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Teaser This paper focuses on machine-learning approaches in the context of ligand-based
virtual screening for addressing complex compound classification problems

and predicting new active molecules.
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During the past decade, virtual screening (VS) has evolved from traditional

similarity searching, which utilizes single reference compounds, into an

advanced application domain for data mining and machine-learning

approaches, which require large and representative training-set

compounds to learn robust decision rules. The explosive growth in the

amount of public domain-available chemical and biological data has

generated huge effort to design, analyze, and apply novel learning

methodologies. Here, I focus on machine-learning techniques within the

context of ligand-based VS (LBVS). In addition, I analyze several relevant

VS studies from recent publications, providing a detailed view of the

current state-of-the-art in this field and highlighting not only the

problematic issues, but also the successes and opportunities for further

advances.

Introduction
Data mining is defined as the automatic extraction of useful, often previously unknown

information from large databases or data sets using advanced search techniques and algorithms

to discover patterns and correlations in large pre-existing databases. Through data mining, one

derives a model that relates a set of molecular descriptors to biological key attributes, such as

efficacy or absorption, distribution, metabolism, and excretion (ADMET) properties. The result-

ing model can be used to predict key property values of new compounds, to prioritize them for

follow-up screening, and to gain insight into their structure–activity relations (SARs). Data-

mining models range from simple, parametric equations derived from linear techniques to

complex, nonlinear models derived from nonlinear techniques [1–5]. For data-mining

approaches, a major target area within the chemoinformatics spectrum is VS; that is, the

application of computational tools to search large databases for new leads with higher probability

of strong binding affinity to the target protein. This is also possible without knowing the

molecular target or when the reference molecule(s) binds to more than one receptor (e.g., in

bioprofile similarity searching). Successful studies have led to the identification of molecules

either resembling the native ligands of a particular target or novel compounds [6,7]. VS methods

can be classified into structure-based (SBVS) and ligand-based (LBVS) approaches depending on
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the amount of structural and bioactivity data available. If the 3D

structure of the receptor is known, a SBVS method that can be used

is high-throughput docking [8], but where the information on the

receptor is scant, LBVS methods [4] are commonly used. Docking

involves a complex optimization task of finding the most favorable

3D binding conformation of the ligand to the receptor molecule.

Being computationally intensive, docking is not suitable for very

large VS experiments. By contrast, LBVS methods, whose goal is to

search chemical databases to find compounds that best match a

given query, are popular because they are computationally inex-

pensive and easy to use. Furthermore, the assumption that struc-

turally similar molecules exhibit similar biological activity

compared with dissimilar or less similar molecules is generally

valid. However, it is well known that small modifications of active

compounds can either improve or decrease their potency and that

active and inactive compounds might be similar and distinguish-

able only by small chemical differences [9]. This situation corre-

sponds to the presence of ‘activity cliffs’ [10] in the activity

landscape that produce an area of a rugged canyon-like surface

[11,12], falling outside the applicability domain of global similari-

ty approaches in LBVS [13]. Thus, LBVS methods have an increas-

ingly important role at the beginning of the drug discovery

projects, especially where little 3D information is available for

the receptor.

LBVS approaches are divided broadly into similarity search and

compound classification techniques [14]. Similarity search utilizes

molecular fingerprints derived from molecular graphs (2D) or

conformations (3D) [15,16], 3D pharmacophore models [17], sim-

plified molecular graph representations [18], or molecular shape

queries [19–22], compares them in a pair-wise manner with data-

base compounds using a similarity metric, and produces a com-

pound ranking in the order of decreasing molecular similarity to

reference molecules. From this ranking, candidate compounds are

selected. As a measure of similarity, fingerprint or feature set

overlap is quantified using similarity coefficients, most frequently

the Tanimoto coefficient, defined as Nab/(Na + Nb – Nab), where Na

and Nb are the number of features/bits set in the fingerprint of

compounds a and b, respectively, and Nab is the number of

features/bits set in both fingerprints of a and b.

Compound classification techniques are divided further into

basic classification methods, such as clustering and partitioning

(for which many different algorithms exist), and machine-learn-

ing approaches [23,24], such as support vector machines (SVM),

decision trees (DT), k-nearest neighbors (k-NN), naı̈ve Bayesian

methods and artificial neural networks (ANN), which are becom-

ing increasingly popular in LBVS. The goal of all these techniques

is to predict compound class labels (e.g., active versus inactive) on

the basis of models derived from training sets, as well as to provide

a ranking of database compounds according to the probability of

activity [25]. In addition, selection of compounds for the assembly

of target-focused compound libraries is also possible [26]. The first

application of machine learning in drug discovery was substruc-

tural analysis (SSA), which was described by Cramer et al. as a tool

for the automated analysis of biological screening data [27]. Ma-

chine learning is now an active area of research in computer

science, with the increasing availability of big data collections

of all sorts prompting interest in the development of novel tools

for data mining [28,29]. Thus, taken together, there is a broad
spectrum of applications for machine-learning methods in com-

puter-aided drug discovery that makes it attractive to review

selected approaches and to highlight their applications.

Here, I survey the most popular machine-learning approaches

in the context of LBVS, paying particular attention to novel

algorithms and methods that have evolved to largely dominate

the field at present. I concentrate on the developments of these

methodologies over the past few years and highlight the benefits,

bottlenecks, and successes of each.

Support vector machines
SVMs, developed by Vapnik and coworkers [30,31], are supervised

machine-learning algorithms for facilitating compound classifica-

tion, ranking and regression-based property value prediction.

Typically, SVMs are used for binary property or activity predic-

tions, for example, to distinguish between drugs and nondrugs

[32,33] or between compounds that have or do not have specific

activity [33–35], synthetic accessibility [36], or aqueous solubility

[37]. First, the compound libraries are projected into a high-

dimensional feature space where molecules, represented as de-

scriptor vectors, hopefully become linearly separable, as visualized

in Fig. 1. This projection is achieved via the use of a kernel

function, such as one of the following four families of functions:

linear, polynomial, sigmoid, and radial basis (RBF). The first three

functions are global kernels, and only RBF is a local kernel.

Extensive work has shown that RBF-based SVM outperforms

SVM based on the other three kernels and, thus, is used widely

[38]. The Gaussian or other polynomial kernel functions are often

used in LBVS in combination with numerical property descriptors

or 2D fingerprints, but simple linear kernels have also been used

successfully [39]. The choice of SVM kernels and setup of the kernel

parameters are largely dependent on empirical and experimental

analysis, because no well-established methods are currently avail-

able for this. Foody and Mathur showed that the kernel parameters

and the error penalty factor, C, defined by the user, rather than the

class of the chosen kernels, are the decisive factors in the perfor-

mance of SVM [40].

Once linearly separable, the two classes of compound can be

separated in this feature space by a hyperplane. In fact, there is an

infinite number of such hyperplanes and SVM chooses the hyper-

plane that maximizes the margin between the two classes on the

assumption that the larger the margin, the lower the error of the

classifier when dealing with unknown data. The hyperplanes that

define such margins are called ‘support hyperplanes’, and the data

points that lie on these hyperplanes are the ‘support vectors’

(Fig. 1). In the case of nonseparable classes, which are common,

the soft-margin hyperplane is applicable, which maximizes the

margin while keeping the number of misclassified samples mini-

mal.

In LBVS, the scores derived by a SVM classification have also

been successfully used to rank database compounds according to

their decreasing probability of activity [35,41]. The signed distance

between a candidate compound and the hyperplane can be used

for such a ranking. To further improve the SVM ranking, which is

generally undervalued compared with the tendency by SVMs to

optimize the classification performance, two studies have intro-

duced specialized ranking functions for VS that utilize optimiza-

tion functions to minimize the ranking error [42,43].
www.drugdiscoverytoday.com 319
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FIGURE 1

Projection into high-dimensional feature space. Using a mapping function F, active (empty gray points) and inactive (filled pink points) compounds that are not

linearly separable in low-dimensional input space L (a) are projected into high-dimensional feature space * (b) and separated by the maximum-margin
hyperplane. Points intercepted by the dotted line are called ‘support vectors’ (circled points).
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A variety of new kernel functions have been introduced for

SVMs, including both ligand and target kernels that capture rather

different information for similarity assessment [44–46], such as

graph or descriptor similarity (compounds) and sequence or bind-

ing site similarity (target proteins). For example, graph kernels

[47,48], that enable one to compute the overall similarity between

labeled graphs, have the advantage of enabling similarity mea-

surement without the need to compute or store a vector represen-

tation of the compounds. However, they are computationally

expensive and necessitate parameter determination. The Tani-

moto kernel [49], defined in accordance with the popular Tani-

moto coefficient, is widely applied to molecular fingerprints.

Using different fingerprint representations or descriptor vectors

of molecules, the comparison of different compound properties is

possible. In addition, the Tanimoto kernel is parameter free.

Furthermore, kernel functions that consider the 3D structure of

compounds have been developed. For example, the pharmaco-

phore kernel [50], which focuses on three-point pharmacophores

in 3D space, outperforms fingerprint representations of pharma-

cophores in SVM calculations [50]. Different kernel functions [51]

have been introduced for molecular representations at different

levels, ranging from 1D SMILES strings and 2D bond graphs to 3D

atom coordinates. However, Azencott et al. overall showed that the

2D kernel functions for feature vectors outperform kernel func-

tions designed for higher-dimensional compound representations

[51]. Ligand and target kernels have also been combined in the so-

called ‘target–ligand kernel’ [52,45], where the similarity in target–

ligand space is expressed as the tensor product of pairwise ligand

and target similarities. Interestingly, the most precise protein

kernel (based on sequence similarity, structural similarity, or
320 www.drugdiscoverytoday.com
ontology information) was not necessarily the most reliable.

Bajorath and colleagues [53] suggested that simplified strategies

for designing target–ligand SVM kernels should be used because

varying the complexity of the target kernel does not influence the

identification of ligands much for virtually deorphanized targets.

Hence, predicting protein–ligand association is dominated by the

ligand neighborhood [53]. Meslamani et al. [54] proposed that the

use of kernel functions, taking into account true 3D cavity descrip-

tors rather than simple sequence-based target, slightly enhances

the accuracy of the models to discriminate true target–ligand

complexes from false pairs. Recently, newly designed kernel func-

tions have been introduced that compare compound pairs based

on the ‘matched-molecular pairs’ [55]. These kernel functions

capture chemical transformation and core structure information

for pairs of compounds to predict ‘activity cliffs’, that is, structur-

ally similar compounds having large potency differences, from

which SAR determinants can be deduced.

A new development of SVM research is the introduction of

hybrid techniques, according to which multiple machine-learning

methods are combined to improve the quality of predictions. For

example, Plewczynski [56] proposed the ‘brainstorming ap-

proach’, which effectively combines different powerful supervised

machine-learning methods (i.e., SVM, random forest, neural net-

works, and DT), trained on an initial set of active compounds, into

a single metapredictor that can be used to search for unknown

inhibitors. This metapredictor approach achieved higher perfor-

mance than any single method used in consensus. Similarly,

Cheng et al. [57] introduced a new method to classify cytochrome

P450 inhibitors and non-inhibitors by combining different single

machine-learning classifiers algorithms, including SVM, DT, k-NN,
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and naı̈ve Bayesian classification, fused in a back-propagation

artificial neural network (BP-ANN) algorithm. The overall perfor-

mance of the newly developed combined classifier was found

superior to that of three classic fusion techniques (mean, maxi-

mum, and multiply), and led to improvements in predictive

accuracy.

Xie et al. [58] focused on the application of two-stage SVM and

docking calculations for searching novel c-Met tyrosine kinase

inhibitors from 18 million compounds. The combined approach

considerably increased hit rates and enrichment factors of active

compounds compared with the individual methods. The authors

identified 1000 top-ranked virtual hits, with eight of the 75

selected hits tested active (hit rate 10.7% after additional selec-

tion). In a recent paper, Meslamani et al. [59] presented an auto-

mated workflow, PROFILER, using several methods to predict

active compounds for different targets. The protocol used four

ligand-based (SVM classification, SVR affinity prediction, nearest

neighbors interpolation, and shape similarity) and two structure-

based approaches (docking and protein–ligand pharmacophore

match) in series, according to well-defined ligand and target

property checks. The workflow successfully recovered the main

targets of 189 clinical candidates in 72% of the cases and enabled

the deciphering of previously unknown cross-reactivities of some

drug candidates to unrelated targets.

New techniques similar to SVMs have also appeared recently in

the field of chemoinformatics. For example, Tipping [60] intro-

duced the relevance vector machines (RVMs), a Bayesian infer-

ence-based machine-learning method, which has an identical

functional form to SVM, but provides probabilistic classification.

This methodology has also been successfully applied to LBVS [61].

Decision tree
DT comprises a set of ‘rules’ that provide the means to associate

specific molecular features and/or descriptor values with the ac-

tivity or property of interest. The DT approach has been applied to

problems such as designing combinatorial libraries, predicting

‘drug-likeness’, predicting specific biological activities, and gener-

ating some specific compound profiling data. This method is used

not only for the identification of substructures that discriminate

activity from nonactivity within a given compound database [62],

but also for the classification of chemical compounds into drug

and nondrug [63]. DTs are also used to predict ADME/Tox proper-

ties, such as absorption [64,65], distribution [66], solubility or

permeability of drugs [67], P-glycoprotein [68] or blood–brain

barrier (BBB) penetration [69], and metabolic stability [70].

A DT is commonly depicted as a tree, with the root at the top

and the leaves at the bottom, as displayed in Fig. 2a. Starting from

the root, the tree splits from the single trunk into two or more

branches. Each branch itself might further split into two or more

branches. This continues until a leaf is reached, which is a node

that is not further split. The split of a branch is referred as an

internal node of the tree. The root and leaves are also referred to as

nodes. Each leaf node is assigned with a target property, whereas a

nonleaf node (root or internal node) is assigned with a molecular

descriptor that becomes a test condition with branches out into

groups of differing characteristics. An unknown compound is

classified based on the leaf node that it reaches after going through

a series of questions (nodes) and answers (deciding which branches
to take), starting with the first question from the root node. In the

example in Fig. 2a, an unknown compound will be classified with

target property YA, if it fulfills a certain condition for molecular

descriptor X1. Otherwise, molecular descriptor X2 of the unknown

compound is checked at the next step. If the value is less than 1,

the unknown compound will be marked with target property YA. If

not, the unknown will be given the label of target property YB.

DTs are generally formed in a top-down manner and the tree

construction process focuses on selecting the best test conditions

to expand the extremities of the tree. The quality of the test

conditions (i.e., the conditions used to split the data at the node)

is usually determined by the ‘purity’ of a split, which is often

computed as the weighted average of the purity values of each

branch, where the weights are determined by the fraction of

examples that follow that branch. The metrics (e.g., information

gain) used to select the best test generally prefer test conditions

that result in a balanced tree, where purity is increased for most of

the examples, over test conditions that yield high purity for a

relatively small subset of the data but low purity for the rest [71].

Entropy, information-gain ratio [72], or Gini diversity index [73]

can be used as measure for the best classification. Thus, rare cases,

which correspond to high purity branches covering few examples,

will often not be included in the decision tree.

DT models are simple to understand, interpret, and validate.

However, their predictions are known to suffer from high variance.

Often a small change in the data can result in a different series of

splits, complicating the interpretation. This instability is the result

of the hierarchical nature of the process: the effect of an error in

the top split is disseminated down to all the splits below. In

addition, the structure of DT is sensitive to small changes in the

training data. The DT learning process is significantly affected if

the training data set size is small. By contrast, a huge training set

might introduce overfitting of the tree. Therefore, it is recom-

mended to maintain a moderate training data size, a height

balance tree structure with a moderate number of levels, and

provision for heuristically improving the classification accuracy

by adding or removing subtrees at the lowest level. The perfor-

mance of a DT also depends on the proper selection of a sequence

of splitting attributes of the training set for different levels in the

hierarchy. The splitting attributes need to be sorted according to

decreasing order of merit or importance. It is essential that the

most important attribute is used for splitting at the root node, and

the next in the rank for the immediate descendants of the root,

and so on.

Ensemble methods
A common process to limit high variance is pruning of the tree

using either model complexity parameters or cross-validation.

Generally, a single DT does not provide a high-performance mod-

el. Ho proposed the use of an ensemble of DTs, each created using a

subset of the total descriptor set to increase the variance of the

predictions, which he called the ‘random decision forest’ [74].

Ensemble techniques, such as bagging [75], boosting [76], and

stacking [77], are better predictors than an individual constituent

learner and benefit from variability in the ensemble members, and

so they take advantage of the variance of DTs. The modern

adaption of the random decision forest, the random forest (RF)

algorithm developed by Breiman [78], introduced bagging and
www.drugdiscoverytoday.com 321
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FIGURE 2

Decision tree. (a) The diagram displays a 2D structure with a single root node, followed by a set of yes/no decisions (binary splits) that finally result in a set of leaf

nodes. For classification, a test event is passed from the root node down the tree and will end up in a certain leaf node depending on how it responded to the

various split criteria. The event is then classified according to the class label of this leaf node. In the example, molecules with target properties YA and YB are
classified based on two descriptors, X1 and X2. (b) A general architecture of a random forest (RF). Tree structures indicate yes/no rules at each branching, with the

associated subspace partitioning of a hypothetical 2D space shown. Individual predictions from all trees are collected and combined as a single ensemble

prediction by voting (for classification) or averaging (for regression).
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subset selection at each node of the DT to increase further predic-

tion variance. RF is an ensemble classifier comprising many DTs

(Fig. 2b). Many classification trees are grown during training. A

training set is created for each tree by random sampling with

replacement from the original data set. During the construction
322 www.drugdiscoverytoday.com
of each tree, approximately one third of the cases are left out of the

selection and this becomes the out-of-bag cases that are used as a

test set. The classification performance of the test set is evaluated

based on the out-of-bag error rates. Features will not be deleted

based on one decision or one tree, but many trees will decide and
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confirm elimination of features. Another positive characteristic of

RF is that it is applicable to high-dimensional data with a low

number of observations, a large amount of noise, and high corre-

lated variables. Moreover, RF is less prone to overfitting and can

handle the problem of imbalanced classes. RF algorithms can also

be used for regression, but their advantages are less clear.

RF models have been proved to further increase the LBVS

performance of individual DTs. Moreover, RF has attractive prop-

erties that have previously been found to improve the prediction

of quantitative SAR (QSAR) data [79]. These properties include

relatively high accuracy of prediction, built-in descriptor selec-

tion, and a method for assessing the importance of each descriptor

to the model. Tong and coworkers [80] published a similar meth-

od, called Decision Forest, which uses a different set of descriptors

to build diverse accurate decision tree models. This method was

applied to mining estrogen receptor binders from a data set of

57 000 molecules.

RF has also found applications in the area of post dock-scoring

functions and predicting protein–ligand binding affinity. For ex-

ample, in a recent study by Ballester and Mitchell [81], the scoring

function (RF-Score) derived from the machine-learning method

yielded a high correlation (R2 = 0.953) for a large training set of

1105 protein–ligand complexes. Teramoto and Fukunishi used a

RF classifier to predict the root mean square deviation (rmsd) of a

docked conformation from the bioactive conformation [82]. The

authors used 100 protein–ligand crystal structures, and produced

100 decoys for each ligand using AutoDock. Descriptors for the RF

classification were generated using 11 scoring functions. The RF

classifiers predicted which poses were within 2.0 Å rmsd of the X-

ray coordinates for 90% of cases, whereas the performance of the

individual scoring function varied from 26% to 76%.

In 2005, Springer and coworkers [83] presented PostDOCK, a

post-processing filter to distinguish true binding protein–ligand

complexes from docking artifacts generated by the popular dock-

ing program DOCK 4.0.1 [84]. PostDOCK uses biochemical

descriptors to characterize the protein–ligand interaction, includ-

ing vdW and electrostatic terms from the DOCK scoring function,

solvent accessible surface area (SASA) terms, and hydrogen bond-

ing, metal binding, lipophilic, and rotatable bond terms from the

ChemScore scoring function. The authors used a RF classifier to

separate the binding and the nonbinding ligands from a test set of

44 structurally diverse protein targets, and showed that PostDOCK

was able to outperform both the DOCK and ChemScore scoring

functions.

Furthermore, Sato and coworkers [85] found that SVM, ANN,

and RF models could outperform GlideScore when at least five

crystal structures [protein kinase A (PKA), Src, cathepsin K, car-

bonic anhydrase II, and HIV-1 protease] were used for model

building. SVM produced peak performance models using 20 crystal

structures, whereas ANN models depended on the choice of com-

plexes. The authors also looked at screening efficiencies of ma-

chine learning-derived models for targets where only a few crystal

structures are currently available and enriched these training sets

with docked poses of active compounds. In this scenario, the SVM

models did not show significant learning effects, whereas RF

models performance was improved dramatically, because RF

is known as a statistical method robust against data with noise

(e.g., incorrect docked poses). Thus, SVM should be a method of
choice for training sets with reliable structures, and RF, where

noise is expected.

Naı̈ve Bayesian classifier
Naı̈ve Bayesian classifiers are frequently used in chemoinformatics

both alongside or compared against other classifiers, generally for

predicting biological rather than physicochemical properties.

Practical applications of these methods have been carried out

not only in the VS field, but also in other areas, such as the

prediction of the toxicity of the compound [86], phospholipidosis

mechanism [87], and protein target and bioactivity classification

for drug-like molecules [88,89]. It is in principle possible to use

naı̈ve Bayesian classifiers for regression [90], but this is rarely seen

in chemoinformatics.

Bayesian methods are based on Bayes’ theorem, which gives a

mathematical framework for describing the probability of an event

that might have been the result of any of two or more causes [91]

(Eqn. (1)):

PðA=BÞ ¼ PðB=AÞPðAÞ
PðBÞ (1)

This equation describes the probability P for state A existing for a

given state B. To calculate the probability, Bayes used the probability

of B existing given that A exists, multiplied by the probability that A

exists, and normalized by the probability that B exists. This admit-

tedly complicated explanation can be interpreted as follows: for an

existing state B, what is the probability that state B is caused by state

A? The importance of this theorem is that probabilities can be

derived without specified knowledge about P(A/B), if information

about P(B/A), P(A), and P(B) is available. The essence of the Bayesian

approach is to provide a mathematical rule explaining how a

hypothesis changes in light of new evidence [92]. In a Bayesian

analysis, a set of observations should be seen as something that

changes opinion. In other words, Bayesian theory allows scientists

to combine new data with their existing knowledge or expertise. A

Bayesian method can be used to model the dependencies between

variables that directly influence each other, which are usually few.

The rest of the variables are assumed conditionally independent.

Although the Bayesian idea has been used for many years, its

popularity as a tool within drug discovery and structure–activity

analysis is only recent. Bayesian classifiers [93] are increasingly

being used given their versatility, robustness, and ease of use. In

LBVS, Bayesian modeling methods are applied to predict the

probability that a compound represented by a descriptor vector

is active [i.e., the probability of activity P(A/B) given descriptor

representation B]. From known active (A) and inactive (Z) training

compounds, the conditional probability distributions P(B/A) and

P(B/Z) given representation B are estimated, respectively. There-

fore, Bayesian classifiers are also well suited for ranking of com-

pound databases with respect to probability of activity. The biggest

weakness is that the naı̈ve Bayesian model is inappropriate in cases

where there are strong conditional dependencies between vari-

ables. However, there are a surprisingly large number of cases in

which it does well, partly because the classifications made can still

be optimal, even if the probability estimations are inaccurate

because of feature dependence.

Another Bayesian approach adapted for LBVS is the binary

kernel discrimination [94], which makes use of binary fingerprint
www.drugdiscoverytoday.com 323
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representations and, unlike Bayesian classification, utilizes a Par-

zen-window technique to evaluate the joint distributions, thus

making no assumption of independence of individual features.

However, there has been a clear trend to utilize not individual

Bayesian classifiers, but combined multitarget classifiers or Bayes-

ian networks [95], which significantly improve the classification

accuracy. Bayesian networks are directed acyclic graphs, in which

each node is annotated with quantitative probability information.

They are constructed by selecting a set of variables that define the

nodes of the network. The nodes are connected via directed links

that indicate their inheritance, and each node has a conditional

probability distribution that quantifies the effect of the parents on

the node. The graphics in Fig. 3a shows a naı̈ve Bayesian classifier,

in which the arrows point from the label Y to the sample space X,

indicating assumption of knowledge of the sample distribution

under the label. Furthermore, absence of arcs among all random

variables indicates that all random variables are mutually inde-

pendent given the class (conditional independence). The depen-

dencies between attributes, which are missing in naı̈ve Bayesian

classifiers, are added in the Bayesian network shown in Fig. 3b.

A recent development of Bayes’ methods applied to LBVS is the

Bayesian model averaging, a technique recently introduced in the

machine-learning world [96] and that has now also found appli-

cation in VS in a paper published by Angelopoulos et al. [97]. In

this study, the authors compared Bayesian model averaging to

SVM and ANN for the prediction of protein pyruvate kinase

activity using DRAGON descriptors. Bayesian models were aver-

aged over an ensemble of compound classification trees, and it was

found that the resulting models were interpretable, in addition to

showing the performance was at least as good if not better than

SVM and ANN. Furthermore, Abdo et al. [98] introduced a novel

similarity-based VS approach based on a Bayesian inference net-

work (BIN), where the features carry different statistical weights,

with features that are statistically less relevant being deprioritized.

In this study, retrieval of active compounds from each of 12

activity data sets derived from the MDL Drug Data Report (MDDR)

database was increased by 2–4% in absolute terms (or approxi-

mately 8–10% in relative terms) using a variety of circular count

fingerprint-based methods, compared with the benchmark Tani-

moto coefficient. This result still suggests the importance of

considering mutual dependencies of features in the VS task.
(a) (b)

Y Y

X1 X2 Xn X1 X2 Xn
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FIGURE 3

Bayesian networks. (a) A naı̈ve Bayesian classifier. The arrows point from the

label Y to the sample space X, indicating assumption or knowledge of the

sample distribution given the label. Furthermore, absence of arcs between all

pairs of random variables indicates that all random variables are mutually
independent given the class (conditional independence). (b) Bayesian

network that captures interattribute dependencies.
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Furthermore, molecular similarity-based clustering has been inte-

grated with Bayesian models of bioactivity to include activity

information in the structural organization of biological screening

data [99].

k-Nearest neighbors
The k-NN algorithm is a simple and intuitive method to predict the

class [100], property [101], or rank [102] of a molecule based on

nearest training examples in the feature space. k-NN is a kind of

instance-based learning or lazy learning, where the function is

only approximated locally and all calculations are deferred until

classification (Fig. 4). k-NN can also be used for regression. It is one

of the simplest machine-learning algorithms. A molecule is classi-

fied by a majority vote of its neighbors, with the molecule being

assigned to the class most common among its k nearest neighbors.

k is a positive integer, typically small. If k = 1, then the molecule is

simply assigned to the class of its nearest neighbor. In binary

classification problems, it is helpful to choose k to be an odd

number to avoid tied votes. The same method can be used for

regression by simply assigning the property value of the object to

be the average of the values of its k nearest neighbors. However, it

can be useful to weigh the contributions of the neighbors, such

that the nearer neighbors contribute more to the average than the

more distant ones; a procedure for doing this was published by

Nigsch et al. [103]. The neighbors are taken from a set of molecules

for which the correct classification (or, in case of regression, the

value of the property) is known. This can be regarded as the

training set for the algorithm, although no explicit training phase

is required. To identify neighbors, the objects are represented by

position vectors in the multidimensional feature space. Usually

Euclidean distance is adopted, although other distance measures,

such as the Manhattan or Mahalanobis distance, could in principle

be used instead. The Euclidean distance is the square root of the

sum of squares differences between descriptor values, whereas

the Manhattan distance, city-block, or Hamming, represents the
X1 X1

K = 1

K = 3

K = 5
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FIGURE 4

k-Nearest neighbors. (a) 2D data set showing points belonging to two classes

(class 1: pink points; class 2: blue points). The green point is a new data point

to be classified. (b) The simple nearest-neighbor technique (k = 1) classifies
the green point as class 1 because it is closest to a pink point (innermost

dashed circle). If k = 3, it will again be assigned to the pink class because there

are two pink points and one blue point inside the inner circle. If k = 5, it is
assigned to the blue class because there are three blue points and two pink

points in the outer circle.
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distance between points in a city road grid, and examines the

absolute differences between the coordinates of a pair of feature

vectors. Mahalanobis distance takes the distribution of the points

(correlations) into account, and is a useful way of determining the

similarity of a set of values from an unknown sample to a set of

values measured from a collection of known samples. The Maha-

lanobis distance is the same as the Euclidean distance if the

covariance matrix is the identity matrix. A major difficulty is in

the construction of a distance measure that reflects a useful metric

of similarity. A poor choice of distance metrics might result in

meaningless classifications. However, no rationale, except empir-

ical analysis, seems to exist in choosing distance metrics.

The k-NN algorithm is sensitive to the local structure of the data.

Thus, it is ideal for calculating properties with strong locality, as is

the case with protein function prediction [104]. Although intui-

tive, the k-NN approach does have limitations. First, because only k

neighbors are used to predict a new compound, this method is

sensitive to noisy data. A single misclassified training datum could

cause a new molecule to be predicted incorrectly. By extension,

irrelevant descriptors will likewise lead to spurious predictions. In

addition, the predicted value can never be lower or greater than

the minimum and maximum activity in the training set.k-NN has

been used for predicting the activity of anticonvulsants and dopa-

mine D1 antagonists [105], the inhibition of protein kinases [106],

the psychoactivity of cannabinoid compounds [107], the activity

of steroid, anti-inflammatory and anticancer drugs [108], and of

estrogen receptor agonists [109].

Artificial neural networks
ANNs are the most popular and deeply studied techniques in soft

computing. In medicinal chemistry, ANNs have been applied in

compound classification, QSAR studies, primary VS of com-

pounds, identification of potential drug targets, and localization

of structural and functional features of biopolymers [110–113].

ANN techniques have been also used in the fields of robotics,

pattern identification, psychology, physics, computer science,

biology, and others [113–116].

ANNs arose as an attempt to model brain structure and func-

tioning. However, in addition to any neurological interpretation,

they can be considered as a class of general, flexible, nonlinear

regression models [117]. The network comprises several simple

units, called neurons, arranged in a certain topology, and con-

nected to each other. Neurons are organized into layers. Depend-

ing upon their position, layers are called input layers, hidden

layers or output layers. An ANN can contain several hidden layers.

If, in an ANN, neurons are connected only to those in the follow-

ing layers, it is called a feed-forward network (Fig. 5a). In this group

are included multiplayer perceptrons (MLP), radial basis function

(RBF) networks, and Kohonen’s self-organizing maps (Kohonen’s

SOM). By contrast, if recursive or feed-back connections exist

between neurons in different layers, the network is called recurrent

(Fig. 5b). Elman and Hopfield networks are classic examples of

recurrent topologies. A typical neuron comprises a linear activator

followed by a nonlinear inhibiting function (Fig. 5c). The linear

activation function yields the sums of weighted inputs plus an

independent term, so-called ‘bias’, b. The nonlinear inhibiting

function attempts to arrest the signal level of the sum. Step,

sigmoid, and hyperbolic tangent functions are the most common
functions used as inhibitors (Fig. 5d). Sometimes, purely linear

functions are also used for this purpose, especially in output layers.

The process of adjusting weights and biases, from supplied data, is

called ‘training’ and the used data, the ‘training set’. The process of

training an ANN can be broadly classified into two categories: (i)

supervised learning, which requires using both the input and the

target values for each sample in the training set [111,112]. Tasks

that fall within this paradigm are pattern recognition, classifica-

tion (clustering), function approximation, and prediction. The

most common algorithm in this group is the back-propagation,

used in the MLP, but it also includes most of the training methods

for recurrent networks, time delay networks, and RBF networks;

and (ii) unsupervised learning, which is used when the target

pattern is not completely known. It includes the methods based

on the adaptive resonance theory (ART) and SOM. Tasks that fall

within this paradigm are general estimation of problems such as

pattern recognition, clustering, estimation of distributions, com-

pression, and filtering.

Back-propagation, which is applied to MLPs, is the most popular

and well-studied training algorithm [117]. It is a gradient-descen-

dent method that minimizes the mean-square error of the differ-

ence between the network outputs and the targets in the training

set.

Nonlinear function approximation is the most important ap-

plication of multilayer neural networks. It has been proved that a

two-layer neural network can approximate any continuous func-

tion, within any arbitrary pre-established error, provided that it

has a sufficient number of neurons in the hidden layer. This is the

so-called ‘universal approximation property’. A general and some-

times problematic feature of ANN simulations is that the resulting

classification models can usually not be interpreted or explained in

physical or chemical terms (a situation often referred to as the

‘black box’ character of ANNs). By contrast, a major advantage of

ANNs is their ability to capture and model nonlinear relations.

Kohonen’s SOMs and counterpropagation ANNs
Kohonen’s SOMs comprise connected nodes that have an associ-

ated vector that corresponds to the input data (i.e., the molecular

descriptors) in the map. A simple Kohonen’s SOM network is

presented in Fig. 6a. As can be seen, the map is an ordered array

of neurons. In the example, the map is a rectangle. However, the

map can be a line, a circle, a hexagonal structure, or a multidi-

mensional structure of any desired shape. Once a map is con-

structed, it must be trained to group similar items together, a

process called ‘clustering’. The SOM is trained using a combination

of neighborhood size, neighborhood up-date parameters, and a

weight-change parameter. In molecular clustering, descriptor vec-

tors are calculated for test molecules and SOM nodes are assigned

corresponding vectors, initially with random values. Then, each

test molecule is mapped to the node having the smallest distance

to its descriptor vector in chemical space. The neuron closest in

distance to the input is declared the winner (Fig. 6b). During the

learning phase, vectors of machining nodes and connected neigh-

boring nodes are changed and made more similar to the one of the

test molecule. This creates groups of similar nodes that match test

molecules having similar descriptor vectors. The learning process

continues by gradually reducing the connection weights and value

adjustments of neighboring nodes. These calculations generate
www.drugdiscoverytoday.com 325
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FIGURE 5

Artificial neural networks. (a) Example of a multilayer feed-forward neural network. For the ith layer of links, the symbols w(i), x(i), and y(i) represent a vector of
weights between the layers, inputs of nodes at one layer, and output at the output layer, respectively. (b) Example of a recurrent neural network, which contains

feedback from the outputs to the inputs and its outputs are determined by the current inputs and by the preceding outputs. When organized in layers, there are

interconnections between neurons in the same layer and between nonconsecutive layers. (c) Logical scheme of a neuron as a perceptron. wij are the efficacies of
synapses coming into neuron i, represented by the large circle. xj are 1–0 variables representing the arrival or non-arrival of a spike along the presynaptic axon

connecting neuron w to i. Integration function f(.) is the postsynaptic potential and activation function a(.) is the decision function of the neuron. If the neuron will

(will not) fire, yi will take the value 1 (0). The neuronal model also includes an externally applied bias, denoted b1, which has the effect of increasing or decreasing

the net input of the activation function, depending on whether it is positive or negative, respectively. (d) Typical inhibiting functions: (i) step, (ii) sigmoid, and (iii)
hyperbolic tangents.
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FIGURE 6

Kohonen’s Self-Organizing Map (SOM) networks. (a) Topology of a simple

Kohonen’s 2D SOM. It comprises two layers: an input layer and an output
layer. Each input layer neuron (pink circle) has a feed-forward connection to

each output layer neuron (blue circle). The output neurons that win the

competition are called ‘winning neurons’, where a winning neuron is chosen
by selecting a neuron whose weight vector has a minimum Euclidean

distance (or maximum similarity) from the input vector. (b) A 5 � 6 Kohonen’s

Layer with two neighborhood sizes around the winning neuron, identified as

a green circle.
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larger numbers of groups of similar nodes but reduce group size,

which increases the resolution of the molecular classification

scheme. SOMs ultimately assign similar molecules to regions of

similar nodes and additional compounds can be mapped based on

their descriptor vectors. Thus, SOMs can be used as a clustering

tool. A key concept in training SOM is the neighborhood Nk

around a winning neuron, k, which is the collection of all nodes

with the same radial distance. Fig. 6b gives an example of neigh-

borhood nodes for a 5 � 6 Kohonen’s layer at radius of 1 and 2. The

main advantage of the SOM, in comparison to other projection

methods, is that the algorithm is simple, straightforward to im-

plement, and fast to compute.

Given that SOMs are capable of projecting compound distribu-

tions in high-dimensional descriptor spaces on 2D arrays of nodes,

this methodology is also useful as a dimension reduction tech-

nique. SOMs have also been adapted for LBVS. For example,

Hristozov et al. [118] used a Kohonen’s SOM as a model to identify

and discard compounds that are unlikely to have a given biological

activity. In addition, SOMs have been used to concentrate LBVS

calculations on the structural proximity of reference compounds

[119]. Unlike other machine-learning methods, SOM built on a

relatively small but diverse training set might be an effective LBVS

enhancer of a much larger, independent database. Moreover, the

use of oversized SOM training sets was shown to be not only

unhelpful to further increase map performance, but also often

detrimental [119]. Empirical evidence shows that the quality of

many machine-learning algorithms improves with the size of the

training data, and that a simple algorithm is likely to outperform a

more complex one if it gets more training data, but this is not

always the case.

Counterpropagation ANNs (CP-ANNs) are an extension of

Kohonen’s SOMs for classification models [120] that, in addition

to the Kohonen’s layer, contain a set of output layers, called

‘Grosberg layers’. A CP-ANN comprises [121] two layers: the input

layer, which is a Kohonen’s network, and an associated output
layer containing the values of the properties to be predicted. The

number of Grosberg layers is equal to the number of classes. The

learning in CP-ANN has an additional step. The first step runs in

the input layer and is the same as in SOM (i.e., the objects are

arranged into the map accordingly to similarity relations among

them). In the second step of learning, the positions of objects are

projected from the input layer to the output layer and the weights

there are modified to become equal to corresponding output

values. The reader can find more details about architecture and

learning strategy of SOM and CP-ANN in many textbooks and

articles [122–124]. For instance, Kohonen’s maps and CP-ANNs

have been successfully applied in LBVS for the prediction and

identification of novel amyloid b-A4 protein (ABPP) inhibitors

[125]. In such work, the inhibitory activity of a series of 62 N-

phenylanthranilic acids using Kohonen’s maps and CP-ANNs was

explored. The effects of various structural modifications on bio-

logical activity were investigated and novel structures then

designed using the in silico model.

Several variations and extensions of Kohonen’s original SOM

algorithm have been published and applied to drug discovery

[126]. Such developments include self-organizing networks with

an adapting grid size [127], cascaded SOMs [128], and hybrid

neural networks [129,130]. These systems might provide alterna-

tive approaches to VS, although their practical usefulness and

applicability to hit and lead finding still need to be rigorously

assessed.

Concluding remarks and future directions
LBVS techniques are widely used for hit identification. The meth-

odological spectrum of these techniques is wide, ranging from

rather simplistic fingerprint-based approaches to highly complex

machine-learning methods. In this article, I have emphasized the

theoretical foundations and exemplary recent developments of

five advanced machine-learning approaches that are commonly

used in chemoinformatics and in drug discovery: SVM, DT, k-NN,

naı̈ve Bayesian methods, and AANs. These tools have become

popular because they are easily accessible both as open source

and commercial distributions [131], statistically consistent, com-

putationally efficient, but simple to implement and interpret.

Multiple variant open-source and commercial algorithms can be

used to implement each approach, and specialized method-specif-

ic software is available to support more flexible configurations

(Table 1). Machine-learning algorithms also can be implemented

in a variety of programming languages. Data-mining software

enables users to implement versions of these algorithms via

point-and-click graphic user interfaces. However, these algorithms

can also be written and executed using packages such as R, Matlab,

and Octave. It is important that users understand how to apply

each unique method properly to produce optimal models and

avoid spurious results.

Here, I have also evaluated critically the opportunities and

limitations of these methods, with a particular focus on their

practical relevance and value in LBVS. Table 2 lists common

classification methods and provides a comparison of their perfor-

mance, computational cost, and other factors. Taken together,

SVMs and Bayesian methods currently dominate the LBVS field.

However, there is no single approach that is superior, and LBVS

success strongly depends on the size and diversity of the training
www.drugdiscoverytoday.com 327
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TABLE 1

Examples of available machine-learning programs that implement the methods discussed in this review.

Software Learning algorithms License Website

Matlab SVM, ANN, Naı̈ve Bayes, DT, and k-NN Commercial http://www.mathworks.com/products/matlab/

TreeNet RF Commercial http://www.salford-systems.com/products/treenet

R RF,SVM, Naı̈ve Bayesian, and ANN Open source http://www.r-project.org/

libSVM SVM Open source http://www.csie.ntu.edu.tw/�cjlin/libsvm
Orange RF, SVM, and Naı̈ve Bayesian Open source http://www.ailab.si/orange/

RapidMiner SVM, RF, Naı̈ve Bayes, DT, ANN, and k-NN Open source http://rapid-i.com/

Weka RF, SVM, and Naı̈ve Bayes Open source http://www.cs.waikato.ac.nz/ml/weka/

Knime DT, Naı̈ve Bayes, and SVM Open source http://www.knime.org/

AZOrange RT, SVM, ANN, and RF Open source http://www.jcheminf.com/content/3/1/28

SciTegic Pipeline Pilot SVM, Naı̈ve Bayes, and DT Commercial http://www.accelrys.com

Tanagra SVM, RF, Naı̈ve Bayes, and DT Open source http://eric.univ-lyon2.fr/�ricco/tanagra/en/tanagra.html

Elki k-NN Open source http://elki.dbs.ifi.lmu.de/
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data set, the linearity of the chemical problem to be solved, the

correlation of the descriptor set available, and the importance of

nonlocal information. For linear problems, a simple multiple

linear regression approach proved to be superior over more
TABLE 2

Comparison of various classification algorithms.

Method Classification

error

Computational

cost

Memory

requirements

Difficult to

implement

SVM Low Medium Low Medium 

DT Medium Medium Medium Low 

Naı̈ve

Bayesian

Low Low Low High 

k-NN Medium–low High High Low 

ANN Low Medium Low High 
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complex machine-learning approaches [132]. For nonlocal pro-

blems, some studies have reported that SVM outperforms RF

[133,134], whereas others suggest that RF and SVM give similar

prediction quality [135,136]. Where local data structures are not
Online? Easy to

interpret?

Advantages Disadvantages

Yes No Does not make any

assumption about type
of relation between

target property and

molecular descriptors;

low risk of overfitting;
able to provide expected

classification accuracies

for individual
compounds

Training speed can be

slow with large training
sets; predominantly

binary classification only

No Yes Does not make any

assumption about type

of relation between
target property and

molecular descriptors;

fast classification speed;

multiclass classification

Might have overfitting

when training set is small

and number of molecular
descriptors is large; ranks

molecular descriptors

using information gain,

which might not be the
best for some problems

Yes Yes Fast to train (single scan);

fast to classify; not

sensitive to irrelevant
features; handles real and

discrete data

Assumes independence

of features

No No Does not make any

assumption about type

of relation between
target property and

molecular descriptors;

fast training time;
multiclass classification

Classification speed can

be slow with large

training sets;
classification is sensitive

to type of distance

measures used

Yes No Does not make any

assumption about type

of relation between

target property and
molecular descriptors

Difficult to design an

optimal architecture; risk

of overfitting

http://www.mathworks.com/products/matlab/
http://www.salford-systems.com/products/treenet
http://www.r-project.org/
http://www.csie.ntu.edu.tw/~cjlin/libsvm
http://www.csie.ntu.edu.tw/~cjlin/libsvm
http://www.ailab.si/orange/
http://rapid-i.com/
http://www.cs.waikato.ac.nz/ml/weka/
http://www.knime.org/
http://www.jcheminf.com/content/3/1/28
http://www.accelrys.com/
http://eric.univ-lyon2.fr/~ricco/tanagra/en/tanagra.html
http://eric.univ-lyon2.fr/~ricco/tanagra/en/tanagra.html
http://elki.dbs.ifi.lmu.de/
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best summarized linearly (yet are important to the interpretation

of the experimental results), a nonlinear method, such as k-NN,

can be more appropriate. Although benchmark studies have

revealed some overall winners [137], the choice of a learning

algorithm must be made in light of the characteristics of a given

prediction problem, data source, and prediction performance

[138,139].

In addition to the methods discussed above, several new

algorithms and approaches are continually under development

in the LBVS arena. A recent tendency is to assemble different

classifiers and to construct a metaclassifier, which combines the

predictions of the base classifiers [140]. Furthermore, Swamidass

et al. [141] introduced the Influence Relevance Voter (IRV), a

new exemplary method that uses ANN architecture to learn how

to best integrate information from the nearest structural neigh-

bors contained in the training set. The IRV tunes itself to each

data set by a simple gradient descent-learning procedure and

produces continuous outputs that can be interpreted probabilis-

tically and used to rank all the compounds. The IRV perfor-

mance was shown to be at least comparable to other machine-

learning methods, such as SVMs. Moreover, the IRV approach

has several other important advantages over SVMs and other

methods: it is trained much more quickly, it provides a frame-

work that easily allows the incorporation of additional informa-

tion, beyond the chemical structures; and its predictions are

interpretable.
With the exponential growth of data sets over the past decade

and the increased use of medical data-mining applications, the

data-mining community has moved into high-performance set-

tings, including accelerators that are characterized as hardware

that perform certain computations faster than the computer pro-

cessing units (CPU). Examples of such accelerators include Field

Programmable Gate Arrays, the Cell Broadband Engine Architec-

ture (CBEA), and Graphical Processing Units (GPUs). Liao et al.

[142] demonstrated the power of GPU acceleration of molecular

similarity calculations for SVMs.

In the future, we are likely to see more focus on the development

of machine learnings that reflect domain knowledge and utilize

output from several lower-level algorithms. Given that the current

trend toward wider, faster, and deeper surveys in the LBVS field is

expected to accelerate, the importance of machine-learning tools

will continue to grow.

Acknowledgments
I dedicate this work to the memory of my uncle, Francesco

Lavecchia, who passed away on 1 May 2014, while this article was

being prepared. His inquisitive mind, brightness, poetic

imagination, work ethics, and dedication to the medical

profession will be greatly missed. Your strength and your wisdom

will live on inside my mind forever. This research was supported by

the Ministero dell’Istruzione, Università e Ricerca (MIUR-PRIN
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