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Structure-based drug design strategies based on X-ray crystallographic data of ligands bound to

biological targets or computationally derived pharmacophore models have been introduced over the

past 25 years or so. These have now matured and are deeply embedded in the drug discovery process in

most pharmaceutical and biotechnology companies where they continue to play a major part in the

discovery of new medicines and drug candidates. Newly developed NMR methods can now provide a full

description of the conformations in which ligands exist in free solution, crucially allowing those that are

dominant to be identified. Integrating experimentally determined conformational information on

active and inactive molecules in drug discovery programmes, alongside the existing techniques, should

have a major impact on the success of drug discovery.
Introduction
At a recent talk at the Royal Society of Chemistry in Burlington

House (London, UK) I listened to Dr John Dixon describing the

story about the discovery of Brilinta1, the platelet aggregation

inhibitor and P2Y12 adenosine diphosphate (ADP) receptor

antagonist, recently introduced into clinical practice by AstraZe-

neca [1]. The SAR identified within the Brilinta1 programme are

intriguing and suggest that conformational manipulation was

important (but not intentional) in its discovery [2] (Fig. 1). The

100-fold increase in potency observed when moving from a

purine to a triazolopyrimidine scaffold could indicate that a

different, beneficial conformational preference of the bicyclic

heterocycle relative to the cyclopentane ring is adopted, whereas

the range of potencies observed with the cyclopropyl diastereoi-

somers suggests the presence of a conformational lock. The avail-

ability of this information at an early stage in the project could

have resulted in a quicker optimisation phase by eliminating the

need to make and test analogues of incorrect conformation and by

targeting design towards alternative ways of achieving the active

or required conformation. The work performed was on molecules

that would not have been handled well by in silico conformation

prediction methods and no structural information about the
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P2Y12 G-protein-coupled receptor (GPCR) target was available. I

believe that new techniques such as the NMR approach described

in this article would remarkably improve the efficiency of drug

discovery on programmes of this nature.

Looking back. . .and then forward
These observations led me to reflect on structure-based approaches

to drug discovery and design from the past 20 or so years, the

advances made and the contribution that experimentally deter-

mined (as opposed to theoretically predicted) conformational

information has to make in the years to come. As a practising

medicinal chemist for over 35 years, I believe experimentally

determined solution conformational information has the poten-

tial to have as great an impact as that which X-ray structure-based

drug design (SBDD) has had on programmes I have been involved

in since 1990 [e.g. thrombin, Factor Xa, human neutrophil elastase

(HNE), hsp90 and multiple protein kinases]. I am convinced it

would be highly beneficial for high-quality experimentally deter-

mined conformational and dynamic 3D data to be integrated into

all medicinal chemistry programmes at all stages, complementing

other sources of information such as X-ray structures of ligands

and protein targets.

A recent review by Jorgensen and colleagues [3] on the signifi-

cance of conformational and binding affinity changes induced by
er � 2013 Elsevier Ltd. All rights reserved. http://dx.doi.org/10.1016/j.drudis.2013.10.016

mailto:harry.finch@pulmagen.com
http://dx.doi.org/10.1016/j.drudis.2013.10.016


Drug Discovery Today � Volume 19, Number 3 �March 2014 REVIEWS

Con formation al l ockCon formation al
preference :

triazolop yrimidine vs
purine

F
F

HN

N N

SNN
N

OH

OH
OHO

Drug Discovery Today 

FIGURE 1

BrilintaW is a P2Y12 adenosine diphosphate (ADP) receptor antagonist and a platelet aggregation inhibitor. The SAR data suggest that conformational

manipulation was important in the lead optimisation process conducted [2]. The 100-fold increase in potency observed when changing from a purine to a

triazolopyrimidine scaffold suggests that a different, beneficial conformational preference of the bicyclic heterocycle relative to the cyclopentane ring is adopted.

Additionally, the range of activities observed with the cyclopropyl diastereoisomers infers the presence of a conformational lock.

TABLE 1

Industry interest in role of X-ray crystallography in drug discovery
and design

Year Target Acquirer Price

2003 3D-Pharmaceuticals J&J US$88 million

2005 Syrrx Takeda US$270 million
2008 SGX Pharmaceuticals Lilly US$64 million

2011 Astex SuperGen US$150 million

Source: Company websites, http://www.biocentury.com/.
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the introduction of a single methyl group really confirms the need

for medicinal chemists to understand fully the impact of simple

conformational changes and how to use them in a structure-based

discovery setting.

Pharma’s productivity crisis and the discovery
bottleneck
The issues facing the pharmaceutical sector, such as a decline in

productivity, are well documented and illustrated by the data below:
� The probability of a product in Phase I reaching market has

fallen from 10% in the period 2002–2004 to 5% during 2006–

2008.
� The internal rate of return on R&D has declined from 10.5% in

2010 to 7.7% in 2011, falling to 7.2% in 2012 [4].

It is clear that the drug discovery and development pathway is

ripe for improvement at many stages. One major bottleneck in the

drug discovery process is the discovery of high-quality hit and lead

molecules to deliver improved candidate drugs because these are a

fundamental requirement if the pharmaceutical and biotechnol-

ogy industry is going to be successful in providing medicines that

will help alleviate a wide spectrum of ineffectively treated or

untreated diseases. Obviously, despite the considerable progress

made over the years, there is still a lot to be done [5].

Structure matters
Drug design using X-ray crystallography
It is now fully accepted that SBDD has an important role in drug

discovery and the identification of developable molecules [6–11].

This has never been more obvious than in the now maturing area

of fragment-based drug discovery [12–19] where SBDD is consid-

ered an essential requirement to deliver drug molecules from low-

affinity fragments and has been illustrated by the recently

launched Zelboraf1 (vemurafenib, PLX4032), which originated

from a fragment starting point [20].

Testimony to the importance of the availability of X-ray struc-

tural information to drug discovery programmes has been the

acquisition by large pharmaceutical companies of small biotech-

nology groups with specialised knowledge in X-ray structure

determination (Table 1) and a significant number of collaborative

deals with others (such as the Ribotargets/Vernalis collaboration

with Novartis on Hsp90, one in which I was involved). Most
pharmaceutical companies now have internal access to X-ray

crystallographic capabilities and most pharmaceutical and bio-

technology companies involved in medicinal chemistry and drug

discovery will now automatically incorporate structure-based

methods as part of their discovery paradigm.

Industry interest in role of X-ray crystallography in drug
discovery and design
In addition to the above, the Structural Genomics Consortium

(SGC), a public–private partnership sponsored by numerous phar-

maceutical companies, was formed with a mandate to promote the

development of new medicines and to determine, on a large scale,

and to make openly available, 3D structures of human proteins

that represent potential drug targets [21]. The SGC is now respon-

sible for >25% of all structures deposited into the Protein Data

Bank (PDB) each year [22].

The X-factor
X-ray crystallographic data are currently the only universal experi-

mentally defined ‘structure’ element for SBDD and are produced as

three main categories:
� small molecule X-ray crystal structures;
� protein X-ray crystal structures;
� protein–ligand X-ray co-crystal structures.

Use of information from these approaches has been very suc-

cessful and multiple medicines and candidate molecules have

been generated and continue to be produced using these X-ray

crystallography methods [23]. Despite these successes there are

potential drawbacks. For example, use of only small molecule X-

ray crystal structures to define molecule conformations can be

problematic because crystal packing interactions can result in
www.drugdiscoverytoday.com 321
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conformations that do not entirely represent the minimum energy

conformation [24]. The relevance of small molecule X-ray infor-

mation to drive drug design requires additional information such

as protein–ligand co-crystal structure information or computa-

tional-chemistry-driven mapping of SAR data onto the solid state

conformation to link the X-ray information to the biologically

relevant pharmacophore.

Out of the above alternatives the current preferred and most

often available option is the X-ray crystal structure of a small

molecule (or series thereof) bound to its biological target as well

as the apo structure of the biological target. This allows the

differences between the apo target structure and that of the bound

target structure to be seen and hence subsequent hypotheses on

how to improve the binding interaction to be proposed and

challenged in iterative rounds of informed changes to the drug

template under study. Obviously, although X-ray crystal structures

of ligand–target complexes have been crucial to the development

of SBDD methods, the data only represent a snapshot of the real

situation. For example, even though a drug molecule can be

observed bound in the biological target and its key interactions

identified (van der Waals, H-bonds, etc.), the bound conformation

adopted by the ligand represents only one of the conformations

available to that molecule in solution and the energy penalty

required for the drug molecule to be restricted into the particular

conformation required for binding is unknown [24].

Having referred above to X-ray structures of protein–ligand

complexes, it is important to understand that really we are, of

course, discussing models. Correct interpretation of the electron

density in and around the protein binding site is far from a

straightforward task and there is evidence that the quality of

ligand models published (in the PDB) has been rather poor [25].

An additional problem is that many biological targets have not

succumbed to X-ray crystallographic techniques and even those

for which there are plenty of examples (e.g. protein kinases) can

prove difficult, time consuming and expensive with regard to

finding conditions under which a crystal form can be reliably

produced. For example, some membrane-bound proteins such

as ion channels have long been viewed as intractable. Advances

in GPCR crystal structure determination are having an impact at

various companies and academic institutions and workers at Hep-

tares have solved structures of ligands bound in their agonist/

antagonist modes and have published a conformational explana-

tion for activation, at least from the perspective of the protein [26–

28]. However, the exciting advances made in GPCR protein crystal-

lography by these pioneers [29,30] also serve as a reminder that

proteins often need to be engineered to deliver very specific

constructs that are amenable to crystallisation. In overall sum-

mary, in drug discovery programmes where no biological target

structural information is available, all stages – from hit identifica-

tion through to the optimised candidate – are usually performed

without any, or only with minimal, structural insight based on

experimental data.

Virtual screening. . .virtual reality
The above paradigm for X-ray crystallography SBDD relies on an

already identified ‘fragment’, ‘hit’ or ‘lead’ molecule and structural

data concerning how the ligand binds to its biological target to

proceed. The identification of these starting points for SBDD
322 www.drugdiscoverytoday.com
programmes is varied but one strategy adopted universally is

ligand-based virtual screening [31–39]. This computational pro-

cess identifies several key features (a pharmacophore) in a set of

similar or varied molecules and uses these key features to search

huge databases of molecules, which are proprietary and commer-

cially available, that will have similar features. This filtering pro-

cess allows a much smaller subset of the available molecules to be

screened in a biological assay, saving time and money.

Publications appear incredibly frequently describing the suc-

cesses achieved with virtual screening as a hit and lead identifica-

tion strategy and, in fact, for academic institutions or small

companies that cannot access or afford an expensive and time-

consuming HTS campaign this is often the only realistic approach

they can adopt to find starting points for drug discovery pro-

grammes [40]. One of the problems with this technique is that

unless the generated pharmacophore map is based on X-ray data of

ligands bound in the appropriate or a related drug target then a

very coarse 3D pharmacophore is produced. This is because the 3D

arrangement of the key pharmacophoric moieties when predicted

via computational methods can be unreliable. Additionally, dur-

ing the virtual screening process the conformation of molecules to

be ‘docked’ into the protein structure is generated ‘on the fly’ using

computationally predicted methods. It is accepted in the compu-

tational community that it is necessary to take into account

protein flexibility when conducting virtual screening campaigns

and, hence, it would seem logical to introduce the experimentally

determined flexibility of a known ligand when investigating pro-

tein–ligand interactions [41–43]. The generalised application of

sophisticated, dynamic conformational NMR data, which is now

available, would allow this to be accomplished with a much greater

degree of accuracy.

Conformation by design
Despite this wealth of structural information, medicinal chemists

and computational chemists, whether involved in hit identifica-

tion, lead identification or lead optimisation, have never had the

opportunity to use fully experimentally determined structures of a

ligand in solution, the most relevant phase to that which the

ligand is subjected to when interacting with its biological target,

whether in vitro or in vivo. Although molecular dynamics simula-

tions boot-strapped with sparse experimental data have been used

as a proxy for a fully experimental ligand solution structure, the

predictive usefulness of such simulations is fundamentally depen-

dent upon the force-fields used, which are well-known to be often

sorely lacking. A major step forward would be the availability of

reliable experimentally determined conformational information

for the ligand in solution and for this to be used in an iterative

sense during drug discovery programmes. Where available, this

ligand solution conformational information could be combined

with X-ray ligand–target data and, altogether, this would provide a

profoundly powerful dataset for ligand design and/or optimisation

studies.

In my experience, there have been occasions during drug dis-

covery programmes when aspects of the conformation of mole-

cules in solution have been studied in conjunction with NMR

spectroscopy groups but the information provided has been rudi-

mentary at best and I cannot remember it especially impacting a

discovery programme [44–46]. This is not caused by a lack of
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FIGURE 2

Relationship between free (a) and crystal (b–e) conformations of

streptomycin. (a) In solution, streptomycin oscillates (light grey) about two

main conformational families (black) in a �60:40 ratio (left:right) [48]. These
two families differ principally in the conformation of the lower glycosidic

linkage between the ribose and glucosamine residues. (b) The known

ribosome-bound conformations (blue) are the same as the predominant

conformation in solution (grey), within the resolution of the X-ray data (3–
3.5 Å) – PDB codes 1FJG, 4DR3, 4DR5-7 [54]. (c) By contrast, the free crystal

conformation (green) – oxime derivative CSD code STOSEH10 [55] – is the

same as the second dominant conformation in solution (grey). (d,e)

Interestingly, two micromolar affinity RNA-aptamer-bound conformations
(yellow) – 1NTA and 1NTB [56,57] – that were discovered by artificial selection

correspond most closely to one of the two families each. The obviously less

close shape correspondence of these aptamers is likely to account for their
lower binding affinity. Insets kindly provided by Dr Charles Blundell (C4X

Discovery) from the original data [48].
R
ev
ie
w
s
�
IN
F
O
R
M
A
T
IC
S

understanding in the industry about what NMR spectroscopy can

provide – I actually selected an NMR spectroscopy book by Jack-

man and Sternhell [47] as the prize I received for results during my

studies for a Higher National Certificate in Chemistry in 1970.

Therefore, I would argue that currently a synthetic organic or

medicinal chemist in the pharmaceutical or biotechnology busi-

ness is incredibly familiar with NMR techniques when it comes to

using them to determine and confirm the 2D structure of a

synthesised molecule. It has struck me that gathering and, impor-

tantly, extracting from existing data additional conformational

information on active and inactive compounds would be a major

step forward. In fact, having the experimentally determined set of

preferred conformations of drug molecules of interest delivered to

the desktop of a practising medicinal chemist should be an aspira-

tion and one that, in years to come, should be routinely fulfilled.

With this backdrop in mind, researchers at C4X Discovery set

about trying to maximise the conformational information for

flexible ligand molecules that can be collected using NMR spectro-

scopy and combined these data with new mathematical models for

describing conformational behaviour in solution [48]. This new

approach allows the preferred solution conformations of biologi-

cally relevant molecules to be accurately measured directly from

experimental NMR data. This is achieved by analysing the mole-

cule in solution, freeing rational 3D drug discovery from its pre-

vious dependence on protein structure data and computational

simulations. Molecules can be analysed under physiologically

relevant conditions with standard NMR magnets (300–

800 MHz), and the resulting data are interpreted according to

the published methods [48]. The methodology is independent

of computational chemistry and eliminates the problems of virtual

conformations and under-constrained ensembles that have pre-

viously plagued the field by using multiple kinds of NMR data, an

order of magnitude more experimental measurements than typi-

cal and its novel representation of conformational behaviour. The

output is an accurate description of the complete dynamic con-

formational behaviour of a ligand: essentially the ensemble of 3D

conformations the molecule naturally oscillates through in solu-

tion. An analysis as complex and thorough as this is not possible

with conventional tools for NMR analysis [49]. Thus the metho-

dology combines data from a range of independent experimental

types [nuclear Overhauser effect (NOE), residual dipolar coupling

(RDC), scalar couplings, etc.] into one consistent picture while,

moreover, accounting for all the data contained in those spectra.

By contrast, conventional NMR tends to use only a fraction of the

available cross-peak data from NOE spectroscopy (NOESY). This

extensive set of experimental data provides the opportunity to

determine the full range of conformations a molecule adopts.

Each experimentally derived ensemble describes not just the

bond torsions and atomic distances within each 3D conformation

but also quantifies the occupancy of each conformational mode,

thereby identifying preferred conformations. The method has

reportedly been successfully applied across a range of targets

and molecular types, including enzyme co-factors, endogenous

peptides, candidate drugs, oligonucleotides, complex natural pro-

ducts, macrocyclic compounds and carbohydrates [50]. Specific

examples include lisinopril, angiotensin-(1–7) (the heptapeptide

natural inhibitor of angiotensin-converting enzyme), hyaluronan,

carazolol, ivermectin and the corticotropin-releasing factor
(CRF)1R antagonist CP376395 [50]. The quantification of free

ligand conformational preferences and their relationship to the

bioactive conformation have recently been described for strepto-

mycin (Fig. 2) and illustrates in detail the data generation and

structural outputs feasible with this NMR technology [48].

For small molecular weight ‘drug-like’ molecules, the latest

implementation of this NMR method is reportedly routinely able

to solve structures in one week and, for the second or third

compound in a hit or lead series, one or two days [50]. These

latest improvements address a potential weakness of the method

and it is therefore anticipated that, where used, this approach

should be a relatively low cost enterprise compared with the
www.drugdiscoverytoday.com 323
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infrastructure required to solve new protein and protein–ligand X-

ray structures repeatedly. Other possible weaknesses could be

those typically expected of an NMR-based approach [i.e. poten-

tially high sample concentrations (>0.2 mM) or lack of resolution

in repetitive molecules] but there are also tried and tested solutions

to such problems.

Reflecting on the use of this new ligand conformational infor-

mation, it is clear that for structure-based discovery programmes

the strategy adopted when the conformational preferences are

determined for the available ligands depends upon whether they

are potent or weakly binding ligands. For potent ligands these data

should provide a novel route to predicting the bioactive confor-

mation without X-ray co-crystallography. Further template opti-

misation would look to reduce the conformational freedom and,

when optimal geometry has been achieved, the SAR of local

interactions between the ligand and its target can be investigated.

The situation with a weakly binding ligand would be based upon

designed structural changes that were able to favour differing

subsets of the conformations determined for the parent molecule.

In this way it would be possible to ‘home in’ on the probable

bioactive conformation and then focus further optimisation

efforts towards that shape. Iterative rounds of molecular changes

followed by further NMR-derived 3D solution structures would

provide the information on which to formulate and reappraise SAR

hypotheses around potency and or selectivity (e.g. a related target,

an unrelated target or a CYP450 enzyme), as is the normal practice

with SBDD.

Using such an approach, determination of multiple ligand

structures (selective and nonselective compounds) in a C4X Dis-

covery internal orexin antagonist discovery programme has

reportedly identified the geometry favouring OX1 antagonists

[50]. These data have been used to design low nanomolar inhibi-

tors with 1000-fold selectivity for OXR1 over OXR2, with no

detrimental impact on ligand lipophilic efficiency (LLE) or ligand

efficiency (LE) indices, in just a few months.

Potential ways of using this enhanced conformational
information
Apart from the obvious uses of experimentally determined con-

formational information that are described above, there are other

areas where it could be expected to have major implications. A few

of my personal thoughts are detailed here:
� A database of experimentally derived solution conformations of

drug-like molecules and fragments that can be searched and

used to predict the conformations of new molecules. Such a

database should provide a vastly more accurate basis for

conformer generation, compared with those generated theore-

tically, and thereby impact hit identification strategies such as

virtual screening and scaffold hopping. It could be imagined

that the availability of such a database of experimentally

derived conformations would, in combination with computa-

tional prediction methods to fill the gaps, provide a major

enhancement in success rates because of the higher quality of

the input data.
� The preferred solution conformations of potent peptide

ligands, whereby the dominant conformations of the
324 www.drugdiscoverytoday.com
experimentally determined solution structure can be assumed

to be, or be close to, the bioactive shape, could be measured and

this would enable the identification of key pharmacophore

points and facilitate ‘peptide to small molecule’ discovery.
� Subtle differences in preferred conformations could be experi-

mentally derived and subsequently used to define the

molecular requirements for agonism, partial agonism, inverse

agonism, antagonism (including slow off-rate kinetics) and bias

signalling in related ligands in a range of biological targets (e.g.

GPCRs, nuclear receptors).
� It is known that some compounds in the MW range 700–

1500 Da do have acceptable bioavailability and/or perme-

ability properties – for example cyclosporine, 1203 Da, %F = up

to 89% [51] – despite not conforming to Lipinski’s Rule-of-Five

[52], but the reasons for this are currently unknown. It could be

that such molecules adopt different conformations in aqueous

and lipid environments and these changes facilitate their

permeability or recognition by active transporters. It is

interesting to speculate that experimentally derived confor-

mational information measured in the different environments

that molecules reside in in vivo (e.g. lipid vs aqueous) could

potentially elucidate the ‘rules’ that could allow larger ‘drug-

like’ molecules for large surface area protein–protein interac-

tions to be discovered.
� The generation of and use of macrocyclic structures in drug

discovery is undergoing a renaissance and a macrocycle summit

recently highlighted the need to create an understanding of the

rules that govern the behaviour of macrocycles and thus enable

developers to identify drug-like compounds more readily [53].

Knowledge of the experimentally determined conformational

structure of compounds of this nature would be available via

the new NMR method and could have a major effect on the

knowledge base required to understand and more fully exploit

this area of drug discovery.

Concluding remarks
It is my firm belief that the ability to measure accurate, experi-

mental conformational information in the solution state on the

whole range of ligands (e.g. fragments, hits, leads, peptides,

carbohydrates, co-factors, macrocycles) that medicinal and com-

putational chemists utilise in their current efforts to discover

novel medicines will have a major effect on success rates and

on the understanding of the interactions between a ligand and its

biological target, particularly when used in combination with

current structure-based methods. I anticipate that the use of this

powerful NMR-based methodology will be widespread in a few

years’ time.
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