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Accumulated findings have demonstrated that the epigenetic code provides a potential link between

prenatal stress and changes in gene expression that could be involved in the developmental

programming of various chronic diseases in later life. Meanwhile, based on the fact that epigenetic

modifications are reversible and can be manipulated, this provides a unique chance to develop multiple

novel epigenetic-based therapeutic strategies against many chronic diseases in early developmental

periods. This article will give a short review of recent findings of prenatal insult-induced epigenetic

changes in developmental origins of several chronic diseases, and will attempt to provide an overview of

the current epigenetic-based strategies applied in the early prevention, diagnosis and possible therapies

for human chronic diseases.
Introduction
Increasing epidemiological evidence suggests that maternal nutri-

tion and environmental factors in early development periods play

an important part in susceptibility of disease in later life [1,2]. In

the mid-1990s, Barker et al. coined the hypothesis of ‘fetal origins

of adult diseases’ [3], indicating that intrauterine factors and/or

maternal nutritional status have long-term programming effects

on fetal development, ultimately leading to increased susceptibil-

ity of chronic diseases. This concept has been supported by a

growing body of studies on low birth weight (LBW) [4,34], intra-

uterine growth retardation (IUGR) [5], premature birth [6] and

maternal malnutrition [7] associated with increased risks of chron-

ic diseases later in life in humans.

Although underlying mechanisms involved in molecular path-

ogenesis of chronic diseases in developmental origins are under

investigation, it is accepted that changes in epigenetic modifica-

tions or code are early significant events in the pathogenesis of

chronic diseases. Epigenetics, an emerging subject in the field of

genetics, means heritable changes in cellular phenotype and gene

expression that are not involved in DNA sequences [8]. During the

past decade, the epigenetic code has been identified as a key
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regulator of gene expression [9], and therefore is likely to play

major parts in transcriptional regulations, genome stability, cell

proliferation and embryonic development, among others. Classi-

cally, major epigenetic marks contain DNA methylation, histone

modifications, genomic imprinting and noncoding RNA.

DNA methylation is a characterized chemical modification of

chromatin in all unicellular and multicellular organisms. In mam-

mals, DNA methylation predominantly occurs at cytosine-C5 in

the context of CpG dinucleotides, and is established and main-

tained by three active DNA methyltransferases [10,11]. DNA meth-

ylation is a dynamic biological process and undergoes dynamic

reprogramming during gametogenesis and early embryogenesis in

mammals [12]. As a key regulatory mechanism in epigenetics,

DNA methylation has regulatory roles in normal and abnormal

cellular processes, and is essential for embryonic development,

genomic imprinting, X-inactivation and gene repression.

In eukaryotes, the nucleosome is the basic repeating unit

of chromatin, which is an octamer comprising four histones:

H2A, H2B, H3, H4, and 146 bp of DNA wrapped around the

histones [13]. Typically, each histone harbors an amino-terminal

20–40 residue ‘tail’. These histone tails provide sites for an enor-

mous number of reversible post-translational modifications,

including methylation, acetylation and phosphorylation [14].
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FIGURE 1

Epigenetic changes in the developmental programming of human chronic

diseases. Abbreviations: CVDs, cardiovascular diseases; MS, metabolic

syndrome.
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These covalent modifications in nucleosomes are known as his-

tone modifications with well-known roles in alteration of chro-

matin structures to influence patterns of gene expression [15].

In recent years, increasing evidence indicates that noncoding

RNAs (ncRNAs) are important in controlling multiple epigenetic

phenomena and regulating differentiation and development in

eukaryotes [16]. MicroRNAs (miRNAs), a class of small ncRNAs, are

�22 nucleotides long and crucial regulators in the epigenetic

control of gene expression and cell differentiation [17]. Common-

ly, miRNAs, as relatively negative regulators of gene expression,
TABLE 1

Epigenetic changes in response to various prenatal stresses and rel

Prenatal stress Gene expression 

Antibiotic exposure during pregnancy Methylation at imprinted genes

(H19/IGF2)(aberrant)

Maternal dietary protein restriction Angiotensin II type I receptor (AT1bR

Maternal nutrient restriction Endothelin-1 (ET-1) 

Low-density lipoprotein diets Endothelial Kruppel-like factor 2 (KLF

Maternal under-nutrition Glucocorticoid receptor (GR) 

Maternal obesity Zinc finger protein 423 isoform 2 (Zf

Utero-placental insufficiency Pancreatic and duodenal homeobox

Maternal stress miR-103 and miR-323 

miR-151 and miR-145 

In utero exposure to

diethylstilbestrol

Enhancer Zeste homolog 2 (EZH2) 

In utero exposure to high-fat

or ethinyl-estradiol 2 (EE2)

Dnmt1, Dnmt3a and Dnmt3b 
have been associated with a variety of diseases, including coronary

disease [18,19].

Genomic imprinting, a classic epigenetic mark by which certain

genes can be expressed in a parent-specific manner, is acquired

during gametogenesis and maintained during pre-implantation

development [20]. Genomic imprinting has a crucial influence on

the regulation of mammalian development and correlates with

pathophysiologic mechanisms in many human diseases [21,52]. In

eukaryotes, interactions and crosstalk among various epigenetic

marks are essential in regulating chromatin structures and gene

expression.

As mentioned above, early embryogenesis in utero is a crucial

event for the establishment of epigenetic information, especially

DNA methylation. However, it also provides a chance for prenatal

stress that could affect the establishment of DNA methylation

during crucial developmental periods. Indeed, the changes of

epigenetic modifications caused by prenatal stress, including pre-

natal malnutrition [25], and hypoxia [22], as well as other intra-

uterine insults [23], have crucial programming roles in the

postnatal pathological processes of chronic diseases (Fig. 1). In

this article, we give a short review of recent findings of epigenetic

mechanisms on developmental origins of several human chronic

diseases, and try to provide an overview of the current epigenetic-

based strategies applied in early prevention, diagnosis and possible

therapies against chronic diseases (Table 1).

Epigenetic code and the developmental programming
of cardiovascular and metabolic diseases
Starting 20 years ago, there has been a steady growth in the

number of laboratories and investigators involved in the investi-

gation on developmental origin of cardiovascular diseases (CVDs)

and metabolic syndrome (MS). And considerable evidence demon-

strates that the epigenetic regulation of gene expression is crucial
ated to chronic diseases

Epigenetic mechanisms Chronic diseases Refs

DNA methylation Chronic diseases

(CVDs, T2D)

[23]

Genomic imprinting

) DNA methylation Hypertension [28]

Histone acetylation Hypertension [30]

2) DNA methylation Coronary heart disease [40]

Histone modifications

DNA methylation H3K27me3

and H3K9ac

Obesity [25]

p423) DNA methylation H3K27me3 Obesity [51]

 1 (Pdx1) DNA methylation H3/H4ac
and H3K4me3 H3K9me3

Type 2 diabetes [57]

Noncoding RNAs Nervous and mental

disorders

[62]

MicroRNAs

DNA methylation Breast cancer [72]

Histone modifications

DNA methylation Breast cancer [73]

Histone modifications
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in prenatal-stress-induced fetal programming of CVDs [22,24]. MS

is the name for a group of health problems that occur when

hormones or other chemicals fail to interact properly in the body.

Obesity and diabetes mellitus type 2 (T2D) are the most common

health problems. Recently, the notion that prenatal-insult-in-

duced epigenetic changes play important parts in the etiology

of MS has been supported by a growing body of evidence that

shows that maternal malnutrition [25], or exposures to adverse

environmental factors [26,27], can increase risks for MS in later

life. This section focuses on the progress of changes in epigenetic

regulations of gene expression in response to intrauterine adverse

factors, in association with the pathological process of cardiovas-

cular and metabolic diseases, including hypertension, stroke, cor-

onary heart disease, obesity and T2D.

Hypertension
Hypertension is a major health problem worldwide with approxi-

mately one in three adults suffering from this disease. A large body

of literature suggests that the epigenetic code provides a potential

link between the prenatal stress and changes in gene expression

that can lead to hypertension [28–31]. For example, offspring

whose pregnant mothers fed on low protein diets showed hypo-

methylated AT1bR gene promoters along with an increased adre-

nal expression of AT1bR [28]. AT1bR is a major subtype of

angiotensin II (Ang II) receptors. Ang II is the most active peptide

of the renin–angiotensin system (RAS) in cardiovascular systems.

Major classical actions of Ang II include regulation of blood

pressure and blood volume mediated by AT1R [29]. Therefore, a

suboptimal intrauterine environment induces adult hypertension,

probably because of an alteration of expression of AT1bR via

changing DNA methylation at the promoter of the AT1bR gene.

Other studies also reported that maternal nutrient restriction led

to an increase in levels of histone acetylation in the endothelin 1

(ET-1) gene promoter of pulmonary vascular endothelial cells in

newborn rats with in utero growth restriction [30]. This epigenetic

change could result in IUGR rats highly sensitive to stress such as

hypoxia later in life, causing pulmonary arterial hypertension

(PAH) or pulmonary vascular remodeling.

Like low-protein diets during pregnancy, a high-salt diet is

another adverse intrauterine factor. Ding et al. [31] reported that

the protein of AT1R, not AT2R, in the fetal heart was selectively

changed following exposure to a high-salt diet, and this change

was linked to DNA methylation. The results indicated high-salt

diet during pregnancy influenced development of the fetal RAS

associated with fetal cardiac cellular changes, probably involved

in programming of hypertension. Together, those studies dem-

onstrated a link between environmental-insult-induced epige-

netic changes in the genes and resultant alteration of gene

expression in adult life, ultimately leading to pathogenesis of

hypertension.

Stroke
In general, stroke is usually caused by interruption of blood supply

to the brain as a result of blood vessel damage or clots. In recent

years, numerous research works have explored pathogenesis of

stroke at developmental levels. Some achievements, including the

roles of epigenetic marks in pathobiology of stroke, have attracted

significant attention.
1746 www.drugdiscoverytoday.com
As the main part of the epigenetic modifications, the levels of

DNA methylation were markedly altered in the cerebral cortex

following ischemia in rats [32]. DNA methylation of long inter-

spersed nucleotide element 1 (LINE-1) was correlated with ischemic

heart disease and stroke. Meanwhile, individuals with lower LINE-1

methylation have a higher risk in developing ischemic heart disease

and/or stroke in longitudinal analyses [32,33]. Li et al. [34] reported

that perinatal nicotine increased vulnerability of hypoxic–ischemic

brain injury in neonatal rats through aberrant expression patterns of

central AT2R. Meanwhile, increased methylation of CpG locus 3

bases upstream of the TATA box at the AT2R gene promoter could be

a mechanism of nicotine-mediated AT2R gene changes.

Histone modifications and noncoding RNAs were also involved

in the pathological process of stroke. For example, the evidence

from animal models of stroke suggests a significant increase in

H3K4me3 and H3K3 acetylation, as well as a decrease in H3K9me3

in the kidney of rats suffering stroke [35]. Moreover, noncoding

RNAs [36] such as microRNA and long ncRNAs were involved in

regulating the development of nervous systems and homeostatic

functions, showing their roles in correlation with all kinds of

cellular processes under normal conditions, as well as various

disease statuses, including stroke.

Coronary heart disease
Coronary heart disease (CHD), also known as coronary artery

disease (CAD), has been demonstrated to be linked to a number

of well-defined risk factors. One of the confirmed major risks for

the development of CHD is low birth weight or in utero growth

restriction, which can either induce or be associated with altera-

tions of epigenetic features in developing tissues and organs [37].

In fact, various epigenetic processes can be involved in the patho-

physiology of CHD. Using a DNA methylation-sensitive restriction

enzyme assay to evaluate methylation status of the genome, the

researchers found that the genomic DNA methylation in the CHD

patients was significantly higher than that in the control [38]. At a

single gene level, the level of methylation at a lot of gene pro-

moters was shown to be associated with progression of CHD. For

example, DNA methylation levels at the p15INK4b gene [39] were

found to be significantly increased in the CAD patients compared

with the control, and the changes in methylation and expression

of the p15INK4b gene could be involved in the mechanisms of

chromosome 9p21 on the development of CHD.

Similarly, histone modifications are crucial in the underlying

mechanisms for the development of CHD. For instance, a previous

study demonstrated that low-density lipoprotein (LDL), a major

modifiable risk factor for CHD, repressed the expression of endo-

thelial Kruppel-like factor 2 (KLF2) via altering histone- and DNA-

methylation-mediated epigenetic modifications [40]. LDL could

stimulate binding of the DNA methyl-CpG-binding protein 2 and

histone methyltransferase enhancer, whereas it decreased binding

of the KLF2 transcriptional activator to the KLF2 promoter in

endothelial cells. In this case, downregulation of KLF2 by LDL

could lead to a dysfunctional endothelium and the increased

susceptibility of CHD. In addition, a number of investigations

in the past decade have shown epigenetic abnormalities in other

CVDs, including cardiac hypertrophy [41] and heart failure [42].

Taken together, abnormal changes in epigenetic marks are surely

involved in developmental programming of CVDs.
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The prospects of epigenetic code for therapies against CVDs
Given the reversible characteristic of the epigenetic code, it is a

unique opportunity to offer a great potential for unlocking the

door to multiple novel diagnostic, prognostic and therapeutic

strategies against CVDs. Indeed, many laboratories and investiga-

tors are involved in studying new epigenetics-based therapies and

agents targeting CVDs. Significant progress has been made in

preclinical epigenetics-based therapies of a variety of CVDs. For

example, many chromatin regulatory factors and their identified

inhibitors can serve as therapeutic agents for CVDs [43–47]. These

factors primarily contain members of the repressor element-1

silencing transcription factor, such as lysine-specific demethylase

1 (LSD1) [43], and polycomb group (PcG) proteins [44], which

have been found to be linked to the pathophysiology of CVDs.

Among them, the most common example is histone deacetylase

(HDAC) enzyme inhibitors, which are chromatin-modifying fac-

tors that have already been demonstrated to have great promise as

therapeutic agents against CVDs and other diseases [45,47]. A

HDAC inhibitor trichostatin A (TSA) [46] was shown to be able

to protect wild-type mice from ischemic brain injury, and could

induce bone-marrow-derived multipotent progenitor cells to dif-

ferentiate into endothelial cells.

In addition, microRNAs also offer promising therapeutic strate-

gies for stroke, and that could be another kind of effective ap-

proach against CVDs [48]. Taken together, along with

investigation of epigenetic roles in the development of CVDs,

studies have already demonstrated great promise and offered

reasonable potentials for therapeutic approaches against CVDs

using single or multiple agents that can alter and/or reverse the

pathological epigenetic processes.

Obesity
Obesity is a global epidemic and medical condition in which the

natural energy reserves are over stored in the fatty tissue. In the

past few years, a large number of studies have shown that gesta-

tional diabetes, maternal overweight and other prenatal insults

[49,50] could increase risks of obesity and its complications in

offspring in later life. And epigenetic marks such as DNA meth-

ylation, histone modifications and genomic imprinting [25,51,52]

have been shown to be involved in the pathological changes in

obesity. For example, Begum and colleagues found the evidence of

decreased methylation at the glucocorticoid receptor promoter

and H3K27 trimethylation, as well as increased H3K9 acetylation

in hypothalamic neurons from the adult offspring exposed to

undernutrition during their mothers’ pregnancy in sheep [46],

suggesting that maternal undernutrition in gestation could lead to

specific epigenetic changes in the hypothalamic neurons in regu-

lating energy balance in the adult offspring.

Recent research showed that DNA methylation in the Zfp423

promoter was lower and the Zfp423 expression was higher in fetal

mice whose pregnant mothers were fed obesogenic diets. Zfp423 is

a key transcription factor and regulates adipogenic differentiation

in fetal progenitor cells [51]. Those findings suggested that mater-

nal obesity can enhance adipogenic differentiation in fetal mice

through reducing DNA methylation at the Zfp423 promoter, and

elevating its gene expression, which could be involved in pro-

gramming adiposity and metabolic dysfunctions later in life. In

addition, the percentage of methylation levels at different CpG
sites of CLOCK, BMAL1 and PER2 genes were shown to be associ-

ated with monounsaturated and polyunsaturated fatty acid intake

and obesity and MS characteristics [53], indicating a close link

between obesity and epigenetic modifications.

Diabetes
Like studies on obesity, numerous works on humans and animals

have highlighted the relationship between a variety of expositions

to adverse environmental factors in utero and T2D in later life

[54,55]. In general, occurrence of T2D is attributable to functional

b cells failing to compensate for insulin resistance in animals and

humans. Recent discoveries raise the hypothesis that epigenetic

changes in response to various environmental insults play impor-

tant parts in regulating b cell functions and development during

developmental stages, ultimately leading to increased risk of T2D

[56,57]. For example, under normal conditions, the proximal

promoter of Pdx1 gene is found in an unmethylated open chro-

matin state marked by H3 and H4 acetylation as well as H3K4me3,

which is essential for transcription. However, pancreatic islets

isolated from IUGR fetuses show a significant decrease in H3/H4

acetylation and H3K4me3 at the proximal promoter of Pdx1,

whereas there was a significant increase in H3K9me2 and extensive

DNA methylation, which led to locking the Pdx1 gene in a

transcriptionally silent state [57,58]. Pdx1, a pancreatic and duo-

denal homeobox 1 transcription factor, is a crucial regulator of b

cell growth and functions in the body. A relatively modest de-

crease in Pdx1 expression can alter b cell functions and cellular

developments, ultimately impairing compensatory responses to

insulin resistance [58]. Recently, these molecular mechanisms

were validated by mounting evidence from studies on patients

with T2D. By assessing the methylation status of proximal pro-

moter of Pdx1 in islets, Yang and colleagues [58] verified that Pdx1

methylation was reliably increased, whereas Pdx1 expression was

significantly decreased in patients with T2D, indicating that epi-

genetic modifications of Pdx1 play a crucial part in the develop-

ment of T2D.

Taken together, more and more evidence has shown that a

myriad of epigenetic changes, including aberrant DNA methyl-

ation and histone modifications, are associated with obesity,

T2D and other metabolic syndromes. This defective condition

provides the basis for the clinical use of the DNA methyltrans-

ferases and/or histone modifying enzyme inhibitors for treat-

ments of metabolic syndrome [59,60]. A widely investigated

example is HDAC4, which represents a potential therapeutic

target for the management of obesity and insulin resistance [60].

Using epigenetics marks could be an emerging field in transla-

tional medicine, and may provide a window of opportunity for

early detection, intervention and therapy against metabolic

syndrome.

Epigenetic code and the developmental programming
of neural and mental disorders and cancer
Neural and mental disorders
Neural and mental disorders are diseases of the nervous system,

including Parkinson’s disease, schizophrenia, autism spectrum

disorders (ASDs) and other disorders affecting the central and

peripheral nervous system. Recent studies have shown that

neural and mental disorders are linked with early life stress
www.drugdiscoverytoday.com 1747
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in utero, including insufficient nutrition, maternal use of psychi-

atric drugs and mental stress during pregnancy [61–63]. For exam-

ple, accumulated evidence indicates that methyl CpG binding

protein 2 (MeCP2) has crucial roles in the brain development

and pathogenesis of various ASDs, such as in Rett syndrome

[64]. In addition, prenatal exposure to valproate, a drug used in

the treatment of epilepsy, increased susceptibility to autism spec-

trum disorders in the offspring [65]. Maternal use of valproate

during pregnancy [66] could induce demethylation in the promot-

er regions of specific genes such as wnt1 and wnt2 in the Wnt/b-

catenin pathway in the rat brain, resulting in the increased ex-

pression of its target genes and susceptibility to autism spectrum

disorders in the offspring.

At the same time, a substantial body of evidence indicates that

several neurodevelopmental and neuropsychiatric disorders are

partially caused by aberrant epigenetic marks, including histone

modifications and microRNA [62,68]. Accumulated evidence

supports the thesis that post-translational modifications of

histones are not only important for normal neural functions

but also for the pathological progression of Huntington’s and

Parkinson’s diseases [67,68]. Recent findings showed that his-

tone H3K27me3 demethylase JMJD3 was able to enhance the

polarization of microglia by modifying H3K27me3, and played

an important part in the switch of microglia phenotypes that

might be involved in the pathogenesis of Parkinson’s disease

[68]. MicroRNA is also involved in neuroplasticity and physio-

logical processes in response to gestational stress. For instance,

gestational stress can regulate expression of miR-219 in control-

ling expression of gene Dazap1 [62]. miR-219 and Dazap1 are

putative markers of bipolar affective disorder and schizophrenia

in humans. These findings indicate that gestational stress modi-

fies epigenetic modifications linked to multiple neural and

mental disorders during crucial periods in the development of

the brain.

Therefore, like the epigenetics-based therapies for CVDs men-

tioned above, the targeting of important epigenetics regulatory

proteins seems to be a reasonable therapeutic strategy for neural

and mental disorders. During the past decade, numerous studies

have identified HDAC inhibitors that could be candidate drugs for

the therapy of neurodegenerative and psychiatric disorders

[69,70]. Meanwhile, owing to HDAC inhibitors exhibiting neuro-

protective properties in animal models of various brain disease,

they have great potential for treatment cognitive impairment

resulting from neurodevelopmental and neurodegenerative dis-

orders, and also serve as cognitive enhancers [70,71]. Together,

accumulated knowledge from studies on diseases in developmen-

tal origins offers a new challenge if we can use epigenetic weapons

to prevent those chronic diseases in early life periods, because

many epigenetic changes could be reversible.

Cancer
Recently, emerging evidence suggested that some cancer could

originate from early life [72,74]. For example, recent studies from

animal models showed that maternal exposure to high-fat or

ethinyl-estradiol (EE2) [73] during pregnancy could increase

mammary cancer risk in several generations of offspring, which

was associated with changes in DNA methylation machinery and

DNA methylation patterns. In addition, experimental data
1748 www.drugdiscoverytoday.com
showed that perinatal exposure to diethylstilbestrol (DES) or

bisphenol-A (BPA) induced neoplastic changes in mammary tis-

sue of mice via changing expression and functional activity of

enhancer of Zeste homolog 2 (EZH2) [72]. EZH2, a histone

methyltransferase, is a novel epigenetic regulatory factor, by

which perinatal exposure to DES or BPA could lead to epigenetic

changes in development of breast cancer. Meanwhile, recent

findings showed that the expression of prostatic phosphodiester-

ase type 4 variant 4 (PDE4D4) was methylation-regulated by

exposure to oestradiol and BPA during pregnancy, which was

involved in cell proliferation and neoplastic transformation [74].

Those abnormal changes in a gene-specific manner implicate that

the epigenetic code could reveal underlying mechanisms in de-

velopmental carcinogenesis.

Since a decade ago, a number of laboratories have shown great

interest in the use of epigenetic code in testing of cancer and

prenatal diagnosis. Epigenetic marks such as DNA methylation

and histone modifications could serve as potential mediators or

biomarkers of cancer. Indeed, research literature volumes have

significantly increased in the past decade on the application of

epigenetics in cancer therapies. For example, the anticancer effect

of histone deacetylase inhibitors (HDACi) was supported by a body

of evidence [75,76]; HDACi have been shown to inhibit cancer cell

growth in vitro and in vivo. In addition, other histone-modification

enzymes have also been demonstrated to play crucial parts in

inhibiting cancer cells via multiple pathways, such as SETDB1

(H3K9me3 HMTase) [77], histone demethylase, JMJD1A [78]

and KDM1 [79]. Taken together, it is clear that recent findings

and accumulated evidence in epigenetic links to developmental

origins of cancer will be beneficial to motivate future research

against this disease.

Concluding remarks
Along with the studies on molecular pathogenesis of chronic

diseases, roles of epigenetic codes in developmental origins of

chronic diseases, and more details in epigenetic changes in dis-

eases with developmental origins, are going to be discovered in the

near future, because more studies are going on in that field. In

addition, clinical and basic science researchers have finally realized

that early intervention could be the top strategy in prevention of

chronic diseases. Meanwhile, based on the important characteris-

tic that the epigenetic code can be manipulated, a unique chance is

to develop multiple novel therapeutic strategies against chronic

diseases initiated during early developmental periods, using agents

that can alter and/or reverse those pathological epigenetic pro-

cesses. Of course, it also requires further intensive medical and

scientific efforts to introduce these epigenetic-based outcomes

into clinical therapy successfully.
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