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Teaser
Available for near three decades, has the full potential

of phage display been realized in peptide drug discovery?
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Phage display represents an important approach in the development

pipeline for producing peptides and peptidomimetics therapeutics. Using

randomly generated DNA sequences and molecular biology techniques,

large diverse peptide libraries can be displayed on the phage surface. The

phage library can be incubated with a target of interest and the phage

which bind can be isolated and sequenced to reveal the displayed peptides’

primary structure. In this review, we focus on the ‘mechanics’ of the phage

display process, whilst highlighting many diverse and subtle ways it has

been used to further the drug-development process, including the

potential for the phage particle itself to be used as a drug carrier targeted to

a particular pathogen or cell type in the body.

Introduction
From a historical point of view, drug discovery can be divided into three periods; (i) before, (ii)

during and (iii) after the twentieth century. Almost all of the drug discoveries before the twentieth

century relied on serendipity. However, as the result of pronounced advances in the different

disciplines involved, drug discovery quickly became a more rational process. Among the impor-

tant technologies available to contribute to this by the end of the twentieth century were the

determination of the molecular structures of drugs using a variety of instrumentation, molecular

modeling, combinatorial chemistry, high-throughput screening and advanced molecular biology

methods. The most recent era of drug discovery is marked by the increase in biopharmaceuticals,

backed by the introduction and acceleration of omics technologies. In this context, phage display

technology, a combinatorial biology technique introduced by G.P. Smith in 1985 [1–4], is likely
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GLOSSARY

Capsid The protein coat that surrounds the phage genome in a
phage particle.
Helper phage A phage that is introduced into a host cell in
conjunction with a related cloning vector in order to provide
enzymes required for replication of the cloning vector.
Library A population of clones with each clone containing one
random piece of chromsomal DNA cloned into a vector.
Ligand Any molecule that binds to another; usually a soluble
molecule such as a hormone or neurotransmitter that binds to a
protein receptor.
Peptidomimetic A compound containing non-peptidic
structural elements that is capable of mimicking or antagonizing
the biological action(s) of a natural parent peptide.
Phage A virus that infects bacterial hosts and may be utilized to
introduce genes. Phage are widely used as cloning and expression
vectors.
Phage display A technique that fuses peptides or proteins to
capsid proteins on the phage surface. Libraries of phage-displayed
peptides may be screened for binding to specific ligands;
determination of the gene sequence of the selected phage is used
to identify the peptide/protein sequence.
Phagemid A type of plasmid which carries within its sequence a
bacteriophage replication origin. When the host bacterium is
infected with helper phage, the phagemid is replicated along with
the phage DNA and packaged into phage capsids.
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to play an increasingly more important role in the future of drug

discovery. The concept is simple: a population of phage is engi-

neered to express random-sequence peptides, proteins or antibo-

dies on their surface. From this population, a selection is made of

those phage that bind the desired target. In order to effect this

presentation (or display), randomized cDNA sequences are

inserted into the genome of the phage, such that they will be

expressed as a fusion protein with one of the coat proteins of phage

[2,4–6]. Proteins/peptides with a wide range of sizes and properties

have been successfully displayed by filamentous phage such as

alkaline phosphatase (60 kDa) [7], mustard trypsin inhibitor

(7 kDa) [8], Src homology 3 (SH3) (6.5 kDa) [9] and cytochrome

b562 (11 kDa) [10].

Phage display technology is a powerful tool in drug discovery,

particularly for the identification of ligands with novel functions

[11–25]. However, its application covers very diverse areas such as

nanostructured electronics [26,27], agriculture [28], medical diag-

nosis [29] and neurobiology [30], just to mention a few. The

success of phage display can be credited to the fact that highly

diverse libraries can be constructed followed by rapid isolation and

identification of specific proteinaceous ligands for numerous types

of macromolecular targets [6,31]. In its relatively short existence,

the phage display approach has been used to create libraries of

random peptides and proteins for the purpose of identifying

ligands for receptors, identifying enzyme blockers, studying pro-

tein/DNA–protein interactions, screening cDNA expression, epi-

tope mapping of antibodies, engineering human antibodies,

optimizing antibody specificities, identifying peptides that home

to specific organs or tissues, generating immunogens for vaccine

design, and for use in affinity chromatography [2,3,32–36].

Libraries have also been used to identify peptide/protein binders
to small molecules such as explosive dinitrotoluene derivatives

[37], prostaglandin E2 [38], 15-ketocholestane [39], and taxol [40].

Phage display has several advantages over traditional random

screening methods used in drug discovery such as simplicity, cost

effectiveness, and speed. But the major strength of this technique

is in generating the enormously diverse exogenous peptides or

proteins displayed on the surface of the phage using standard yet

rapid molecular biology methods as opposed to using genetically

engineered protein or peptide variants individually. Libraries can

be screened rapidly for binding to a target and the ‘selectants’

eventually identified through DNA sequencing [2,31,41].

Once identified through phage display, selected ligands can be

analyzed structurally to provide more detailed understanding of

the ligand–target interaction [42]. This additional information is

useful when proceeding to the next stages of drug discovery and

pipeline development. For example, Feng et al. investigated the

molecular basis for the affinity and selectivity of phage display-

derived SH3 domain binding ligands using 2D-NMR spectroscopy

[43]. The structural results were used to develop a general model

for SH3–ligand interactions applicable to further drug design.

Filamentous bacteriophage biology
Filamentous bacteriophage (also commonly referred to as phage) is

a group of viruses that infects F plasmid-containing gram-negative

bacteria, such as Escherichia coli cells. They include members of the

Inoviridae family, of the genus Inovirus, such as, phage M13, f1 and

fd [44]. Generally, filamentous phage is not lytic and so strains of

phage-infected E. coli can release new phage particles without

bacterial lysis. Other types of virus-like systems used in phage

display are the phagemid, which are plasmids containing an f1

origin of replication from a phage to enable their single-stranded

replication and packaging into phage particles, as well as an origin

of replication (ori) for double-stranded replication. Phagemid can

be considered as cloning vectors but need helper phage for com-

pleting their infection process by providing the structural and

functional proteins necessary for packaging phagemid into virion

particles [45].

M13 and other strains of Ff phage contain circular single-

stranded DNA (ss-DNA) with 98% identity across different strains.

The ss-DNA is enclosed in a protein coat with the entire particle

being �6.5 nm (diameter) � 930 nm (length) (Box 1). The genome

consists of 11 genes (Table 1) [3,33,36,46,47]. These genes are

grouped according to function: (i) Capsid proteins comprise pro-

tein III (pIII), pVI, pVII, pVIII and pIX, (ii) DNA replication

proteins consist of pII, pV and pX, and (iii) the assembly proteins

pI, pIV and pXI.

The most important coat proteins for the display of exogenous

proteins and peptides on the surface of the phage are pIII (406

residues) and pVIII (50 residues), known as the minor and major

coat proteins, respectively, with the former being the most

exploited coat protein for display. That the coat proteins are on

the exterior of the phage literally does mean they are on display.

Lack of surface accessibility of some of the other coat proteins in

the context of intact phage particle may account for their reduced

suitability for efficient display. For example, using sera directed

against the minor proteins, Endemann et al. showed that the

minor coat protein, pIX, is accessible in intact phage but at least

some parts of pVI and pVII are not [48]. Nevertheless, there are
www.drugdiscoverytoday.com 1145
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BOX 1

Life cycle

Infection process of
bacterium by phage

Outer membrane

Assembly
process

Inner membrane

Bacterial
enzymes

ss-DNA

pVI:minor capsid (coat) protein

Bacterial ToIR protein

Bacterial F pilus

Complex of pI, pIV and pXI assembly proteins

pV-ssDNA

Bacterial ToIA protein

Bacterial ToIQ protein

pV:ssDNA binding protein

pVIII:major capsid (coat) protein

pIII:minor capsid (coat) protein

pVII:minor capsid (coat) protein

pIX:minor capsid (coat) protein

ds-DNA

Structure of bacteriophage and its life cycle. Infection begins by attachment of pIII N-terminus to the tip of F-pilus on the bacterium. The
binding leads to injection of ss-DNA, (+) strand, of the phage into the bacterial cell. Host polymerase then uses the (+) strand as template to
produce the complementary (�) strand resulting in a double stranded- (ds-) or replicative form (RF) of phage. Phage proteins are synthesized
from mRNA generated from the (�) strand of RF DNA. For replication of the genome to produce new phage, newly synthesized protein pII
nicks the RF DNA to initiate replication of the (+) strand. As a result, a pool of RF DNA molecules can be produced by host enzymes. pII also
ligates the molecular ends of newly synthesized (+) strands to form ss-DNA. pV protein dimers bind this new ss-DNA to prevent conversion to
RF DNA. The amount of pV determines the ratio of RF to (+) strand DNA synthesis. pX is involved in the replication and is believed to regulate
RF/(+) strand DNA synthesis as well as inhibition of pII function. Assembly occurs at the inner membrane of the cell and involves pI, pIV and
pXI. The C-termini of pI and pXI interact with pIV to form a channel to facilitate secretion of phage. pVII and pIX are required for the secretion
step, and they interact with the pV-ss-DNA complex. During extrusion pV which is bound to ss-DNA is replaced by pVIII followed by the
addition of pVI and pIII to the end of the proximal end of the releasing particle [2,3,35,36,46,151]. About 1000 phage particles are produced
during the first generation after infection and then bacterial cells produce approximately 100–200 phage per generation [152].
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numerous reports of successful protein display using pVI, pVII and

IX coat proteins [49,50]. Low efficiency of display using coat

proteins other than pIII and pVIII may to some extent be related

to the adverse effects of the fused peptides/proteins on the coat

proteins during phage assembly.

An individual phage particle consists of 3–5 pIII proteins which

form a knob-like structure at one end. These proteins are respon-

sible not only for infection (via the F-pilus of the bacterium) but

also for virion stabilization and assembly termination [35,36,46].
1146 www.drugdiscoverytoday.com
The displayed peptide or protein is presented at the N-terminus

of pIII separated by a spacer from pIII’s N-terminal residue (Fig. 1a).

There is little restriction on the length of the insert so that

peptides and proteins, though relatively large, can be accommo-

dated.

About 2700 copies of pVIII are present on the coat of phage and

are packed quite tightly [46]. pVIII has an a-helical architecture

with some deviations from ideality, such as gentle kinking [51] or

curvature [52]. The helical axis of pVIII is tilted about 208 relative
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TABLE 1

Genes and gene products of fl bacteriophage

Gene Function No. of amino acids Protein size (Da/mol)

I Virion assembly 348 39 502

II DNA replication 410 46 137

III Minor capsid protein 406 45 522

IV Virion assembly 405 43 476

V Binding ssDNA 87 9682

VI Minor capsid protein 112 12 342

VII Minor capsid protein 33 3599

VIII Major capsid protein 50 5235

IX Minor capsid protein 32 3650

X DNA replication 111 12 672

XI Virion assembly 108 12 424

Displayed
protein

Displayed
peptide

N1
1-68

N2
87-217

CT
257-406

S1
1-5

S2
6-24

S2
25-35

S4
36-50

(a)

pIII pVIII

(b)
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FIGURE 1

Structural and domain descriptions for pIII and pVIII proteins. Schematic diagrams at the top of panels a and b show the domains for pIII and pVIII, respectively.
Each domain is represented by a rectangle with the domain name and residue numbers inside. In both pIII and pVIII the displayed protein/peptide is linked to the

N-terminus via a spacer shown by a horizontal line. The 3D structure shown for pIII protein (PDB ID 1G3P) consists of only N1 and N2 domains colored in magenta

and green, respectively [153]. The model of pVIII refined to fit X-ray fibre diffraction data (PDB ID 1IFI) shows distinct regions: surface segment (S1, cyan),

amphipatic mainly a-helical region (S2, orange), hydrophobic helix (S3, green), and amphipatic helix extending to the C-terminal end (S4, blue) [154].
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to the main axis of the phage particle [53]. The sequence of pVIII

can be divided into four regions (S1–4) (Fig. 1b): The amino acid

sequence at the C-terminus of pVIII contains four positively

charged lysine residues which interact with the phosphate groups

from the backbone of the ss-DNA inside the phage. The N-termi-

nus of pVIII is present on the outside of the particle with only the

first three residues accessible for digestion by proteases. Unlike

pIII, only short peptides (<10 residues) can be tolerated at the N-

terminus of pVIII [5,47,54] for the insert to be successfully dis-

played on every copy.

It is not clear why large inserts cannot be tolerated in pVIII, but

it has been suggested they affect the assembly process of phage.

Another suggestion for the lack of tolerance for large inserts is their

physical dimensions prevent new virus particles passing through
the pIV exit pore of the outer membrane of the bacterium [46].

However, to circumvent this problem, it has been shown that if the

wild-type pVIII protein is supplied (i.e. pVIII without any fusion

protein displayed) along with fused pVIII, large proteins can be

displayed [33,55]. Kang et al. demonstrated the successful display

of Fab fragments on the surface of phage particles by fusing them

to the major coat protein of a phagemid/helper phage system [56].

Another striking difference between the use of pIII and pVIII in

the display is the avidity effect caused by the display valency.

Generally, this leads to significant differences in the affinity of the

proteins or peptides that can be selected either by pIII or pVIII

display libraries to the same target. There are only 3–5 copies of pIII

per phage particle and this can be an advantage compared with

pVIII libraries since avidity is reduced. As a result, relatively high
www.drugdiscoverytoday.com 1147
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TABLE 2

Classification of most of the common phage display vectors

Display type Coat protein used
for display

Display on all or some
copies of coat protein

# of coat
protein genes

Fusion encoded in phage
or phagemid genome

Examples of
vectors

Type 3 pIII All 1 Phage M13KE

Type 8 pVIII All 1 Phage M13KE

Type 33 pIII Some 2 Phage M13KE

Type 88 pVIII Some 2 Phage f88-4

Type 3 + 3 pIII Some 2 Phagemid pComb3

Type 8 + 8 pVIII Some 2 Phagemid pComb3
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affinity peptides and proteins can be isolated with dissociation

constants (Kd) of 1–10 mM, whereas pVIII-fused peptides tend to

have lower affinity (Kd of 10–100 mM) because of the higher

number of the displayed peptides [31,54,57]. However, peptide

and protein ligands with higher affinities, in the range of nano-

molar and low picomolar, have also been reported using phage

display of antibodies (such as those selected for binding the tumor

antigen c-erbB-2 and murine vascular endothelial growth factor

[58,59]).
3 33 3+3

+ +

8 88 8+8

Drug Discovery Today 

FIGURE 2

Schematic presentation of different types of phage display vector systems.
The names for the systems are shown at the bottom. See text and Table 2 for

more information including the nomenclature. Where two large rounded

rectangles are shown the longer refers to helper phage and the shorter to
phagemid. The twisted red line in each rectangle represents ss-DNA. The

small black and white boxes show the location of the pVIII and pIII genes in

the ss-DNA, respectively. The insert coding DNA for foreign peptide or protein

is represented by the light blue box. The dark blue circles on the surface of
particles represent the displayed peptide or protein. The pIII proteins are

represented as black circles, while other coat proteins are not shown for the

clarity.

Figure is adapted from [2].

1148 www.drugdiscoverytoday.com
Vectors and modes of display
The most common bacteriophage used in phage display are the

filamentous phage including M13, f1 and fd; although T4, T7, and

l phage have also been used [34]. Vectors used in phage display can

be classified according to the following parameters:
� The type of coat protein used for display (pIII or pVIII).
� The displayed protein or peptide fused to all copies of pIII or

pVIII or a fraction of them.
� Whether the insert is encoded by the phage genome or another

genome such as phagemid.

Table 2 shows a classification of vectors commonly employed in

phage display and a schematic representation of the different types

of display is shown in Fig. 2. For example, with the type 3 vector

(Fig. 2), the insert encoded by the pIII gene results in the display of

the foreign protein/peptide in all pIII copies. Similarly, the type 8

vector results in the display of peptide in each of the expressed

pVIII molecules. In type 33, the phage genome bears two types of

pIII molecule; one is recombinant and the other is wild type. As a

result, only some of the expressed pIII proteins are fused with

foreign peptide or protein. Type 3 + 3 differs from 33 in that two

copies of the pIII gene are present but are on the separate systems:

that is, the wild type version is on the phage (called helper phage),

whereas the recombinant form is located on the phagemid gen-

ome (a plasmid carrying the filamentous phage intergenic region,

a replication origin and antibiotic resistance gene). Types 88 and

8 + 8 are the same as 33 and 3 + 3, respectively, but with pVIII used

for display [2,33,46,60].

Construction of libraries
Library construction is the starting point in the process of selecting

and isolating the ligand(s) for the target of interest. Depending on

the specific aims of the study to be undertaken, two types of

libraries are extensively used – peptide libraries and antibody

libraries.

Peptide libraries
Each of the 20 natural amino acids is encoded by codons. A random

peptide library can be constructed using degenerate oligonucleo-

tides introduced into the phage genome. One of the most common

strategies to generate random peptides is to use (NNK)n codon

degeneracy, where N is an equimolar mixture of all four nucleotides

(adenine, guanine, cytosine and thymine) and K is a 1:1 mixture of

guanine and thymine. By using (NNK)n codons instead of (NNN)n

codons, the number of stop codons is reduced from three types

(TAA, TGA and TAG) to one (TAG, Amber stop codon) [36,61,62].
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Peptide libraries can be generated with lengths of the displayed

peptides varying from 6 to 30 residues. Strategies can be used to

present peptides in a more constrained conformation; for exam-

ple, by including two cysteine residues in order to make a disulfide

bond [31,36]. It is usually difficult to predict the optimum length

required for the randomized displayed peptides as this depends on

a number of factors including the folding properties of the dis-

played peptide, the characteristics of the target, and the purpose of

investigation [31].

The construction of the library is a key step because the prob-

ability of being able to select ligands that bind the target is highly

dependent on library diversity and sequence length. For a peptide

library employing (NNK)n codons, each NNK is a mixture of the 32

different possible codon sequences that encode for all 20 amino

acids (plus one stop codon). For such a library, the number of

possible n-mer peptide sequences is given by 20n, where 20 is the

number of standard amino acids and n is the number of rando-

mized positions. For example, for a peptide library with seven

randomized positions, there are 207 (1.3 � 109) possible hepta-

mers. However, these considerations represent an oversimplifica-

tion of reality and lead to an overinflated estimate due to a number

of factors such as degeneration in the amino acid code leading to

random occurrences of the termination codons as well as trans-

formation efficiency. The maximum concentration of phage par-

ticles is �1014 particles/mL (�170 nM), which sets the upper limit

for diversity. Transformation efficiency allows only 108–1010

phage constructs to be transformed into E. coli by electroporation
Full antibody

Fc

s

V LV
L

C LC
L

C H

C
H

CH CH

CH CH

s s

s s

s s

V HV
H

CDR
Light chain

Heavy chain

Fab

s s

FIGURE 3

Schematic representation of full antibody (IgG), antibody fragments (Fab and scF

domains and VH and VL denote the variable domains of the heavy (H) and light (L) ch

regions) are shown in black and are pointed to by arrows in the full antibody mol

generate scFv molecules, which can self associate to form diabody or triabody (not
full antibody and diabody are divalent species.
or other techniques [2,5,62,63]. Typically, the diversity of com-

mercially available libraries is �109 [64].

Antibody libraries
The antibody molecule comprises heavy (H) and light (L) chains,

which both include variable (V) and constant (C) domains (Fig. 3).

The antigen-binding fragment, Fab, and single-chain fragment

variable (scFv) (Fig. 3) can be displayed on the surface of phage.

This approach can be used to identify antibodies which recognize a

specific target.

An scFv is an engineered component of an antibody which

consists only of the variable regions of the heavy (VH) and light

chains (VL) connected by a short flexible glycine-rich linker pep-

tide of 10 to 25 amino acids; for example, in the form (GGGGS/T)3

[65]. The linker can either connect the N-terminus of the VH with

the C-terminus of the VL, or vice versa [66]. The purpose of serine

or threonine in the linker is to increase solubility.

In the construction of antibody libraries, the initial decision is

whether to construct a library based on scFv or Fab fragments as

each has advantages and disadvantages. In the case of scFv

libraries, construction can be achieved simply by overlap exten-

sion PCR, as explained in more detail by Andris-Widhopf and

colleagues [67]. A similar method can be used for Fab fragment

library construction [68,69].

The other advantage of such libraries is that the scFv molecules

can be engineered in multivalent forms and as a consequence the

avidity toward the target can be increased.
cFv Diabody

V L

V L

V L

V L

V H

V H

V H

VH

C L

C H

s s

Fab fragment
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v), diabody formed by dimerization of scFv. CH segments are the constant

ains, respectively. Hyper variable CDR regions (complementarity determining

ecule. VH and VL are linked via linker sequence (shown by curly solid line) to

 shown) polyvalent complexes. Fab fragment and scFv are monovalent, while
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Phage binding

Washing

Elution

Target binding

Amplification

2

3

4

1

5
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FIGURE 4

Biopanning. The process for affinity selection of phage-displayed peptide or protein: Step 1, target is immobilized. Step 2, phage library is added. Step 3, washing

to remove unbound phage. Step 4, elution of bound phage as the result of conformational changes to the binding site caused by pH change or other means which

disrupts the interaction between displayed ligand and the target. Step 5, amplification of eluted phage for next round of biopanning.

Figure is adapted from [32].
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One of the advantages of using Fab libraries compared to scFv

libraries is that the folded structure of Fab fragments tends to be

more thermodynamically and kinetically stable [70]. In addition,

Fab fragments generally do not multimerize nearly to the same

extent as scFvs and so are more likely to provide information on

affinity rather than avidity. The main disadvantage of Fab libraries

is the generally lower expression levels in E. coli compared to the

smaller scFv molecules [3,71].

Selection and screening methods
In vitro screening
Biopanning is the most common in vitro screening method for

identifying and isolating ligands that bind the target of interest

(Fig. 4) [2,4,32,72]. Biopanning involves the following steps: (i)

target immobilization: the purified target of interest is immobi-

lized on plates. Alternatively, selection can be performed on

adherent cultured cells [73,74], or even cells in suspension cul-

ture, which contain the desired target such as a cell-surface

receptor. (ii) Phage binding: the phage library is added and

allowed to bind to the target in conditions suitable for binding.

(iii) Washing: the unbound phage are removed. (iv) Phage elu-

tion: due to the high stability of filamentous phage, a wide variety

of methods can be applied to elute the bound phage. Common

methods for recovering bound phage are disruption of the inter-

action between the displayed ligand and the target by changing

the pH or adding a competing ligand, denaturant or protease (e.g.

because a protease-cleavage site has been engineered between the
1150 www.drugdiscoverytoday.com
displayed protein/peptide at the N-terminus and the coat protein

itself). (v) Increasing stringency: the eluted phage are then ampli-

fied in bacterial cells and biopanning repeated for several rounds

(usually 3–5). This tends to select against phage with low affinity/

non-specific binding to the target of interest. (vi) Identification of

selectants using DNA sequencing.

In vivo screening
In vivo selection can be used to identify phage ligands capable of

homing to a specific tissue or organ. For example, phage can be

administered intravenously to an animal and allowed to circulate

for a period of time. Phage are then recovered from the organ of

choice, amplified, and the DNA sequenced. With this approach,

‘nonspecific’ phage tends to be distributed throughout the entire

animal while phage with more ‘selective’ target ligands cluster in

particular tissues. Phage-derived ligands specific for an organ or

tissue potentially can be used as diagnostic tools or as a treatment

for disease by conjugating phage to a drug or assembling phage on

drug-containing nanoparticles [72,75–77].

Phage display provides leads for therapeutic drugs
Peptide phage display employing large libraries accompanied by

high throughput screening has played an important role in the

development of clinically useful peptides and peptidomimetics

[78]. Once peptide ligands have been selected and identified from

the phage library as outlined above, they generally need to be

modified in order to be useful clinically. This is because, in part,
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TABLE 3

Approved or under clinical development peptides or peptide-based therapeutics and diagnostic agents

Product Manufacturer Indication(s) Phase

HumulinW Lilly Diabetes Approved

LupronW Takeda Abbott Pharmaceuticals Endometriosis, prostate cancer,

precocious puberty

Approved

ZestrilW, PrinivilW (lisinopril) AstraZeneca, Merck Hypertension, Congestive heart failure Approved

SareninW (saralasin acetate) Norwich-Eaton Pharms,
Procter & Gamble

Hypertension Approved

StilaminW (somatostatin acetate) Merck-Serono Acute variceal bleeding Approved

ZoladexW (goserelin) AstraZeneca Breast and prostate cancer, endometriosis Approved

SandostatinW (octreotide) Novartis Acromegaly, diarrhea Approved

MiacalcinW (calcitonin) Novartis Hypercalcemia, osteoporosis, pagets disease Approved

IntegrillinW (eptifibatide) Millenium Pharms, GSK Angina, myocardial infarction Approved

NatrecorW (nesiritide) Scios Congestive heart failure Approved

AngiomaxW (bivalirudin) Medicines Company Angina Approved

FuzeonW (enfuvirtide) Roche, Trimeris AIDS Approved

ByettaW (exenatide) Amylin Pharms, Eli Lilly Type 2 diabetes Approved

KalbitorW (Ecallantide)* Dyax Acute hereditary angioderma Approved

VasotecW (enalapril maleate) Merck Sharp & Dohme Hypertension Approved

VictozaW (liraglutide) Novo Nordisk Type 2 diabetes Approved

CibcalcinW (human calcitonin) Novartis Pharma postmenopausal osteoporosis, Paget’s

diseases, hypercalcaemia

Approved

FirazyrW (icatibant acetate) Jerini AG Hereditary angioedema Approved

PrialtW (ziconotide acetate) Elan Pharms Severe chronic pain Approved

BigonistW (buserelin) Sanofi-Aventis Advanced prostate cancer Approved

SynarelW (nafarelin acetate) Pfizer Central precocious puberty, endometriosis Approved

CetrotideW (cetrorelix acetate) AEterna Zentaris, Merck-Serono Inhibition of premature LH surges Approved

FirmagonW (degarelix acetate) Ferring Pharms Advanced prostate cancer Approved

AntocinW (atosiban acetate) Ferring Pharms Delaying the birth in case of threat of
premature birth

Approved

DuratocinW (carbetocin acetate) Ferring Pharms Prevention of uterine atony Approved

SyntocinonW (oxytocin) Novartis Pharma Initiation or improvement of uterine contractions Approved

Somatuline DepotW

(ianreotide acetate)
Beaufour Ipsen Pharma,

Tercica, Globopharm

Acromegaly Approved

OctastatinW, SanvarW

(vapreotide acetate)
Debiopharm, H3 Pharma BOV Approved

RhinaaxiaW (spaglumat
magnesium)

Laboratoire Thea Allergic rhinitis and conjunctivitis Approved

AgifutolW (glutathione) Prothera Hepatic insufficiency, wound healing and asthenia Approved

VelcadeW (bortezomib) Millennium Pharms, Janssen-Cilag Multiple myeloma Approved

ZadaxinW (thymalfasin) SciClone Pharms International Chronic hepatitis B and C Approved

DiapidW (lypressin) Sandoz-Novartis Pharma Cushing’s syndrome, central diabetes insipidus Approved

NplateW (Romiplostim) Amgen Idiopathic (immune) thrombocytopenic purpura Approved

HematideW (Peginesatide)* Affymax, Takeda Chronic kidney disease associated anemia III

DX-890* Dyax/Debiopharm Cystic fibrosis, chronic obstructive

pulmonary disease

II

XereceptW (corticorelin acetate) Celtic Pharma Peritumoral brain edema III

OnaltaW (edotreotide) Molecular Insight Pharms Neuroendocrine tumors II

ExubraW Inhale, Pfizer, Aventis Pharmaceuticals Diabetes type I and II III

GattexW (teduglutide) NPS Pharms, Nycomed Short bowel syndrome III

AMG 386* Amgen Anti-angiogenic (oncology) III

ThymogenW (oglufanide disodium) Altika, Cytran, Implicit Bioscience Immune system related diseases II
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TABLE 3 (Continued )

Product Manufacturer Indication(s) Phase

OralinW (insulin) Generex Diabetes type I and II II/III

ApanW Praecis Alzheimer’s disease I

Exendin-4 (glucagon-like peptide) Amylin Diabetes type II II

Iseganan IntraBiotics Pneumonia II/III

Oral insulin NOBEX, GlaxoSmithline Diabetes type I and II II

AMG 819* Amgen pain Terminated-phase I

OratoninW NOBEX Osteoporosis I

HER-2/neu vaccine Corixa Breast and ovarian cancer I

CNTO 530/CNTO 528* Ortho Biotech Chronic kidney disease associated anemia I

ReptavlonW (pentagastrin) Cambridge Labs,
Wyeth-Ayerst Labs

Diagnosis of the gastric secretion –

ThypinoneW (protirelin) Abbott Diagnostic assessment of thyroid function –

OctreoScanW (pentetreotide) Mallinckrodt,

Bristol-Myers Squibb

Diagnosis of primary and metastatic

neuroendocrine tumors

–

KinevacW (sincalide) Bracco Diagnostics Diagnosis of the functional state of the
gallbladder and pancreas

–

CortrosynW (cosyntropin) Amphastar Pharms,

Sandoz-Novartis Pharma

Diagnosis of adrenocortical insufficiency –

ChiRhoStimW (secretin) ChiRhoClin Diagnosis of pancreatic exocrine dysfunction –

NeoTectTM (depreotide
trifluoroacetate)

Amersham Health,

Nycomed imaging

Diagnosis of lung tumors –

For more comprehensive information see [86,88,90,92,95,96,101,149,150].
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despite the advantage they may have over intact proteins, they

still often suffer from poor pharmacokinetic properties, includ-

ing a generally short half-life in the body (especially after oral

administration), rapid enzymatic degradation, poor penetration

through the intestinal membrane, and rapid excretion – all of

which contribute to low bioavailability [79,80]. Nevertheless,

peptides constitute a key class of biologically active molecules

including hormones, neurotransmitters, cytokines, antigens

and growth factors involved in peptide–protein non-covalent

interactions and hence help to control a wide variety of biolo-

gical processes and biochemical pathways [81,82]. Conse-

quently, peptide-based therapeutics have attracted a

significant level of interest in drug discovery and development

projects [79,83].

Peptides are now used widely as therapeutic drugs and diag-

nostics (Table 3) in clinical applications such as endocrinology,

oncology, urology, and obstetrics [84]. The current annual market

of peptide drugs is $300–500 million with an annual growth rate of

25% [85]. Peptides often have numerous advantages over proteins,

including antibodies, with respect to manufacturing costs, activ-

ity, stability, immunogenicity, efficiency of organ penetration,

and patenting issues [86–88].

Several peptide drugs developed using phage display have been

approved for use in the clinic or are in clinical trials (asterisks in

Table 3). For example, ecallantide, a highly potent inhibitor of

human plasma kallikrein, has been approved by the US Food and

Drug Administration for the treatment of acute hereditary angioe-

dema (HAE) [16–20]. DX-890, an inhibitor of human neutrophil

elastase (HNE), with potential application in the treatment of

pulmonary diseases such as cystic fibrosis (CF) and chronic

obstructive pulmonary disease (COPD), is another example of a
1152 www.drugdiscoverytoday.com
therapeutic under clinical studies which had its origins in phage

display [18,24].

The first marketed peptibody, Nplate1 (Romiplostim, AMG

531), is an agonist of the thrombopoietin receptor used for the

treatment of immune thrombocytopenic purpura. The peptide

component of this peptibody has undergone substantial develop-

ment, but owes its origin to a phage-displayed peptide library [89–

92]. AMG 386, a peptibody neutralizing angiopoietins 1 and 2, is

another example in which the active peptide was initially derived

by screening of a peptide-displaying phage library [93,94]. It is

utilized for prevention of endothelial cell proliferation and tumor

growth and currently is in phase III clinical trail [92]. Nerve growth

factor neutralizing peptibody known as AMG 819 is also in the

aforementioned category in the area of analgesia and currently is

under investigation in phase I clinical trials [92].

More recently, two novel peptides that bind epidermal growth

factor receptor (EGFR) were identified [73], each capable of inhi-

biting the EGF-induced phosphorylation of EGFR in a concentra-

tion-dependent manner. Such ligands can be used for designing

peptidomimetic anti-EGFR agents or targeting cancer drugs to

EGFR over-expressing tissues in cancers with epithelial origin by

making peptide–drug conjugates.

CNTO 530 and CNTO 528 are erythropoietin receptor agonists

identified from peptide libraries which are in phase I clinical trial

in management of chronic kidney disease associated anemia [95–

97].

Peginesatide (Hematide)1, also a novel synthetic dimeric PEGy-

lated erythropoietin-mimicking peptide, was designed to bind and

activate the erythropoietin (EPO) receptor in order to stimulate

erythropoiesis in the treatment of anemia associated with chronic

kidney disease. The sequence of peginesatide was originally
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obtained by phage display [98] followed by modification in

sequence [99,100] and has now progressed to phase III trials

[96,21–23]. PEGylation is often used in the generation of pepti-

domimetics because it generally improves bioavailability from the

gut, increases plasma half life, decreases immunogenicity, reduces

proteolysis and enhances solubility and stability [101,102]. Apart

from its common use to improve the biomedical efficacy and

physicochemical properties of therapeutic proteins, PEGylation

has its own limitations and pitfalls, such as variations in the degree

of PEGylation leading to polydispersity of the PEGylated product

and separation and purification issues [103,104].

Other strategies are also frequently employed to improve the

pharmacokinetics of peptides. These include: (i) Adding a group

such as a phosphate ester to the N-terminus of the peptide to

improve binding by serum albumin or other serum proteins to

extend half-life [86]. (ii) Cyclization to constrain conformation

and increase stability [105,106]. (iii) D-Amino acid substitution or

incorporation of unnatural amino acids to improve resistance to

proteolysis [101,107]. (iv) Producing a pro-drug to protect the

peptide from premature proteolysis [79].

Peptide and protein delivery technologies
Recent advances in pharmaceutical technology have enabled the

delivery of peptides and proteins in different pharmaceutical

dosage forms via parenteral, buccal, transdermal, rectal, sublin-

gual, vaginal, pulmonary and nasal routes. For example, injectable

depot delivery systems have been developed to increase the effect

of peptides and proteins by using micro- and nanoparticulate

systems. In situ depot-forming (ISDF) systems, implant systems,

and crystallization are other means of parenteral delivery techni-

ques [104]. Schoenhammer et al. (2010) used ISFD containing

poly(D,L-lactide-co-glycolide) (PLGA) to prepare a sustained release

formulation of pasireotide, a cyclohexapeptide somatostatin ana-

logue engineered to bind to multiple somatostatin receptor sub-

types currently in phase III development for treatment of

acromegaly, and then evaluated its functionality using in vitro

and in vivo tests [108].

Microneedle delivery systems provide a means to overcome the

stratum corneum barrier, gastrointestinal degradation, and liver

first-pass metabolism by delivering macromolecules such as insu-

lin, growth hormone and other proteins and peptides into the

blood stream thereby increasing bioavailability [109]. However,

oral delivery is still the patient-preferred route for delivering all

types of drugs including peptide and protein drugs. New strategies

are being used to enhance the oral absorption of peptides and

proteins, evident in currently marketed peptide-based drugs.

These strategies include use of absorption enhancers and enzyme

inhibitors, preparation of encapsulated peptides and proteins in

particulate delivery systems using polymeric and lipid particles,

and mucoadhesive oral-drug delivery systems [110].

Phage as carriers in drug delivery
Phage particles themselves can also be used as the therapeutic

agent. For example, the M13 bacteriophage was used successfully

to treat a bacterial infection by delivering DNA encoding for

bactericidal toxin proteins Gef (guanine nucleotide exchange

factor) and ChpBK [111]. Phage delivery of the lethal agents

reduced target bacterial numbers by several orders of magnitude
in vitro and in a bacteremic mouse model of infection [111].

Antibacterial agents such as chloramphenicol can be targeted to

pathogenic bacteria using phage which display a bacteria-specific

binding peptide along with covalently bound chloramphenicol

carried on the surface of the phage as a pro-drug [112–114]. Given

that, for example, M13 phage has the capacity to cross the gastro-

intestinal mucosal barrier with [115] or without [116] a displayed

peptide facilitating uptake, this provides the possibility of oral

delivery of a drug payload targeted to a pathogen or specific cell

type in the body (e.g. a cancer cell).

Filamentous phage has also been used as an immunogenic

carrier useful in vaccine development [117–119]. The advantages

include high immunogenicity, for example, because of the addi-

tion of foreign CD4 T-cell epitopes to pIII or pVIII, low production

costs, and high stability due to the relatively low surface complex-

ity of the phage [120]. For instance, f1 phage displaying the B2.1

peptide elicits stronger immune responses in mice compared to

coupling the peptide to traditional carriers such as ovalbumin

[118]. A phage clone displaying a 9-mer peptide which binds to the

zona pellucida of the pre-implantation embryo has been shown to

have contraceptive properties due to its ability to stimulate the

production of anti-sperm antibodies. UV-inactivated (non-viable)

phage can also be used to stimulate an immune response while

eliminating problems associated with infectivity, therefore pro-

viding a safer alternative to live-phage vaccines [117].

Phage can also act as a gene-delivery vehicle. For example,

phage can deliver functional genes (e.g. a eukaryotic reporter gene

such as GFP) to mammalian cells through receptor-mediated

endocytosis [121–123]. Furthermore, endocytic uptake can be

targeted to particular cell types: phage displaying an scFv specific

to the growth factor receptor ErbB2 results in receptor-mediated

uptake only into mammalian cells expressing this receptor, and

the infection can be followed by phage-encoded expression of GFP

driven by the CMV promoter of a mammalian expression vector

(e.g. pcDNA3) [124]. There has been some success in the isolation

of phage with the ability to enter the bloodstream from the

gastrointestinal tract and circulate in the blood for prolonged

periods of time [125].

Related display methods
Finding high affinity peptides and proteins useful for diagnostic

and therapeutic purposes can also be achieved by alternative

display methods which have their roots in the original phage

concept. These methods can be broadly categorized into either

cell-surface or cell-free display systems. Bacteria [126,127], yeast

[128,129], insect cells/baculovirus [130,131], and mammalian cells

[132] are the common host organisms for cell-surface display

platforms.

E. coli cells are the most common hosts used for bacterial surface

display [133] and usually a membrane protein of E. coli is used as

the anchor for the display. Due to the relatively high transforma-

tion efficiency of E. coli, the library size can be large (109–1011).

Other important properties are the large particle size of the bacter-

ium and the multivalent surface display, which enable detection

and subsequent analysis of binding to the target using flow cyto-

metry. E. coli can be used to display peptides [134], antibodies and

antibody fragments [135]. An important issue for bacterial display

is that library sequences are inserted within the coding sequence of
www.drugdiscoverytoday.com 1153
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the displaying protein (e.g. OmpX) rather than at the N-terminus,

as is the case for phage. The use of circularly permuted OmpX,

CPX, which allows library sequences to be displayed at a redefined

N-terminus exposed at the surface of the bacterium has been

shown to yield sequences with greater diversity, affinity and

modularity for binding targets compared to OmpX itself [136].

Other bacteria such as Gram-positive Staphylococcus genus, includ-

ing S. aureus and S. carnosus strains, have also been used for cell-

surface display [137–139].

Compared to bacterial display [127,140], yeast surface display

has fewer problems with regard to proper protein folding. ScFv

(�25 kDa) and Fab (�50 kDa) antibody fragments, the extracellu-

lar domain of epidermal growth factor receptor (EGFR) (�69 kDa),

human epidermal growth factor (hEGF) (�6 kDa) and cytokines

(10–15 kDa) have all been successfully displayed on the surface of

yeast cells. The most common strain for yeast surface display is

Saccharomyces cerevisiae [129,141]. Although the yeast surface dis-

play system is a suitable tool for affinity maturation of antibody–

antigen interactions, the high degree of glycosylation can be

problematic through affecting the folding and function of the

engineered proteins [140]. Insect cell/baculovirus display and

mammalian cell display systems are relatively recently trialed

display formats and have not been widely used for protein engi-

neering so far. However, the use of these systems enables the

display of proteins with complex folds and will more frequently

allow the appropriate post-translational modifications to occur

[140].

All of the display platforms mentioned above are cell-based

methods and limited by the size of the library due to DNA

transformation efficiency and any toxicity of the displayed mole-

cules to the host cell. These problems can be overcome by using

cell-free display systems which can support larger library sizes

while eliminating the toxicity problem [128,142]. A range of

cell-free methods have been developed including those using

the ribosome, mRNA, and covalent DNA cell-free systems.

Ribosome display is an in vitro selection method used for dis-

playing large libraries of proteins and peptides. In this system,

proteins and their corresponding mRNA form a protein–ribosome–

mRNA (PRM) complex [24,143]. To this end, a library of DNA

constructs is generated. The library can be designed so that the

constructs do not have a stop codon. The library is transcribed into

mRNA in vitro, which in turn gets translated into the polypeptide.

The newly synthesized polypeptide folds whilst part of the PRM.

The PRM does not dissociate even with the addition of antibiotics
1154 www.drugdiscoverytoday.com
such as chloramphenicol and cycloheximide to stop translation

randomly. It can then be used to bind to immobilized target

molecules [143,144]. The PRM complex thus provides the link

between genotype and the phenotype of the displayed protein,

which is selected using a panning procedure. The benefits of using

ribosome display are (i) lack of a transformation step which makes

it possible to generate a library with large diversity of 1012–1014

members, (ii) elimination of the possibility of producing toxic

proteins, and (iii) the possibility of displaying proteolytically

sensitive and unstable proteins. Contamination with RNase and

the intrinsic affinity of the ribosome or mRNA toward the target

molecules compared to displayed peptides and proteins are two

concerns for this method [145].

For the mRNA display method (as with ribosome display), the

DNA library is constructed and then transcribed into mRNA in

vitro. Protein–mRNA complexes are generated by in vitro transla-

tion of mRNA followed by linkage to displayed protein via a DNA–

puromycin linker, which previously was added to the 30 end of the

transcribed mRNA. Because of the covalent link between protein

and mRNA, the complex is more stable compared to the PRM and

the library size is as large as that for the ribosome display

[24,128,146]. The advances in cell-free display have lead to the

covalent DNA display technique in which the displayed protein is

linked to its cDNA through a covalent bond (see [145] and [24] for

more information).

Concluding remarks
The discovery and development of a drug is a time-consuming,

expensive and complex process and involves experts from a range

of disciplines such as medicinal chemistry, biochemistry, mole-

cular biology, medicine, and pharmacology. It has been estimated

that from about 10 000 new chemical entities identified or synthe-

sized as potential therapeutic agents, only one will reach the

market in an average time of 16 years [147]. Prior to this century,

drugs have been discovered either by identifying chemicals by

trial-and-error or, not uncommonly, by serendipity. The advent of

new technologies such as combinatorial chemistry and high-

throughput screening has made it possible to prepare and assay

rapidly large numbers of biologically active molecules [148]. Phage

display, and particularly peptide phage display, has played a major

role in the development pipeline for bringing peptide therapeutics

into the clinic. The number of clinically useful peptides is expected

to increase substantially as the new advances continue to take

place in display methods.
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