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Thermodynamics of ligand binding is influenced by the interplay between enthalpy and entropy

contributions of the binding event. The impact of these binding free energy components, however, is not

limited to the primary target only. Here, we investigate the relationship between binding

thermodynamics and selectivity profiles by combining publicly available data from broad off-target

assay profiling and the corresponding thermodynamics measurements. Our analysis indicates that

compounds binding their primary targets with higher entropy contributions tend to hit more off-targets

compared with those ligands that demonstrated enthalpy-driven binding.
Introduction
High on-target affinity and designed selectivity against off-targets

are usually the key points in the target product profile of many

discovery programs and, consequently, these are among the most

desired objectives of multiparameter medicinal chemistry optimi-

zations. Potency optimizations are generally carried out by intro-

ducing apolar or polar substituents and subsequently monitoring

the binding affinity (expressed in Ki or IC50 values). High specifici-

ty, however, does not demand high affinity [1]. Improving the

binding affinity can be achieved by enthalpy- or entropy-driven

optimization that covers substantially different thermodynamic

profiles. Apparently, enthalpy and entropy changes are linked by

the widely observed enthalpy–entropy compensation, although its

impact has been recently challenged [2]. Binding affinity shows

the quantity of the ligand–protein interactions via the Gibbs free

energy of binding, whereas the corresponding thermodynamic

profile describes the quality of the interactions.

The relationship between the knowledge encoded in Gibbs free

energy of binding and its components, enthalpy and entropy, can

be explained by the analogy of the projection. Constellations of

stars such as the Cassiopeia are plane projections having a graph-

type pattern. Stars, however, are not located at the same distance,

some stars are much closer than the others and therefore

the projection has a hidden dimension. Taking this distance
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dimension into account makes the plane a 3D object. Constella-

tions were used for efficient navigation for hundreds of years, and

improving the binding free energy drove medicinal chemistry

programs in the past decades. Space travelers, however, should

use the information from the third dimension for successful

navigation and, similarly, thermodynamic profiles provide bene-

ficial information on the interactions for medicinal chemists.

Ligand–protein interactions involve attractive forces and hydra-

tion effects. Properly positioned polar groups contribute to specific

interactions, such as H-bonds, salt-bridges, polar–polar interac-

tions and nonclassical interactions such as s-hole-mediated halo-

gen bonding that result in enthalpy gain. To exploit this enthalpy

reward the binding partners should be in optimal orientation,

because the binding energy is highly sensitive to the distance and

the angle of the interacting atoms [3,4]. Nonpolar groups typically

form weaker, less-oriented and less-specific interactions such as

van der Waals contacts and p–p stacking [5]. Changes in desolva-

tion entropy are favorable in both cases, but the desolvation of

polar groups is associated with unfavorable desolvation enthalpy.

For example, the desolvation enthalpies of OH and NH function-

alities are 36.4 kJ/mol and 33.0 kJ/mol, respectively – in the range

of the enthalpy gain realized with polar interactions – whereas for

a methyl group the corresponding value is only 2.4 kJ/mol [6,7]. If

the interactions with binding-site water molecules do not override

the primary ligand–protein interactions the affinity gain achieved

by the introduction of polar groups is generally enthalpy biased.
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By contrast, introduction of nonpolar substituents typically results

in entropic reward that is mainly mediated by desolvation effects.

Suboptimal positioned polar moieties would not be exploited in

terms of enthalpy gain. The positional sensitivity of enthalpic

optimization can be exemplified with a HIV-1 protease inhibitor

pair. Saquinavir and TMC126 have the same number of polar

groups; however saquinavir binding is associated with unfavorable

(�5 kJ/mol) binding enthalpy but TMC126 binding is significantly

more enthalpic (DH � �50 kJ/mol) owing to the better orientation

of its polar groups [7]. It should also be noted that binding-site

water molecules have a complex influence on thermodynamics

signatures [8–10]. Orientation of polar groups largely influences

their specific interactions compared with nonpolar functional

groups that are introduced to fill apolar cavities. The latter types

of interactions show less dependence on distance and are less

sensitive to orientation. As a result, optimization of binding

affinity is more straightforward by hydrophobic moieties. Nonin-

teracting or suboptimal positioned polar atoms are charged by the

unfavorable desolvation enthalpy and thus generally result in

decreased affinity. Accordingly, enthalpy-driven optimization is

considered to be significantly more challenging compared with

the entropy-driven process. Favorable binding energy can be

achieved by entropy-driven approaches such as the introduction

of nonpolar groups around apolar protein surfaces.

Replacement of unstable water molecules within hydrophobic

pockets is mostly driven by entropy changes, although enthalpy

gain coupled with water replacement by apolar moieties has also

been reported [8,9]. The effect of binding-site waters has been

recently reviewed by using WaterMap for solvation energetic

calculations [11]. Selectivity between dopamine D2 and D3 recep-

tors and kinase targets was also successfully rationalized by the

analysis of binding-site water molecules [12,13]. Therefore,

computational approaches can significantly facilitate the design

of selective compounds, if high-quality crystal structures are avail-

able. Furthermore, the combination of experimental and compu-

tational approaches can rationalize unique cases where apolar
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FIGURE 1

Correlation between binding-free-energy difference and binding enthalpy

for HIV-1 protease inhibitors.
contacts contribute to the favorable binding enthalpy in a pro-

tein-binding site occluded from solvent water [14].

The quality of interactions and the accompanying binding

thermodynamics profile impact selectivity against off-targets

[15]. Enthalpically optimized compounds possess carefully posi-

tioned ligand-binding-site atom pairs to achieve the desired gain

in binding enthalpy. Considering a different binding pocket pre-

sented in an off-target protein, the designed interactions will not

be able to yield the enthalpic contribution to binding free energy

because of the improper orientation of the ligand. Since the very

same desolvation penalty of the polar atoms must be paid, the off-

target affinity of the ligand will be limited. By contrast, entropi-

cally optimized compounds have fewer positional constraints and

desolvation of the apolar moieties can result in entropy gain as a

result of the lower dependence from the binding environment.

These compounds have therefore higher propensity to form at-

tractive interactions with off-targets. In this review, we investigate

this hypothesis by analyzing the thermodynamic and selectivity

profiles of optimized compounds and marketed drugs.

Binding thermodynamics and selectivity optimization
HIV-1 protease
The relationship between the binding thermodynamics properties

of a closely related pairs of compounds published by Kawasaki and

Freire serves as an illustrative example of the impact of thermody-

namics on selectivity [15]. The thermodynamics profile was mea-

sured on the primary target HIV-1 protease, and cathepsin D and

pepsin were monitored as antitargets. In the first case, a subtle

change such as the introduction of two methyl groups into a

phenyl moiety resulted in �11.2 kJ/mol gain in binding free

energy owing to the more favorable enthalpy contribution of

the methylated derivative (Fig. 1). This effect is a result of the

optimal occupancy of a small cavity around the aryl moiety that is

well oriented and the methyl groups can form desirable contacts.

The selectivity toward pepsin and cathepsin D increased from 12 to

157 and 72 to 2464, respectively. In the second pair the thioether

moiety was replaced by the sulfonyl-methyl group that resulted in

a 1.2 kJ/mol decrease in binding free energy. However, the binding

enthalpy improved from �34.3 kJ/mol to �50.6 kJ/mol, and the

entropy contribution decreased by 11.2 kJ/mol. The introduced

sulfonyl group establishes a strong H-bond with Asp30 of the

protease, as is evident in the crystal structure. The selectivity

against pepsin and cathepsin D increased by seven and ninefold,

respectively. The authors suggested that maximal selectivity can

be achieved by introducing a few very strong H-bonds toward the

primary target protein. H-bonds have very rigorous distance and

angular constraints. Consequently, suboptimal H-bonds formed

with the off-target protein are penalized and this results in a larger

decrease in the corresponding binding free energy. The overall

picture of the four compounds suggests that, as the enthalpy

contribution to binding free energy is increased, the compounds

are more specific to the primary target. It is interesting to note that,

among these four compounds, the highest affinity one does not

have the highest selectivity; instead it is the one with the most

favorable binding enthalpy. Although there is no theoretical

background to support the linear correlation between these quan-

tities, linear correlation coefficients (r2) between DHprotease and

DDG values obtained for pepsin and cathepsin D were significant
www.drugdiscoverytoday.com 87
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(0.9 and 0.93, respectively). DGprotease and DDG values were some-

what lower being 0.87 and 0.77, for pepsin and cathepsin D,

respectively.

Matrix metalloproteinase
Matrix metalloproteinase (MMP)12 inhibitors were optimized by

using X-ray crystallography and thermodynamics measurements

[16] while monitoring selectivity against MMP13. The highest

selectivity was 5 kJ/mol in terms of DG that was achieved by the

most enthalpic compound (DH = �40.4 kJ/mol) and, again, this

was not the highest-affinity compound considering the MMP12

target. The linear correlation coefficient (r) between the DGMMP12

and DDGMMP12-MMP13 values was found to be �0.15 (P = 0.85),

whereas the linear correlation coefficient between the DHMMP12

and DDGMMP12-MMP13 is higher: �0.68 (P = 0.32). Observations on

this limited congeneric ligand set further strengthen the view that

not the affinity but the binding enthalpy has a higher contribution

to off-target selectivity.

Aldose reductase
Aldose reductase (ALR2) is a promising therapeutic target to prevent

late complications of diabetes. An optimal drug candidate should

possess a high level of selectivity for ALR2 over the related aldehyde

reductase (ALR1) [17]. To obtain a comprehensive overview of the

binding event, X-ray crystallography and thermodynamics mea-

surements were carried out for ALR2. Based on human X-ray struc-

tures published, the six studied ligands can be grouped into those

penetrating to the specificity pocket and others leaving the speci-

ficity pocket closed. According to the X-ray structures, the favorable

enthalpy of IDD393 might be the result of specific polar contacts

between the nitro moiety of the ligand and the Ser302 residue. This

was further strengthened by the Ser302Arg mutation, where the

binding enthalpy of IDD393 dropped by 19.4 kJ/mol. Similarly,

comparing the structures of sorbinil and fidarestat revealed that

sorbinil possesses a strong H-bond with the backbone NH of Leu300,

not present in the case of fidarestat. This observation has been

further supported by the decreased enthalpic contribution of sorbi-

nil binding by 8.2 kJ/mol in the Leu300Pro mutant protein. In both

cases, the increased selectivity against ALR1 might be the result of

the specific enthalpic contact with the primary target that is less

than optimal in the case of the antitarget ALR1.

By contrast, we did not find correlation between selectivity and

binding enthalpy for the whole dataset. This might be explained

by the different physicochemical profiles of the two ligand classes.

Ligands occupying the selectivity pocket are carboxylic acids, and

share similar pharmacophoric features, whereas those bound out-

side the pocket (e.g. sorbinil and fidarestat) are small, weak NH

acids with fewer pharmacophore elements compared with com-

pounds in the first group.

Thrombin
Medicinal chemistry optimization of triazole- and tetrazole-con-

taining sulphonamide-type thrombin inhibitors was published by

Siles et al. [18]. The most promising compound had 828-times

selectivity against trypsin. Evaluation of tryptase and chymase

selectivity revealed a favorable selectivity profile, because 0.95

and 0.98 residual enzyme activities were determined in the pres-

ence of 10 mM inhibitor. Thermodynamics profiles of thrombin
88 www.drugdiscoverytoday.com
binding, the primary target were measured by isothermal titration

calorimetry (ITC). The highly selective lead compound was found

to bind thrombin with favorable (�38.1 kJ/mol) enthalpy contri-

bution and unfavorable (3.3 kJ/mol) entropy. Owing to the signif-

icant selectivity against other related human serine proteases and

the encouraging thermodynamic profile, this lead compound

serves as a high-quality starting point for further optimization.

Although, in this study, only the top-ranked compound was

thermodynamically characterized, the high selectivity and the

corresponding enthalpy-driven binding fits into the proposed

relationship of these properties.

Cannabinoid receptors
Binding thermodynamics of agonists and antagonists of cannabi-

noid (CB)1 and CB2 receptors were determined by van’t Hoff

analysis [19] – a methodology that is generally considered to be

less reliable than ITC measurements and highly influenced by the

heat capacity change of the system. In this case, similar to many G-

protein-coupled receptor (GPCR) targets, binding thermodynam-

ics separates the ligands by their functional activity. Binding of the

five agonist compounds was entirely entropy driven, whereas

binding of the three antagonists was mainly realized by favorable

enthalpy contribution. The relationship between thermodynam-

ics signatures and functional activities is a topic of a high number

of studies [20] and is therefore beyond the scope of the present

paper. Among the two investigated CB receptors, the highest

affinity target was evaluated as a primary target and the lowest

affinity target as a secondary one. Selectivity was defined as the

difference in binding free energy between the primary and the

secondary target. The enthalpy contribution calculated for the

primary target was compared to the selectivity observed resulting

in linear correlation coefficient (r) of �0.81 (P = 0.016) for all of the

eight ligands. Accordingly, ligands possessing more-favorable

binding enthalpy contribution had higher selectivity regarding

the two CB receptors. Among the eight ligands, ACEA, 2-Fl-AEA

and CP55940 had different physicochemical profiles and pharma-

cophore sets. ACEA and 2-Fl-AEA are arachidonic acid derivatives,

whereas CP55940 is an octane derivative. Therefore, their binding

mode might be significantly different from that of the remaining

five ligands which might explain their distinct thermodynamics

profiles. Leaving these ligands out resulted in higher linear corre-

lation coefficient (r = �0.95, P = 0.012) between the DDG and DH

values. According to these observations, the relationship between

selectivity and enthalpy contribution seems to be valid on GPCRs

with thermodynamics profiles obtained from van’t Hoff analysis

for compounds having a similar binding mode.

Nucleic acid binding
A specific DNA aptamer that recognized L-argininamide was dis-

covered by systematic evaluation of ligands by exponential en-

richment (SELEX) [1]. This construct had approximately 100-fold

selectivity for L-argininamide over several other arginine analogs

and amino acids. The highly selective binding of L-argininamide to

the DNA was found to be relatively weak: �21.3 kJ/mol only.

However, the binding was accompanied by a large, favorable

enthalpy, in the range of �36 to �38 kJ/mol, and unfavorable

binding entropy, in the range of 15–17 kJ/mol. Based on this

observation, it was concluded that high specificity can be achieved
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without high affinity, if the binding is mediated by a large enthal-

py contribution.

Thermodynamics signatures of amiloride binding to an abasic

(AP site) site in RNA and DNA has been reported recently [21].

Despite the typically promiscuous binding of aminoglycoside

antibiotics to various RNA targets, amiloride was found to bind

strongly and selectively to an AP site of the RNA duplex. The

thermodynamics measurements on AP-RNA revealed that the

�45.2 kJ/mol binding free energy is composed of favorable

(�69.0 kJ/mol) enthalpy and unfavorable (23.8 kJ/mol) entropy

contributions. Interestingly, the amiloride affinity to AP-DNA was

78-times lower: �34.3 kJ/mol. Such remarkable preference of

amiloride binding to RNA relative to DNA is characteristic com-

pared to typical small DNA-binding ligands [21]. Analysis of the

binding thermodynamics data measured for RNA and DNA

revealed that the unique selectivity is associated with a large

(10.9 kJ/mol) enthalpy difference, whereas the entropy contribu-

tion was almost equivalent. As a consequence, selectivity between

the two targets was explicitly the result of the enthalpy change.

Ligand-binding protein
Antidigoxigenin antibodies are administered to remove overdosed

digoxin, which has a narrow therapeutic window. A very interesting

approach was published recently in which protein-binding sites were

computationally designed to bind digoxigenin (DIG) [22]. The bind-

ing pocket was engineered in silico to have specific, energetically

favorable H-bonds and van der Waals interactions along with high

overall shape complementarity.  The best construct obtained was able

to bind DIG with extremely high affinity (541 pM), similar to that of

antidigoxin antibodies. ITC and X-ray crystallography revealed that

the best host site can form three specific H-bonds with the ligand that

is associated with favorable (��45.3 kJ/mol) enthalpy and favorable

(��7.5 kJ/mol) entropy. The designed protein has 29-, 372- and 3216-

fold DIG preference against structurally highly similar compounds:

digitoxigenin, progesterone and b-oestradiol, respectively. To assess

the role of specific H-bonds with DIG ligand on selectivity the Tyr101

H-bond-donor interacting with DIG C-ring oxygen was mutated to

Phe. This mutation resulted in lower affinity for DIG (Ki: 39 nM) and

reduced selectivity �0.1-, 0.8- and 43-fold for digitoxigenin, proges-

terone and b-oestradiol, respectively. Mutation of the other important

H-bonding partner, Tyr43 to Phe, also decreased the affinity for DIG

(59 nM) and the selectivity against the three investigated compounds

(DIG had 12-, 1.3- and 254-fold selectivity against digitoxigenin,

progesterone and b-oestradiol, respectively). These experiments con-

firmed that the selectivity of the artificial ligand-binding protein for

DIG was conferred through the designed H-bonding interactions.

Therefore, this study is a plausible example for the role of highly

oriented specific interactions that results in favorable binding enthal-

py and high specificity. Considering medicinal chemistry aspects,

designing ligands that can form optimal, enthalpically favorable H-

bonds with the target-binding site might similarly result in high

specificity against different binding environments having lower com-

plementarity and suboptimal H-bonding pattern.

Thermodynamic profile of marketed drugs
A retrospective analysis of thermodynamic signatures of marketed

drugs was published for a series of statins binding to 3-hydroxy-3-

methylglutaryl coenzyme A (HMG-CoA) reductase, small-molecule
inhibitors of HIV protease [10,23] and bisphosphonate inhibitors

for farnesyl pyrophosphate synthase (FPPS) [24]. Investigating the

compounds in terms of their market entry time revealed a clear

trend regarding the enthalpy contribution of the binding free

energy (Fig. 2).

Binding to their primary target, first-in-class drugs were typical-

ly entropy driven, with positive or negligible enthalpy contribu-

tion in all the three cases. During the time-course of drug

evolution, as novel drugs with the same mechanism of action

are introduced to the market, they must show advantages over the

predecessors. Those drugs that were better than the previous

compounds in the class can be characterized with sequentially

increasing binding enthalpy contribution. In the case of statins,

for the first-in-class fluvastatin the binding enthalpy is 0 and the

binding entropy is �37.6 kJ/mol, whereas for rosuvastatin – the

last entry in this analysis – the corresponding values are �38.9 kJ/

mol and �12.5 kJ/mol, for enthalpy and entropy, respectively.

Considering the protease inhibitors, indinavir binding is realized

by �59.4 kJ/mol favorable entropy and the enthalpy contribution

is 7.6 kJ/mol. By contrast, darunavir binding is mainly enthalpy

driven (�53.1 kJ/mol), and the entropy contribution is �9.6 kJ/

mol only. The tendency is also obvious for bisphosphonate FPPS

inhibitors. Etidronate binding is entirely entropy driven, with

�36.4 kJ/mol, associated with unfavorable (7.1 kJ/mol) enthalpy.

By contrast, minodronate binding is enthalpy driven (�37.7 kJ/

mol) and the entropy contribution is �3.3 kJ/mol only. The un-

derlying reasons for the success of the more-enthalpic compounds

might include better physicochemical parameters, such as lipo-

philicity and solubility, arising from the more-polar moieties that

are necessary for favorable enthalpic binding. However, we should

emphasize that these drugs were optimized without controlling

their binding thermodynamics and obviously there are a vast

amount of other parameters influencing the success of the given

drug. Although we are aware of the limitations of thermodynamics

signatures, increasing enthalpy contribution to binding free ener-

gy during drug evolution in a given class is significant.

The most common adverse effect associated with statins is

myalgia that is thought to be linked to myocyte HMG-CoA reduc-

tase inhibition. One possibility to avoid this side-effect is the

hepatocyte-selective distribution of statins that can be achieved

by decreasing passive cell permeability by increasing the hydro-

philicity. In this respect, the most enthalpic (i.e. rosuvastatin) has

the highest hydrophilicity and hepatoselectivity. Myocyte IC50 is

926-times higher compared with the hepatocyte value [25]. Hepa-

toselectivity of less-enthalpic binders such as pravastatin, atorvas-

tatin and cerivastatin is somewhat lower; these drugs show 444-,

144- and 4.1-fold selectivity, respectively. Therefore monitoring

binding thermodynamics becomes an integrated part of statin

optimizations [26]. Optimizing the atorvastatin scaffold, a prom-

ising lead compound was derived possessing �74 kJ/mol enthalpy

contribution and higher than 1000-fold hepatic selectivity.

Selectivity against off-targets can be another reason for the

success of the best-in-class compounds. In the case of HIV protease

inhibitors it was shown that more-enthalpic compounds possess

higher adaptability to drug-resistant mutants along with more-

enhanced selectivity to the off-target cathepsin D [27,28]. Inter-

estingly, no correlation was observed between adaptability and

binding affinity, however a reproducible correlation was found
www.drugdiscoverytoday.com 89
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FIGURE 2

Thermodynamic profile of marketed drugs.
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between the logarithm of the corresponding Kd ratio and the

proportion of binding enthalpy contribution to the binding affin-

ity in the wild-type protease [27]. The benefit of enthalpic opti-

mization was also shown during the evaluation of indinavir,
90 www.drugdiscoverytoday.com
nelfinavir, saquinavir, ritonavir, KNI764 and KNI272 in terms of

the inhibition of resistant mutant V82F/I84V. In this case, com-

pounds that form optimized H-bonds and, thus, realized more-

enthalpic binding to the wild-type HIV protease show higher

residual inhibition against the resistant mutant of the entropy-

driven binders. Here, specific and enthalpically favorable contacts

provided more-desirable adaptability [29].

Selectivity profile analysis of marketed drugs
Our evaluation on the link between selectivity and binding ther-

modynamics profiles indicated that enthalpy-driven compounds

show typically higher selectivity than entropy-driven analogs with

a similar binding mode to primary targets. To expand the domain

of the selectivity–thermodynamics relationship, our intention was

to challenge this hypothesis on broad selectivity profiles. There-

fore, we have collected examples possessing binding thermody-

namics data on the primary target and these were subjected to

broad off-target assay profiling. The thermodynamics data were

collected from literature including BindingDB, PDBCal and Scor-

pio databases [30]. In vitro profiling data were collected from the

coherent DrugMatrix database available through ChEMBL

(https://ebi.ac.uk/chembldb) and the CerepBioprint (Cerep) pro-

file [31]. We have selected these databases to ensure that the

compounds were tested on the same number of assays within

the same laboratory conditions to minimize the noise originating

from the inter-laboratory differences. By contrast, the thermody-

namics data pooled from various sources might include inter-

laboratory errors of thermodynamics measurements.

Nineteen compounds acting on six targets fulfilled our criteria

(Table 1). Five compounds are HIV-1 protease inhibitors, five are

dopamine D2 receptor ligands, four are HMG-CoA reductase inhi-

bitors, two act on histamine H1 receptors, two compounds are

beta-blockers and, finally, we included a DNA-gyrase inhibitor.

HIV-1 protease and HMG-CoA reductase inhibitors were evaluated

in terms of their thermodynamics profiles [10,23]. It was proposed

that favorable interplay between enthalpy and entropy is reflected

in their progress to the market. It was suggested that enthalpically

more-favorable drugs tend to be the best-in-class compounds,

whereas the entropy-driven binders represent pioneer, first-in-

class drugs. In accordance, evaluating the enthalpic efficiency as

the measure of ligand–protein complementarity has also been

discussed in the literature [10,32].

First, promiscuity and thermodynamics relationships were eval-

uated within target groups. Table 1 shows that binding of three

HIV-1 protease inhibitors: nelfinavir, indinavir and saquinavir, is

entropy driven (see supplementary material Table S1 online for

more detail). Ritonavir binding is also entropy driven, but the

enthalpy contribution is more favorable than that for the first

group. Amprenavir binding is characterized by balanced entropy–

enthalpy contributions. The change from entropy-driven binding

to a more-balanced thermodynamic profile is also reflected in the

selectivity profile. Amprenavir hits only two targets out of �134

involved in the DrugMatrix panel and three out of 185 on Cerep.

By contrast, saquinavir hits 11 targets on the DrugMatrix assay

panel and 18 on the Cerep panel.

The enthalpies of the five drugs acting on the dopamine D2

receptor possess significant �0.92 (P = 0.026) linear correlation

coefficient (r) with the number of hit targets on the Cerep profile.

https://ebi.ac.uk/chembldb
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TABLE 1

Compounds with thermodynamic and broad specificity assay profiles. Calculated octanol–water partition coefficient (AlogP), heavy
atom count (Nh) and molecular weight (Mw) are indicated.

Drug Targe t Drug
matrix

Drug
matrix 
ΔΣGoff

Cere p ΔGa ΔH a -TΔSa AlogP Nh Mw
Refs

1 Nelfinavir HIV-1 protea se 7 204 53.5 13.0 66.5 5.3 40 567.8 [10]

2 Ind inavir HIV-1 protea se 3 102 7 51.8 7.6 59.4 3.1 45 613.8 [10 ]

3 Saqu inavir HIV-1 protea se 11 338 18 54.3 5.0 59.3 3.7 49 669.9 [10 ]

4 Ritonav ir HIV-1 protea se 8 277 15 57.3 18.0 39.3 5.0 50 720.9 [10 ]

5 Amprenavir HIV-1 protea se 2 -64 3 55.2 28.8 26.4 2.4 35 506.6 [10 ]

6 Flup enthixo l Dop amine D2 52 47.7 15.2 62.9 4.82 30 434.52 [33 ]

7 Halop erido l Dop amine D2 18 682 27 53.2 12.8 40.4 3.76 26 375.9 [33 ]

8 Alizap ride Dop amine D2 13 42.3 50.8 8.6 1.87 23 315.4 [33 ]

9 Metoclop ramide Dop amine D2 6 214 19 41.4 54.8 13.4 1.78 20 299.8 [33 ]

10 Sulpiride Dop amine D2 2 76 10 41.9 88.6 46.7 0.7 23 341.4 [33 ]

11 Fluvas tatin HMG-CoA
redu ctas e 1 36 5 37.6 0.0 37.6 4.2 30 411.5 [10 ]

12 Ceriva stati n HMG-CoA
redu ctas e 0 0 4 -47.7 -13.8 -33.9 4.2 33 459.6 [10 ]

13 Pra vas tati n HMG-CoA
redu ctas e 0 0 1 -40.5 -10.5 -30.0 2.2 30 424.5 [10 ]

14 Atorvast ati n HMG-CoA 
redu ctas e 0 0 45.6 18.0 27.6 5.6 41 557.6 [10 ]

15 Clozap ine Histamine H1 26 1100 44 47.9 72.0 119.9 3.42 23 326.8 [34 ]

16 Diph enhyd ramine Histamine H1 11 398 29 43.6 22.6 66.2 3.38 19 255.4 [34 ]

17 Pindo lol Beta-blocker 1 43 9 49.6 21.3 28.3 1.93 18 248.3 [35 ]

18 Isop rotereno l Beta-blocker 1 33 5 50.2 143.2 92.9 1.1 15 211.6 [35 ]

19 Novob iocin DNA gy ras e 0 42.7 51.8 9.2 3.45 44 612.6 [30 ]

Linear  corr elati on

Drug matrix (n = 16 ) 1.00 0.99
(<0.001 )b 0.95 0.26 0.55

(0.026 )b
0.58

(0.020 )b 0.19 0.07 0.06

Drug m atrix  ΣΔG
(n = 16 )

0.99
(<0.001 )b 1.00 0.95

(<0.001 )b 0.21 0.55
(0.027 )b

0.57
(0.022 )b 0.16 0.13 0.12

Cerep  (n = 17 )
0.95

(<0.001 )b
0.95

(<0.001 )b 1.00 0.12
0.54

(0.025 )b
0.54

(0.023 )b 0.38 0.20 0.19

Spear man rank  
corr elati on

Drug  matrix (n = 16 ) 1.00 0.99
(<0.001 )b

0.92
(<0.001 )b 0.42 0.47 0.63  

(0.009 )b 0.10 0.04 0.05

Drug m atrix  ΣΔG
(n = 16 )

0.99
(<0.001 )b 1.00

0.92
(<0.001 )b 0.37 0.45

0.61  
(0.013 )b 0.06 0.00 0.00

Cerep  (n = 17 ) 0.92
(<0.001 )b

0.92
(<0.001 )b 1.00 0.15 0.46 0.57  

(0.019 )b 0.20 0.26 0.24

aThermodyna mic data are presen ted  in kJ/mol.
bP-values are ind ica ted in p arentheses  Stati sticall y sign ifica nt  corr elation s are marked wit h red color. 

a Thermodynamic data are presented in kJ/mol.
b P-values are indicated in parentheses. Statistically significant correlations are marked with red color.
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The entropy-driven binding of flupenthixol is translated into high

promiscuity, hitting 52 targets (Table 1). By contrast, the enthalpy-

driven binding of sulpiride highlights the enhanced complemen-

tarity to the target-binding site, and results in significantly reduced

promiscuity. Ligands of the dopamine D2 target show univocal

tendencies on the DrugMatrix and the Cerep profile.

In the case of HMG-CoA reductase inhibitors, fluvastatin

binding is entropy driven, whereas cerivastatin, pravastatin

and atorvastatin binding have increased enthalpy contribution.

Accordingly, fluvastatin, cerivastatin and pravastatin hit five,

four or one target on the Cerep assay panel, respectively. The

increasing selectivity is in-line with the entropy–promiscuity

relationships, because the decreasing binding entropy results
in lower promiscuity. Binding of the histamine H1 ligands is

entropy driven. Accordingly, clozapine and diphenhydramine

are highly promiscuous compounds hitting 26 and 11 targets on

DrugMatrix, and 44 and 29 targets on Cerep profile, respectively.

Thermodynamics signatures of beta-blockers revealed that

pindolol binding is balanced in terms of enthalpy and entropy

contributions, whereas isoproterenol binding is entirely enthal-

py driven. Thermodynamics profiles are in-line with their me-

dium and low promiscuity, respectively. Our last example is

novobiocin, a selective compound characterized by enthalpy-

driven binding and correspondingly no off-target activity on the

Cerep panel. This compound is specific, with no promiscuity

issue reported.
www.drugdiscoverytoday.com 91
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Next, we investigated the whole dataset that represents broad

chemical diversity and spans six targets. To assess the relationship

between thermodynamics profiles and observed hit rates, linear

and rank correlation coefficients were calculated. Sum of ranking

differences (SRD) values were also calculated (see supplementary

material Tables S2,3 online) [36]. Although differences in binding-

site characteristics and measurement conditions might impact the

results of this analysis, we found that compounds hitting higher

numbers of targets have more-remarkable entropy and typically

less-favorable enthalpy contributions. It is worth mentioning that

higher affinity achieved by entropy-driven optimization does not

necessarily result in high selectivity (significant negative correla-

tion coefficients), in contrast to lower affinity but higher enthalpy

contributions. Lopinavir, atazanavir and amprenavir clearly ex-

emplify this statement. Results acquired for this limited dataset

revealed that binding enthalpy and entropy tend to correlate with

the number of off-targets (Table 1; see also supplementary Figure

S1 online). In the case of SRD calculations the entropy-based

ranking was found to be significantly different from a random

distribution, with P value of 0.017 and 0.016 for DrugMatrix and

Cerep datasets. More-favorable binding enthalpy and less-favor-

able binding entropy might result in higher specificity and lower

promiscuity. Enthalpy and entropy correlation was found to be

�0.99 (P < 0.001), in accordance with the phenomenon of entro-

py–enthalpy compensation. Although correlations were found to

be statistically significant, it is worth mentioning that they are

generally weak and were obtained from a limited dataset prevent-

ing its over-interpretation. Leaving one compound out generally

does not change the correlation coefficients (�0.02) except for

clozapine. Linear correlation between enthalpy and promiscuity

without clozapine drops to 0.32 and 0.39 for DrugMatrix and

Cerep data, respectively.

To compare continuous variables we calculated the sum of

binding energies on off-targets using the activity values presented
TABLE 3

Binding thermodynamics and selectivity data of aldose reductase (A

Compound DGALR2 (kJ/mol) DHALR2 (kJ/mol)

Selectivity pocket occupant
Zopolrestat �46.0 �58.1 

Compound 2a �42.5 �48.5 

IDD388 �42.7 �59.0 

IDD393 �42.2 �81.2 

Non-occupant

Sorbinil �37.9 �54.7 

Fidarestat �46.7 �79.5 

a Compound identifier in the original article [17].

TABLE 2

Binding thermodynamics data of matrix metalloproteinase (MMP)12

Compound DGMMP12 (kJ/mol) DHMMP12 (kJ/mol) 

1 (1)a �41.1 �38.0 

2 (3)a �43.9 �35.6 

3 (4)a �49.2 �37.0 

4 (6)a �46.2 �40.4 

a Compound identifier in the original article [16].
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in DrugMatrix (Table 1). In contrast to the simple sum of targets hit,

the summed affinity avoids biases owing to high hit rates with limited

affinities compared with low hit rates with high affinity. Because the

DrugMatrix database contains equivalent numbers of assay results for

each ligand, binding energies can be summed. This analysis resulted

in similar tendencies to that of the hit target type assessment.

The quality of optimized compounds is usually quantified by

changes in the physicochemical profile. In terms of these param-

eters, enthalpy-driven optimization is generally preferred over

entropy-driven optimization [10,15,30,32,37,38]. Ligand promis-

cuity, as well as thermodynamic signature of binding [39], is also

interrelated to physicochemical properties. It was shown that

three physicochemical features: basic character, molecular weight

and lipophilicity (logP/logD), have the highest influence on pro-

miscuity [40]. It is interesting to note that lipophilicity (AlogP)

generally showed higher correlations with the off-target occur-

rences compared with molecular size descriptors, such as heavy

atom count (Nh) and molecular weight (Mw) (Table 1). However,

all of these correlations were statistically nonsignificant for this

dataset (Table 1). The general correlation between size and potency

is well established [41,42]; in our case the correlation between

binding energy and Mw was found to be also remarkable

(r = �0.45, P = 0.052). Linear correlation (r) between entropy

and lipophilicity (AlogP) was found to be more pronounced:

r = �0.63 (P = 0.004).

The correlation between binding enthalpy and lipophilic ligand

efficiency (LLE = pAct � logP) has been recently investigated by

Shultz [43]. Therefore we have collected all the cases shown in

Tables 1–4 to evaluate the enthalpy–LLE correlation. The linear

correlation coefficient (r) was found to be �0.501 (P = 0.001),

resulting in significant correlation for the investigated 37 cases.

However correlation using the off-target assay-profiling data col-

lected in Table 1 did not result in significant correlation with

DrugMatrix (r = �0.003) and Cerep (�0.257) sets.
LR2) ligands.

 �TDSALR2 (kJ/mol) DDGALR1-ALR2 (kJ/mol)

12.1 17.7

6.0 >23.8 (rat)

16.3 14.9

39.0 21.0 (fluoro derivative)

16.8 2.4

32.8 11.9

 ligands.

�TDSMMP12 (kJ/mol) DDGMMP13-MMP12 (kJ/mol)

�3.1 1.0

�8.3 2.3

�12.2 1.0

�5.9 5.0



Drug Discovery Today � Volume 20, Number 1 � January 2015 REVIEWS

TABLE 4

Binding thermodynamics data of cannabinoid (CB) receptor ligands.

Compound DG(primary) (kJ/mol) DH(primary) (kJ/mol) �TDS(primary) (kJ/mol) DDG(primary-secondary) (kJ/mol)

WIN55212 �46.8 (CB2) 27 �73.8 2.6

JWH015 �41.4 (CB2) 48 �89.4 2.6

ACEA �47.8 (CB1) 59 �106.8 8.2

2-Fl-AEA �46.1 (CB1) 17 �29.1 6.2

CP55940 �51.2 (CB1) 56 �107.2 3.3

AM630 �41.2 (CB2) �19 �22.2 8.0

AM281 �45.9 (CB1) �35 �10.9 13.7

AM251 �48.8 (CB1) �52 3.2 13.3
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Regarding the application domain of the concept of increasing

selectivity by thermodynamics optimization, it is important to

emphasize that the key point is the rational optimization of the

interaction pattern of the protein–ligand complex with specific

contacts. The experimentally determined entropy and enthalpy

values measure the sum of the changes related to the complex

formation, including solvation terms, protein and ligand confor-

mational changes and protein–ligand enthalpic contacts. The

flexibility of the protein target and the nature of the binding site

also have crucial impact, as exemplified by the entropy–enthalpy

transduction theory [44]. Decoupling the protein–ligand entropy

and enthalpy contribution is therefore a difficult task that has not

been solved entirely to date. Accordingly, it is highly recom-

mended to deploy experimental and computational approaches

synergistically to understand the biophysical background of the

free energy changes.

Concluding remarks
The pioneer hypothesis of Kawasaki and Freire [15] has been

evaluated here regarding the interplay between selectivity and

thermodynamics profiles. According to their study, ligand selec-

tivity can be achieved by favorable binding enthalpy, because it is a

straightforward measure of protein–ligand complementarity

[10,15]. Highly oriented interactions accomplished by enthalpic

interactions result in higher bias toward the primary target, mak-

ing compounds less promiscuous. We showed that structurally

diverse ligands of several validated drug targets (HIV protease,

HMG-CoA reductase, D2, b-adrenergic and histamine H1 recep-

tors) possessing broad selectivity profile data support this concept.
The limited number of cases collected and discussed here strength-

ens the link between selectivity and thermodynamics and facil-

itates the generation of more thermodynamics data on

compounds with wide ranges of selectivity assay data. The objec-

tive of the present review is to stimulate further debate supporting

or challenging this hypothesis by publishing further experimental

data. From the thermodynamics point of view, drugs are acting in

an open system; therefore emphasizing that the recent observa-

tions were made under equilibrium conditions is crucial. Under

physiological conditions the binding kinetics might also influence

the selectivity profile realized in vivo [45–47].

From a practical point of view, monitoring binding thermody-

namics at project milestones can facilitate the selection of the

higher-quality compounds. Desirable hit and lead compounds

having the highest enthalpy among the chemical series might

be in-line with the greater complementarity with the primary

binding site, therefore impacting selectivity profile. Owing to

the complex nature of the binding event and the difficulties of

understanding, the thermodynamics background of the SAR con-

tributes to the obstacles of successful optimization toward higher

enthalpy. Structure-based approaches, experimental and compu-

tational, have crucial roles in rationalizing these modifications.

Based on the current state of our understanding, this hypothesis

can be exploited during medicinal chemistry programs optimizing

affinity and selectivity in parallel.

Appendix A. Supplementary data
Supplementary material related to this article can be found, in the

online version, at http://dx.doi.org/10.1016/j.drudis.2014.09.014.
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