly’ restored through an energy-costly isomerization reac-

tion. An important lesson learnt from this system is that the

occurrence of ligand tautomers in the solution phase must be
.00
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FIGURE 9

Thermodynamic profile of the binding of four Aplysia californica acetylcholine

binding protein (Ac-AChBP) ligands based on isothermal titration calorimetry
(ITC) experiments. The measured parameters include the Gibbs free energy of

binding (DG), the enthalpy change (DH) and the temperature dependent

entropy change (�TDS).
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FIGURE 8

Chemical structures of the four Aplysia californica acetylcholine binding

protein (Ac-AChBP) ligands studied [77].
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thoroughly investigated, and energetically demanding isomeriza-

tion reactions circumvented.

Test case: acetylcholine binding protein
A recent comparative study of four Aplysia californica acetylcholine

binding protein (Ac-AChBP) ligands has shed some light on how

the thermodynamic signature can be used to elucidate the MoA of

leads and guide chemical design (Fig. 8). The thermodynamic

signature was generated for four ligands [77].

A mixture of enthalpic- and entropic-driven profiles was

observed, the ligands ranging from very rigid to highly flexible.

The rigid nature of nicotine (inhibitor 1) suggests a low or negli-

gible conformational entropy loss from the ligand. Moreover,

ligand binding is accompanied by conformational changes at

the ligand-binding site [78], where the C-loop undergoes a large

movement leading to a contraction of the amino acids surround-

ing the ligand. This rearrangement fixes the protein in a confor-

mation optimal for interaction with the ligand, thus leading to a

significant protein conformational entropy loss. By contrast, the

desolvation entropy contribution of ligand binding is anticipated

to be favorable but not enough to counterbalance the conforma-

tional entropy loss. The thermodynamic signature of inhibitor 1 is

enthalpy driven, which is in full agreement with nicotine residing

within a high ligand efficiency (LE) hotspot [79] (Fig. 9). Ligand

binding is characterized by a close packing of a substantial number

of aromatic and hydrophobic contributions, as well as close con-

tacts between protein oxygens and the basic nitrogen of nicotine.

With regards to lobeline (inhibitor 2), the crystal structure of apo

Ac-AChBP reveals an open loop-C. Structure-based evidence of Ac-

AChBP in complex with lobeline shows that loop-C significantly

changes conformation and wraps around lobeline forming specific

interactions [80]. This suggests a certain degree of ligand and protein

conformational entropy loss. Moreover, the desolvation entropy

contribution of ligand binding is anticipated to be favorable and

nearly counterbalances the unfavorable conformational entropy

contribution. By contrast, the well-anchored lobeline in the binding

site indicates a favorable enthalpic contribution.

VUF10663 (inhibitor 3) demonstrated entropic-driven beha-

vior. Its enthalpic contribution is lower than that of inhibitor 1
20 www.drugdiscoverytoday.com
and inhibitor 2 because it does not present specific target–drug

interactions in the binding site.

Next, the authors [77] attempted to merge inhibitor 2 and inhi-

bitor 3 to design a hybrid with both high enthalpy and entropy

contributions to the binding free energy. The result of this exercise,

inhibitor 4 (VUF11437), showed an extremely favorable enthalpy

contribution, but to the surprise of the authors, a rather opposing

entropic behavior. In fact, the authors had predicted the entropic

term to be as modest as those observed for inhibitor 2 and inhibitor

3. A plausible explanation proposed by the authors, and based on

the crystal structure of Ac-AChBP in complex with inhibitor 4, is

that inhibitor 4 is more rigidly fixed in the active site, provoking a

lower flexibility of the protein (completely locked). This agrees with

the high enthalpic contribution of inhibitor 4. It is another illustra-

tion of the enthalpy–entropy compensation phenomenon. A frag-

ment optimization strategy proposed by the authors was allowing

the protein a higher degree of flexibility while attempting to main-

tain the high target–drug interaction specificity.

Concluding remarks
We have summarized the evidence in favor of integrating thermo-

dynamic and kinetic-based approaches for rational lead prioritiza-

tion and optimization. Stated differently, the elucidation of the

mode of ligand binding from the thermodynamic and kinetic

signatures provides significant leverage in the identification of

clinical candidates with optimal in vivo efficacy devoid of off-target

or mechanism-based adverse events. Finally, we present a sum-

mary of the main TLI considerations outlined in this review.
� The triage and progression of chemical leads based primarily on

their steady-state metrics has become obsolete.
� Understanding the binding mechanisms at the atomic level

provides significant leverage in ligand optimization.
� The thermodynamic and kinetic signatures, in combination

with structural biology and in silico modeling, help elucidate

the driving mechanisms of target–drug binding.
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� Enthalpy-driven compounds tend to present more potent and

selective binding and efficacy profiles than do entropy-driven

analogs.
� Residence time preference is highly dependent on the MoA and

relevant pharmacological context. Longer koff values are

advised in those cases where mechanism-based toxicity is not

a liability.
� Kinetic interrogation of the MoA with pharmacological tools

spanning a range of residence times should be initiated as early
as the target validation stage and maintained throughout all

discovery phases.
� A koff selectivity window is advisable to avoid off-target adverse

events.
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