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Ebola viruses are extremely virulent and highly transmissible. They are responsible for sporadic

outbreaks of severe hemorrhagic fevers with human mortality rates of up to 90%. No prophylactic or

therapeutic treatments in the form of vaccine, biologicals or small molecule, currently exist. Yet, a

wealth of antiviral research on ebola virus is being generated and potential inhibitors have been

identified in biological screening and medicinal chemistry programs. Here, we detail the state-of-the-art

in small molecule inhibitors of ebola virus infection, with >60 examples, including approved drugs,

compounds currently in clinical trials, and more exploratory leads, and summarize the associated

in vitro and in vivo evidence for their effectiveness.
Introduction
The Ebolavirus genus is a member of the Filoviridae family of viruses

of the Mononegavirales order [1] and includes five species. These

have significant differences in terms of virulence and geographical

distribution. For instance, Reston Ebolavirus (RESTV) is not patho-

genic for humans, whereas Zaire Ebolavirus (EBOV) represents the

most pathogenic form for humans, with lethality rates of up to

90% [2]. They are enveloped nonsegmented negative single-

stranded RNA viruses, of a filamentous morphology [3].

The approximately 19 kb RNA genome of ebola viruses encodes

seven genes that produce a nucleoprotein, three glycoproteins

(GP1,2, the membrane-bound surface protein responsible for entry,

and soluble and small soluble glycoprotein: sGP and ssGP, respec-

tively), four viral proteins (VP24, VP30, VP35 and VP40) and the

viral RNA-dependent RNA polymerase. The matrix protein VP40

drives the formation of virus-like particles (VLP) [4,5] that,

owing to GP1,2 exposed on their surfaces, are presented to the

host cell. The subsequent virus fusion and entry occur through a

complex cascade of micropinocytosis–endocytosis [6–8], endo-

some trafficking [9,10] and proteolytic activation [11,12] steps,

among others. This results in virions being internalized and the

viral genome replicated. The virus infection is characterized by

massive production of proinflammatory cytokines, severe host
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immunosuppression and rapid viremia, and often manifests in

the form of a fulminant hemorrhagic fever [2,13,14].

The ease of ebola virus transmission from bodily fluids [15], the

high virulence and rapid progression of infection, coupled with

the high fatality rate, have prompted its classification as a hazard

group 4 pathogen by the Advisory Committee on Dangerous

Pathogens (ACDP). Despite several therapeutic options, including

vaccines [2], monoclonal antibodies [16,17], recombinant proteins

[18,19], antibody–interferon (IFN) combinations [20] and small

interfering (si)RNA [21] having been developed and tested with

success in nonhuman primate models of ebola virus infection,

none is currently approved for use in humans. Additionally,

because most of these approaches build on virus-specific designs,

they are likely to have a limited spectrum of activity. The lack of

therapy and the recent cases of ebola virus infection outside the

African region have created a high level of public concern, and

highlight the need to identify effective therapeutic agents target-

ing ebola viruses.

A large volume of biomedical research is devoted to the investi-

gation of the molecular basis of ebola virus infection as a way to

develop strategies to combat it. Here, we review the body of

literature detailing the identification and characterization of small

molecules acting as ebola virus infection inhibitors. The com-

pounds identified from a systematic literature survey have been

categorized based on their reported mechanism of anti-ebola virus
www.drugdiscoverytoday.com 277
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action (e.g. inhibition of viral replication) and documented mo-

lecular mechanism (e.g. kinase inhibitor). When mechanistic

information on their ebola virus inhibitory activity was not avail-

able, small molecules have been organized based on the type of

their documented anti-ebola virus activity (e.g. in vitro). For each

literature record, the most relevant molecular entities and associ-

ated data are described, as summarized in the supplementary

material online. A total of 65 compounds belonging to more than

50 chemical classes, including approved drugs, antiviral agents in

clinical trials, lead compounds, exploratory chemical probes and

screening hits, are discussed.

Viral transcription modulators
T-705 (favipiravir, Fig. 1) was first described by Toyama Che-

micals as a selective inhibitor of influenza virus replication with

minimal cytotoxicity [22] and is currently in Phase III clinical trials

for the treatment of influenza. T-705 closely resembles naturally

occurring primary nucleobases (Fig. 1). It was shown to inhibit the

viral RNA-dependent RNA polymerase via an active metabolite

and to induce a high rate of lethal RNA mutation [23–26]. Oester-

eich et al. showed that T-705 was also effective at inhibiting ebola

virus replication in vitro without any observed cytotoxicity under

the experimental conditions used [27]. When dosed orally twice

daily to type I IFN-a/b receptor knockout (IFNAR�/�) mice, T-705

was able to prevent mortality in 100% of the animals. Importantly,

T-705 treatment was started 6 days post infection (pi) and resulted

in a significant production of ebola virus antibodies, indicating the

occurrence of a virus-specific adaptive immune response [27].

Similar results (100% protection) were obtained by Smither

et al. when administering oral T-705 to (IFNAR�/�) 129/Sv mice,

1 hour after aerosol ebola virus E718 infection [28].
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FIGURE 1

Viral transcription modulators with reported anti-ebola virus activity.
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BCX4430 (Fig. 1) is an adenosine analog rapidly metabolized to

its 50-monophosphate derivative, which in turn acts as a nono-

bligate RNA chain terminator upon incorporation into viral RNA

but not human RNA or DNA [29]. BCX4430 is active in vitro

against ebola virus and multiple negative-sense RNA viruses and

did not display any significant mutagenicity, as determined by the

Ames assay. Its pharmacokinetic profile is reminiscent of that of a

nucleotide, with the parent compound being rapidly cleared (Rat

t1/2 = 5 min) and the phosphorylated metabolites residing longer

(Rat t1/2 = 6.2 hours for the 50-triphosphate-BCX4430) [29]. Intra-

muscular or oral, twice-daily administration of BCX4430 to ebola

virus-infected C57Bl/6 mice, 4 hours before infection, resulted in

100% and 90% survival, respectively. Further studies evaluating

the ebola virus protection by BCX4430 in nonhuman primates

are reportedly ongoing [29].

In 1991 and 1995, Huggins et al. first reported on the ability of

two S-adenosylhomocysteine (SAH) hydrolase inhibitors, carbocy-

clic 3-deazaadenosine (C-c3Ado) and 3-deazaneplanocin A

(c3Nep) (Fig. 1), to inhibit ebola virus replication in vitro

[30,31], confirming their original broad antiviral profile [32].

Twice-daily dosing of C-c3Ado or c3Nep prolonged survival of

SCID mice infected with the Mayinga strain of ebola virus [30,31]

Further studies with C-c3Ado confirmed these initial results:

when C-c3Ado was administered at day 0 or 1 pi, ebola virus-

infected BALB/c mice were protected in a dose-dependent manner,

with C-c3Ado doses �0.7 mg/kg/8 hours preventing mortality

completely [33]. Survival and virus protection decreased with

increased time between infection and start of treatment (90%

versus 40% protection when C-c3Ado dosing started at days 2

and 3, respectively) [33]. Similar deterioration of efficacy because

of delay in therapy start was obtained when administering c3Nep
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[34]. Ye and Schneller recently reported that the two enantiomers

of C-10/C-60 isoneplanocin (‘D-like’ and ‘L-like’, Fig. 1) effectively

inhibited ebola virus replication in vitro [35]. Despite their struc-

tural similarity to c3Nep, a difference in their ability to inhibit

SAH hydrolase was observed (IC50 = 0.9 and 27 nM, for the D-like

and L-like enantiomers, respectively). This difference notwith-

standing, the two enantiomers had comparable activity against

ebola virus [35]. The postulated link between SAH hydrolase

inhibition and its indirect reduction of methylation of the 50

cap of viral mRNA resulting in impaired ebola virus replication

inspires further investigation. For instance, c3Nep administration

massively increased interferon-a production in ebola virus-

infected but not uninfected BALB/c mice [36]. This can reverse

the suppression of innate antiviral responses, thus offering an

additional mechanism of action for the class of SAH hydrolase

inhibitors. Additionally, the role of any phosphorylated metabo-

lites deriving from such nucleoside-like compounds, analogously

to metabolic activation pathways for well-established antiviral

therapies such as ribavirin [37], together with their pharmacoki-

netic and pharmacodynamics profiles, needs to be considered [38].

An indoline-based alkaloid-like derivative (CMLDBU3402,

Fig. 1) originated from diversity-oriented synthesis was also found

to significantly inhibit viral transcription and, thus, ebola virus

infection in A549 cells [39].

Viral entry and fusion modulators
The first phase of ebola virus infection involves fusion of the viral

and host cell membranes. Here, proteolysis of the ebola virus

membrane glycoprotein (GP1,2) has been shown to represent a

necessary step [11]. Proteolytic degradation of ebola virus GP1,2

was blocked in vitro by the unselective cysteine protease inhibitor

E-64d [11] and E-64 [40], the selective cathepsin B (CatB) inhi-

bitors CA-074 [11] and CA-074Me [12], the mixed CatB/L inhibi-

tor FY-DMK [11] and the cathepsin L (CatL) inhibitor Z-FY

(t-Bu)-DMK [12] (Fig. 2), resulting in reduced EBOV multiplica-

tion [11,12]. Confirming these initial findings, the cysteine and

serine protease inhibitor Leupeptin and the CatL inhibitor

CID23631927 (Fig. 2) were able to reduce EBOV infection in

macrophages [41] and human embryonic kidney 293T cells [42],

respectively. Recently, an assay monitoring CatL-based degradation
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Protease inhibitors with reported anti-ebola virus activity.
of ebola virus GP1,2-derived peptides identified triazine derivatives

5705213 and 7402683 (Fig. 2) as CatL inhibitors that reduced host

cell entry for pseudotyped viruses bearing ebola virus-GP1,2 [43]. It

remains to be seen whether protease inhibitors could have utility

beyond an in vitro setting, because CatB and CatL activity has been

shown not to be required for ebola virus replication in vivo [44].

By using a haploid genetic screen, Carette et al. identified the

endo/lysosomal cholesterol transporter protein Niemann–Pick C1

(NPC1) as a key host element required for ebola virus cellular entry

[10]. Here, impairment of NPC1 function (NPC1 phenotype) by

genetic manipulation resulted in complete resistance to ebola

virus infection in vitro and in vivo. Treatment with U18666A

[45] and imipramine [46] (Fig. 3), two agents known to induce

a NPC1 phenotype, probably via targeting of the NPC1 pathway

directly [46] or acid sphingomyelinase (ASMase) inhibition [47],

respectively, reduced ebola virus infectivity in vitro. Interestingly,

this reduced infectivity was ebola virus specific, because the entry

of other viruses was not affected [10]. In line with these findings, a

concomitant study by Côté et al. discovered piperazine derivative

3.47 (Fig. 3) as an effective inhibitor of cellular entry by viruses

pseudotyped with EBOV-GP1,2 [48] and biochemical experiments

revealed that 3.47 inhibited binding of EBOV GP1,2 to NPC1.

Furthermore, an affinity-labeling agent based on 3.47 cross-linked

directly with NPC1, indicating NPC1 as the target protein [48,49].

Selective estrogen receptor (ER) modulators clomiphene and

toremiphene (Fig. 3) showed potent in vitro inhibition of ebola

virus infection in a screen of US Food and Drug Administration

(FDA)-approved drugs [50]. Dosing of clomiphene and toremi-

phene to ebola virus-challenged C57Bl/6 mice 1 hour pi (60 mg/

kg) yielded survival rates of 90% and 50%, respectively, at day 28

pi. The observed in vitro antiviral effects of clomiphene and

toremiphene were independent of ER expression [50] but were

affected by NPC1 overexpression [51]. Similarly to U18666A,

clomiphene and toremiphene, several cationic amphiphilic

small molecules (e.g. Ro 48-8071 and terconazole, Fig. 3)

strongly inhibited ebola virus infection in vitro [51]. These com-

pounds induced cholesterol accumulation in endosomes, a typical

trait of the NPC1 phenotype, and ebola virus entry inhibition was

reduced by NPC1 overexpression. Remarkably and by contrast

with what has been observed with 3.47, none of the tested cationic
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FIGURE 3

Niemann–Pick C1 (NPC1)-dependent, small-molecule ebola virus inhibitors.
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amphiphiles disrupted binding of ebola virus-GP1,2 to NPC1,

indicating yet an additional way of NPC1 pathway interference

[51].

A siRNA screening for kinome gene products revealed mitogen-

activated protein kinase (MAPK), phosphoinositide 3 kinases

(PI3K) and calcium/calmodulin kinases (CAMK2) as cell proteins

that are significantly related to EBOV infectivity [52]. Accordingly,

the PI3K inhibitor LY294002 and CAMK2 inhibitor KN-93 (Fig. 4)

effectively reduced ebola virus infection in Vero E6 cells, when

tested at 50 mM concentration [52]. Furthermore, a series of pyr-

idinyl imidazole inhibitors of p38 MAPK (e.g. SB202190 and

p38inK III, Fig. 4) inhibited viral entry in dendritic cells [53].

In line with the proinflammatory function of MAPK, dosing of the

MAPK inhibitors resulted in much-reduced cytokine and chemo-

kine release upon ebola virus infection, an important feature to

minimize ebola virus virulence.

Given that protein phosphorylation regulates several protein–

protein interactions that are relevant to endosome formation and

endocytosis of viruses, Kolokoltsov et al. tested the broad tyrosine

kinase inhibitor genistein and the epidermal growth factor

receptor (EGFR) tyrosine kinase inhibitor tyrphostin AG1478

(Fig. 4) for their anti-ebola virus activity. Both compounds con-

centration-dependently inhibited ebola virus infection to host

cells and displayed a high degree of antiviral synergy when dosed

in combination [54]. Furthermore, the c-Abl1 tyrosine kinase was

shown to phosphorylate and activate VP40, a key matrix protein

involved in the transport of the viral genome–protein complex to

the cell surface and subsequent budding [55]. Consequently, c-

Abl1 kinase inhibitors nilotinib and imatinib (Fig. 4) reduced

the release of virus-like particles and significantly inhibited EBOV

replication in vitro [55]. By contrast, dephosphorylation of VP30, a

component of the ebola virus nucleocapsid complex, resulted in

sustained ebola virus transcription. Okadaic acid (Fig. 4) inhibits

protein phosphatases 1 (PP1) and 2A (PP2A), which together with

PP2C, are responsible for VP30 dephosphorylation, and signifi-

cantly blocked ebola virus growth in vitro [56].

Perturbation of cell signaling processes, as shown in the above

protein kinase examples, can affect the complex process of viral
280 www.drugdiscoverytoday.com
entry. Results with the multiple ion channel blockers amiodar-

one, dronedarone and the L-type calcium channel blocker

verapamil (Fig. 5) support this notion. All three agents were

shown to inhibit ebola virus GP1,2-mediated cell entry [57]. Inter-

estingly, in the same experiments, T-type calcium and potassium

blockers had no effect. Consistently with the viral entry results,

amiodarone concentration-dependently reduced EBOV infec-

tion in EAhy cells [57]. In this context, rottlerin (Fig. 5), a potent

large conductance potassium channel (BK
Ca2þ ) opener, a reported

mitochondrial uncoupler [58] and an ambiguous protein kinase C

(PKC) inhibitor [59], has also been demonstrated to inhibit ebola

virus-like particle entry to MDCK cells [60].

The process of ebola virus entry and fusion to host cells requires

dynamic trafficking of viral payloads via endocytosis and, as such,

is dependent on a functional cytoskeleton. Here, the microtu-

bule-stabilizer taxol enhanced ebola virus entry, whereas the

microtubule-disrupting agents nocodazole and colchicine

(Fig. 6) significantly impaired it [61]. Additionally, intact and

functional actin filaments are required for ebola virus infectivity,

as indicated by the EBPV inhibitory effects of actin-specific

reagents cytochalasin B and D, latrunculin A and jasplaki-

nolide [61] (Fig. 6).

The ebola virus GPs represent a key recognition element for

viral maturation and are crucial mediators of viral budding. Their

structure and function are dependent on their glycosylation pro-

file. For instance, treatment with tunicamycin (Fig. 7) an N-

linked glycosylation suppressor, decreased EBOV infection of

HeLa cells by >90% [62]. Moreover, a series of imino sugars

(IHVR11029, IHVR17028 and IHVR19029; Fig. 7) was recently

reported to inhibit endoplasmic reticulum (ER) a-glucosidase I, a

deglycosylating enzyme required for proper folding and matura-

tion of nascent proteins. Importantly, the three imino sugars

yielded 50–80% survival when administered to EBOV-challenged

C57Bl/6 mice 4 hours pi [63].

Mudhasani et al. performed a high content image-based screen-

ing for inhibitors of Rift Valley fever virus (RVFV) to HeLa cells

[64]. Among the hits that were subsequently screened for addi-

tional antiviral activity, G202-0362 (Fig. 8) proved to be the most
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FIGURE 4

Kinase and phosphatase inhibitors with reported anti-ebola virus activity.
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potent against ebola virus infection (EC50: 16.1 mM). Interestingly,

additional mechanistic studies using RVFV indicated that G202-

0362 affected viral budding from the Golgi to the cell surface [64].

Another two compounds found to impair ebola virus budding

directly, 4 and 5 (Fig. 8), were determined to inhibit the interac-

tion between the VP40 PPxY late budding domains and the host

Nedd4 E3 ubiquitin ligase [65]. Benzodiazepine derivative 7 (Fig. 8)

was also shown to inhibit EBOV infection in Vero E6 cells and
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FIGURE 5

Ion channel modulators with reported anti-ebola virus activity.
mechanistic experiments indicated that it directly binds ebola

virus GP1,2 [66], normally required for initiating virus budding

and entry.

Small molecule ebola virus modulators in vitro
Several different chemotypes have shown to affect ebola virus-

related biology and impair ebola virus infection in vitro, as sum-

marized in Fig. 9. These include the heat shock protein 90 (HSP90)
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FIGURE 6

Microtubule and actin modulators with reported anti-ebola virus activity.
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inhibitor 17-AAG [67], the sodium/potassium-transporting

ATPase subunit alpha-1 (ATP1A1) inhibitor ouabain (probably

affecting the function of ebola virus VP24 [68]) the 11beta-hydro-

xysteroid dehydrogenase inhibitor glycyrrhizic acid [69], the

specific vacuolar ATPase (V-ATPase) inhibitors bafilomycin A1

and concanamycin A, because of their alkalinizing effect on the

endosome [12,61,70] and the nonspecific V-ATPase inhibitor and

RAB5A GTPase activator vacuolin-1 [47,71]. Furthermore, reti-

nazone (Fig. 9) was shown to covalently bind glucocorticoid
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Glycosylation modulators with reported anti-ebola virus activity.

282 www.drugdiscoverytoday.com
response elements and disrupt EBOV infection [72], whereas iso-

xazole derivative 8j (Fig. 9) inhibited EBOV GP1,2-pseudotyped

HIV particles entry in 293T cells (IC50 = 2.5 mM) [73]. Lastly, in a

drug-repurposing effort, Madrid et al. screened 1012 FDA-ap-

proved drugs for their antiviral effect against several viral patho-

gens, including ebola viruses [74]. Among the compounds able to

inhibit pseudotype viral entry, amiodaquin, diphenoxylate,

diphenylpyraline and ketotifen (Fig. 9) also displayed the

ability to inhibit ebola virus replication [74].
N

OH

OH

OH

OH

O

F

F

N

OH

OH

OH

OH

N

NHO

IHVR1102 9

IHVR1902 9
Drug Discovery Today 



Drug Discovery Today � Volume 20, Number 2 � February 2015 REVIEWS

N

N
O

S

O

O

O

N
H

O N

N

F

F

F

F
S

N

N

N
H

O

N

N

N

N S
N
H

O

N
H

O

G202 -036 2 4 5 7

 

Drug Discovery Today 

FIGURE 8

Budding modulators with reported anti-ebola virus activity.
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FIGURE 9

Diverse small molecules with reported anti-ebola virus activity in vitro.

www.drugdiscoverytoday.com 283

R
ev
ie
w
s
�
P
O
S
T
S
C
R
E
E
N



REVIEWS Drug Discovery Today �Volume 20, Number 2 � February 2015

N

HN

Cl

Cl

OH

N
H

N
N

HN

NHN

N

O

NH

NH

N

N
H

NH

NH OH OH OH

HN

Cl N

N

FGI-10 3 FGI-10 4 FGI-10 6 Chl oroqui ne NSC62914

Drug Discovery Today 

FIGURE 10

Diverse small molecules with reported anti-ebola virus activity in vivo.
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Small molecule ebola virus modulators in vivo
Screening of the National Cancer Institute compound library

(NCI, Frederick, MD) using an EBOV variant that expresses GFP

(GFP-EBOV) in a fluorescence-based high-throughput assay iden-

tified FGI-103 (Fig. 10) as an effective EBOV replication inhibitor

(EC90: 330 nM) with no overt in vitro cytotoxicity at the compound

concentration range tested and an in vivo 50% lethal intraperito-

neal (ip) dose greater than than 200 mg/kg [75]. Prophylactic

administration (1 hour before ebola virus infection) of FGI-103

to C57Bl/6 mice resulted in 100% protection. Therapeutic admin-

istration (1–5 days pi) yielded dose- and administration time-

dependent protection, with a therapeutic window of less than 2

days. Ongoing studies are aiming at delineating the antiviral

mechanism of action of FGI-103 [75]. In 2009, the same research

group at Functional Genetics Inc. was issued a patent covering 4-

amino-quinoline derivatives (Fig. 10) as methods of inhibiting

viral infection [76]. One such derivative, FGI-104 (Fig. 10), an

analog of the antimalarial drug amodiaquine (cf. Figs 9 and 10),

exhibited broad-spectrum antiviral activity in vitro, including ebo-

la virus, Hepatitis B (HBV) and C (HCV), and Cowpox viruses,

among others [77]. In a prophylactic mouse model of ebola virus

infection, a 10 mg/kg dose of FGI-104 (2 hours before infection)

yielded a 100% survival rate. Mechanistic studies with HCV and

HBV material indicated that FGI-104 does not interfere with viral

replication [77].

Using a GFP-EBOV-based high-throughput-screening assay,

Aman et al. identified a diazachrysene derivative (FGI-106, Fig.

10) with significant in vitro antiviral activity (EBOV EC90: 0.6 mM)

and limited cytotoxicity in VERO E6 cells (CC50: 10 mM) [78].

When administered ip 1 hour before infection to C57Bl/6 mice,

FGI-106 showed a dose-dependent decrease in mortality rate with

a 5 mg/kg dose offering 100% survival. FGI-106 also conferred

protection when used in a therapeutic setting, although mortality

increased with time of first dose [78]. The mechanism of antiviral

action of FGI-106 has not been elucidated. However, based on the

wide antiviral in vitro profile reported for FGI-106 (inhibiting

replication of both negative and positive-strand RNA viruses),

the authors speculate that it might target a host factor or pathway

that is conservatively used by different viruses for replication [78].

Interestingly, FGI-106 analogs with 3-(morpholin-4-yl)propan-1-

amine side chains and 2,8-des-methyl-diazachrysene scaffold

(FGI-106-a and FGI-106-b, Table S1 in the supplementary mate-

rial online) also exhibited ebola virus inhibition in vitro [79,80].

Chloroquine (Fig. 10) emerged as one of the best in vitro

ebola virus inhibitors following a drug-repurposing screening
284 www.drugdiscoverytoday.com
[74]. Follow-up in vivo studies revealed that chloroquine was

the only tested drug able to reduce mortality significantly (90%

survival rate at day 13 pi) when dosed at 90 mg/kg 4 hours before

infection [74]. Chloroquine has been shown to exert multiple

biological actions in cells, notably endosomal trafficking interfer-

ence, all likely to contribute to its observed antiviral effect [74].

Chemical screening for EBOV inhibitors identified triphenolic

derivative NSC62914 (Fig. 10) as an effective inhibitor of EBOV

infection in Vero E6 cells [81]. NSC62914 displayed marked

antioxidant properties, similar to known reactive oxygen species

scavengers. In a prophylaxis study, 2 mg/kg NSC62914 1 hour

before infection protected C57Bl/6 from EBOV infection (80%

survival rate). The same dose was less effective in a therapeutic

model, yielding 50% survival when administered to EBOV-chal-

lenged C57Bl/6 mice 1 day pi, with the 5 mg/kg dose decreasing

survival even further, possibly because of compound toxicity [81].

Concluding remarks
Despite the wide public concern associated with ebola virus infec-

tion, it is comforting to witness the continuous advances made in

dissecting crucial mechanisms of ebola virus infection and the

identification of potential therapeutic targets. Likewise, the prom-

ising preclinical results obtained from existing experimental anti-

viral agents [28] or approved medicaments [50,74] in the small-

molecule space seem to indicate opportunities to tackle ebola

viruses beyond vaccines [2], biologicals [16–20] and RNA interfer-

ence [21]. Importantly, the manifest ability of the immune system

to counteract ebola virus infection, as from asymptomatic indi-

viduals [82] or antiviral treatment [27], represents a crucial re-

source to harness further. Still, several important challenges need

to be resolved. First, the translational potential of the preclinical

findings highlighted here needs to be verified. Even ebola virus

hemorrhagic fever (EHF) models as advanced as those in nonhu-

man primates do not completely recapitulate the immunological

aspects of ebola virus infection, and there is considerable differ-

ence in treatment efficacy across different animal models of ebola

virus infection [83]. Here, rodent species are easier to protect from

ebola virus infection compared with higher species, particularly

humans, and their true predictive power to a clinical situation

needs to be assessed. Likewise, the relevance of in vivo treatment

results using rodent-adapted ebola virus forms, and that of in vitro

data using vesicular stomatitis virus particles, needs to be evaluat-

ed in greater details. Second, the optimal window of efficacy for

any ebola virus therapeutic needs to be defined. All the various

vaccines and biologicals, as well as the small molecules described
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here, have been administered to animals very close in time to the

given ebola virus challenge. Although this might still provide

protection benefits for personnel at risk of infection, their prophy-

lactic and therapeutic potential for wider use remain unclear.

Small molecule-based, oral treatment of ebola virus infections

is of particular appeal in remote outbreak settings, because the

logistical challenges associated with it are reduced compared

with biologicals or intravenous treatment in general. Effective,

small-molecule antiviral agents have been successfully discovered

and developed for a large range of viruses. Here, nucleoside

derivatives and their ability to impair virus transcription might

offer an important therapeutic option. Alternatively, small

molecules targeting the process of virus entry could yield treat-

ment options that are less susceptible to virus mutations. The

current study represents the first systematic analysis of small

molecules reported to inhibit ebola virus infection. As the

gathered data were sparse and unstructured, we believe that this
article could serve as a useful survey for researchers, especially

medicinal chemists, embarking on ebola virus infection projects

to evaluate available chemical matters and anti-ebola virus

mechanistic hypotheses.
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