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The first candidates from the promising class of small non-antibody protein scaffolds are now moving

into clinical development and practice. Challenges remain, and scaffolds will need to be further tailored

toward applications where they provide real advantages over established therapeutics to succeed in a

rapidly evolving drug development landscape.
Introduction
Monoclonal antibodies represent a well-validated and rapidly

growing class of human therapeutics, characterized by a fully

human nature, long serum half-life, bivalency and immune effec-

tor functions [1,2]. Despite their successes, monoclonal antibodies

nevertheless face a range of restrictions that limit their applicabil-

ity. Many of these restrictions relate to the size of the antibody

molecule, which, in the case of the commonly used IgG isotype, is

in the range of 150 kDa. Moreover, antibodies are complex multi-

domain proteins, consisting of two different chains (heavy and

light) and a total of six different domains (designated VH, VL, CH1,

CH2, CH3 and CL). Assembly of the antibody molecule and much

of its stability rely on the correct formation of disulfide linkages

and on post-translational glycosylation of the constant region [3].

In combination, these requirements complicate the expression of

human antibodies in general, and hinder the production in the

cytoplasm of bacteria in particular [4,5]. To overcome the size and

stability limitations of monoclonal antibodies, a large body of

work has focused on the generation of small non-antibody scaf-

folds for human therapy and imaging applications [6–8]. In this

review, we discuss challenges in translating such scaffolds into
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validated drugs, and provide updates on their use in clinical

development and practice.

Challenges in the development of non-antibody
scaffolds
Non-antibody scaffolds under active development broadly fall

into two structural classes, namely domain-sized compounds (at

6–20 kDa molecular weight) and constrained peptides (2–4 kDa)

(Fig. 1). Domain-sized scaffolds include Affibodies, Affilins, Antic-

alins, Atrimers, DARPins, FN3 scaffolds (e.g. Adnectins and Cen-

tyrins), Fynomers, Kunitz domains, Pronectins and OBodies,

whereas Avimers, bicyclic peptides and Cys-knots are peptide-

related. A large number of candidates derived from these scaffolds

are currently under academic, preclinical and clinical develop-

ment (Table 1) and have shown great potential in terms of affinity,

target neutralization and stability, see [7] for a comprehensive

review.

Despite the considerable promise of non-antibody scaffolds,

conversion of the many examples of such modalities into differ-

entiated drugs has been challenging. Although several candidates

have progressed into clinical studies, only a single non-antibody

scaffold, the Kunitz domain DX-88 (ecallantide; Dyax) has been

granted regulatory approval (Box 1), with no further approvals

since 2009. Notably, the development of several candidates, in-

cluding DX-890 and AMG-220, has been halted in recent years
C-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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FIGURE 1

Structural features of non-antibody scaffolds. Non-antibody scaffolds under active development broadly fall into two classes, namely domain-sized compounds

(Affibodies, Affilins, Anticalins, Atrimers, DARPins, FN3 scaffolds, Fynomers, Kunitz domains and OBodies) and constrained peptides (Avimers, Bicyclic peptides and

Cys-knots). The former class averages around 6–20 kDa, with constrained peptides falling into a lower range of molecular weights at around 2–4 kDa. Illustrations
were generated using PyMOL, positions diversified in the scaffolds are highlighted in red, disulfides are highlighted in yellow.
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TABLE 1

Protein scaffolds under clinical and preclinical development

Scaffold Company Target protein Drug name Indications Status

Adnectins [44,76–79] Bristol-Myers Squibb PCSK9 BMS-962476 Hypercholesterolemia Phase I NCT01587365

VEGFR2 Angiocept Cancer Phase II NCT00851045

NCT00850577 NCT00562419

Myostatin BMS-986089 Cachexia Phase I NCT02145234
EGFR/IGF-1R n/a Cancer Preclinical

Affibodies

[10,45,50,80–84]

Affibody HER2 ABY-025 Cancer (PET imaging) Phase I, II NCT01858116

NCT01216033 NCT02095210

Complement protein C5 SOBI002 Inflammation Phase I NCT02083666
IL-17 ABY-035 Autoimmunity Preclinical

TNF/IL-6 (AffiMab) n/a Inflammation Preclinical

EGFR, IGF-1R, PDGFRb,

HER3, VEGFR2

n/a Cancer Preclinical

Affilins [85,86] Scil Proteins Fibronectin EDB

splice variant

n/a Cancer Preclinical

CTLA-4 PRS-010 Cancer Preclinical

VEGF-A PRS-050 (Angiocal) Cancer Phase I NCT01141257

Anticalins [87–92] Pieris Hepcidin PRS-080 Anaemia Phase I NCT02340572
IL-4Ra PRS-060 Asthma Preclinical

HGFR PRS-110 Cancer Preclinical

CD137/HER2 PRS-343 Cancer Preclinical
IL-23/IL-17 PRS-190 Autoimmunity Preclinical

Atrimers [93–95] Anaphore IL-23 ATX 3105 Inflammation Preclinical

DR4 n/a Cancer

Avimers [49,96] Avidia, Amgen IL-6 AMG220 Crohn’s disease Phase I NCT00353756

Bicyclic peptides
[97,98,100,101]

Bicycle Therapeutics Kallikrein uPA HER2 n/a Hereditary
angioedema Cancer

Preclinical

Centyrins [102] Janssen HGFR n/a Cancer Preclinical

IL-17 Autoimmunity

TNF-a Inflammation

Cys-knots [103] Medimmune NaV1.7 n/a Pain Preclinical

DARPins [104–107] Molecular
Partners, Allergan

VEGF-A MP0112
(Abicipar pegol)

Macular degeneration
Macular edema

Phase II, Phase III
NCT02462928 NCT02462486

NCT01397409 NCT02186119

NCT02181517
VEGF-A/PDGF-B MP0260 Macular degeneration Preclinical

VEGF/HGF MP0250 Cancer Phase I NCT02194426

HER2 MP0274 Cancer Preclinical

Fynomers [46,108] Covagen TNF/IL-17A (FynomAb) COVA322 Plaque psoriasis Phase I/II NCT02243787

HER2 (FynomAb) COVA208 Cancer Preclinical

Kunitz domains

[109–112]

Dyax Kallikrein DX-88 (Ecallantide) Hereditary angioedema Approved

Neutrophil elastase DX-890 (Depelstat) Acute respiratory

distress syndrome

Phase II NCT00455767

Plasmin DX-1000 Cancer Preclinical

Obodies [113] Obodies n/a n/a n/a Preclinical

Pronectins [114] Protelica VEGFR2, AXL tyrosine

kinase, TNF-a, FZD receptors

n/a Cancer, Autoimmunity Preclinical

Tn3 [60,64] Medimmune CD40L n/a Autoimmunity Preclinical

TRAILR2 Cancer

Abbreviations: CD40L, CD40 ligand; CTLA-4, cytotoxic T-lymphocyte antigen 4; DARPins, designed ankyrin repeat proteins; DR4, death receptor 4; ED-B, extra domain-B; EGFR, epidermal

growth factor receptor; FZD, frizzled; HER2, human epidermal growth factor receptor type 2; HER3, human epidermal growth factor receptor type 3; HGFR, hepatocyte growth factor

receptor; IGF-1R, insulin-like growth factor-1 receptor; IL-17A, interleukin-17A; IL-23, interleukin-23; IL-4Ra, interleukin-4 receptor alpha; IL-6, interleukin-6; PCSK9, proprotein convertase

subtilisin kexin 9; PDGF-B, platelet-derived growth factor B; PDGFRb, platelet-derived growth factor receptor b; PET, positron emission tomography; TNF, tumor necrosis factor; TRAILR2,

TNF-related apoptosis-inducing ligand receptor 2; uPA, human urokinase-type plasminogen activator; VEGF-A, vascular endothelial growth factor A; VEGFR2, vascular endothelial growth

factor receptor 2.
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BOX 1

Clinical development of non-antibody scaffolds

Over 50 different protein scaffolds have been reported [6–8]. However, the majority of these scaffolds has exclusively been used in academic
settings and only a subset is currently further developed commercially (Table 1). A single non-antibody scaffold has received approval by the
FDA, the Kunitz domain KalbitorW (ecallantide; Dyax), a plasma kallikrein inhibitor used for the treatment of hereditary angioedema [144,145].
Ecallantide was selected by phage display [146], inhibits kallikrein activity with picomolar affinity and displays a moderate half-life (t1/2 �2 h)
in humans [140,145]. Phase III clinical trials demonstrated significant improvements of acute angioedema symptoms compared with placebo
and a favorable safety profile, resulting in the approval of ecallantide in 2009 [147]. Competitors of the drug include the plasma-derived
human C1-esterase inhibitors BerinertW (CSL-Behring) and CinryzeW (ViroPharma/Shire), as well as the bradykinin receptor antagonist
FirazyrW (Shire). In addition to ecallantide the Kunitz domain DX-890 (depelstat; Dyax), a neutrophil elastase inhibitor, has been assessed in
clinical trials of cystic fibrosis [148]. The high stability of this domain enables pulmonary delivery [149], with Phase IIa clinical studies in 2008
resulting in reduced levels of the proinflammatory cytokine interleukin (IL)-8 in patients [111]. No clinical updates of DX-890 development
have been reported in recent years.
Affibodies have been developed for imaging applications and allow the visualization of metastases in vivo using positron emission
tomography (PET) [121,150]. The phage display selected compounds display picomolar affinity against the human epidermal growth factor
receptor (HER2)-neu tumor antigen [151]. Owing to their particularly low molecular weight (6 kDa), the compounds are characterized by
rapid blood clearance and a favorable biodistribution for imaging applications, as indicated by increased tumor:organ accumulation ratio in
comparison with the anti-HER2 IgG monoclonal trastuzumab [19]. A second generation Affibody molecule ABY-025 (Affibody) is currently
being evaluated as an imaging agent in Phase I/II clinical trials [80]. More recently, an Affibody compound targeting the complement protein
C5 commenced Phase I clinical evaluation for the treatment of inflammatory conditions (Table 1).
Adnectin scaffoldsdirected against the vascularendothelial growth factor receptor (VEGFR)2 tumor antigen[152]havebeenreportedandare
currentlyunderclinicalinvestigation.BMS-844203(angiocept;Bristol-Myers-Squibb)wasselectedthroughmRNAdisplayandbindsitstargetwith
nanomolaraffinity,effectivelyinhibitingVEGFR2activationandangiogenesis[153].CT-322wasformulatedasafusiontopolyethyleneglycol(PEG),
increasinghydrodynamicradiusandhalf-life(�4days),whilereducingrenalclearance[78,154].PhaseIdoseescalationstudiesinhumansrevealed
that thecompoundwaswell tolerated,withamaximumdoseof2 mg/kg.Several Phase II studiesare currentlyongoing, including treatmentof
recurringglioblastoma[78,155].AnotherAdnectin-basedcompound,BMS-962476,directedagainstthecholesterolregulatorPCSK9,iscurrently
underPhase I investigation for the treatmentof hypercholesterolemia [77,156].Preliminarydata fromthis trial revealedthat treatmentwaswell
toleratedanddisplayedhighefficacy,withfreePCSK9levels reducedbyat least90%inpatients receivingasingle0.3 mg/kgdose[157].Thelatest
AdnectintohaveenteredclinicaltrialsisBMS-986089,amyostatininhibitorforcachexiaandmusculardystrophyindications,currentlyundergoing
aPhase I dose-escalationstudy (Table1).
AMG220 (C326; Avidia/Amgen) is an Avimer targeting IL-6, a pleiotropic cytokine associated with inflammatory and autoimmune conditions
[158]. Selected by phage display, AMG220 displays bi-specificity to its interleukin target, as well as binding to the Fc domain of IgG (resulting
in reduced renal clearance and FcRn recycling; Fig. 3). The compound has subpicomolar affinity for IL-6 [49] and displays a moderate serum
half-life (�30 h) [96]. Phase I clinical trials of AMG220 in Crohn’s disease revealed dose-dependent reduction in serum C-reactive protein, an
inflammation biomarker synthesized by hepatocytes in response to IL-6 [96]. Despite its apparent efficacy, Amgen has suspended the clinical
development of the compound [114,159,160].
Anticalins are among the more actively developed non-antibody scaffolds, with a high number of lead compounds under preclinical
development – directed against CTLA-4 [90], hepcidin [161], hepatocyte growth factor receptor (HGFR; MET) [89], IL-4Ra [162] and IL-23/IL-17
[163] (Table 1). PRS-050 (AngiocalW; Pieris), is an antiangiogenic Anticalin targeting VEGF-A currently undergoing Phase I clinical investigation.
The compound was selected by phage display, and displays picomolar affinity to the VEGF-A molecule, as well as to splice variants [164]. To
increase serum half-life (to �6 days) PRS-050 was coupled to PEG, and evaluated in a dose-escalating Phase I clinical trial in patients with
advanced solid tumors [126]. The compound was mostly tolerated up to a dose 10 mg/kg, with no formal maximum dose reached. Rare
occurrences of grade 3 and 4 adverse effects were observed in this trial, however most effects were classified as mild-to-moderate. PRS-050
treatment resulted in effective VEGF-A neutralization, as indicated by the absence of free antigen, and the detection of VEGF-A–PRS-050
complexes [88,126].
The ankyrin repeat protein (DARPin) MP0112 (Molecular Partners/Allergan) targeting retinal angiogenic disorders driven by VEGF-A is
currently being assessed in clinical studies. These disorders include age-related macular degeneration (wet AMD) and diabetic macular
edema (Table 1). MP0112 was selected by ribosome display and displays picomolar affinity for its target [137]. Phase I studies of
intravitreal injection into the human eye revealed an ocular half-life of �13 days, with no detectable compound levels in serum. A
single treatment dose resulted in undetectable levels of ocular VEGF-A for up to 4 weeks in all patients. Preliminary efficacy data
obtained from a limited number of patients indicated reduced edema and improved visual acuity [137]. A subsequent Phase I/II study
supported these observations and parallel studies on wet AMD showed favorable outcomes for this indication, including a dose-
dependent reduction of vascular leakage [106,165]. MP0112 (abicipar pegol) entered Phase III clinical trials in 2015 (Table 1). In addition
to MP0112, the bi-specific DARPin MP0250 targeting VEGF/HGF has recently commenced clinical evaluation for the treatment of solid
tumors [166].
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(Box 1). Although the reason for discontinuation of each specific

candidate varies, it is evident that, as scaffolds have evolved from

innovative binding moieties to potential drug candidates, addi-

tional requirements have emerged. For example, one such require-

ment is the ability to match, and preferably exceed, potencies that

can be achieved by monoclonal antibodies. The quest for differ-

entiation faces three major challenges, namely serum-half life,
1274 www.drugdiscoverytoday.com
tissue penetration and advances in monoclonal antibody technol-

ogy.

Serum half-life
Repeated passages in serum significantly increase the uptake of

therapeutic proteins into tissue and organs. This is exemplified by

human IgG monoclonals, which display long serum half-lives (up
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FIGURE 2

Serum half-life of scaffolds and monoclonal antibodies. Non-antibody scaffolds are rapidly removed from the bloodstream, through filtration by the slit diaphragm

of interdigitating podocyte pedicles. Monoclonal antibodies of the IgG isotype do not underlie renal filtration, as a result of their molecular weight of �150 kDa,

well above the renal filtration barrier (�60 kDa).
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to several weeks) [9]. By contrast, unmodified non-antibody

scaffolds are largely eliminated through the kidney after a single

pass (Fig. 2) [10]. The lack of intrinsic half-life extension immedi-

ately puts scaffolds at a disadvantage, by limiting their ability to

accumulate at a site of pharmacological action. Consequently,

most scaffold-based drug candidates require the use of protein

engineering or formulation to ensure continuous exposure after

dosing.

Protein engineering can be used in multiple ways to extend the

circulating half-life of therapeutic proteins. The first approach is

based on increasing size to minimize single-pass kidney filtration.

This requires an increase above a critical mass of or above �60 kDa

(renal filtration cut-off) and is generally achieved through genetic

fusion with a larger protein or alternatively through conjugation

with an organic polymer, such as polyethylene glycol (PEG). The

first approach involves genetic fusions with the Fc region of

human IgG, or alternatively with serum albumin (both of which

interact with FcRn). This strategy is based on exploiting the salvage

mechanism mediated by the neonatal Fc receptor (FcRn) expressed

on vascular endothelial cells (Fig. 3) [11]. FcRn prevents lysosomal

degradation, and recycling can be achieved through direct and

indirect strategies [12]. Indirect mechanisms that trigger salvage

through FcRn include the engineering of scaffolds to bind IgG or

albumin (rather than a direct genetic fusion to these molecules).

This approach requires binding to these two serum proteins in

ways that do not interfere with their respective FcRn interactions;

it could however allow the generation of overall smaller constructs

than genetic fusions to antibody Fc regions.

Many examples of scaffold half-life extension have been

reported, see [13] for a review. However, it is important to note

that the FcRn pathway displays limited efficacy for molecules with
a molecular mass under the renal filtration cut-off, because clear-

ance after a single pass through the kidney tends to be the more

dominant mechanism [14]. Therefore, unless advanced formula-

tion or delivery technologies are used, the minimal size for a

parenterally administered and infrequently dosed biopharmaceu-

tical drug effectively is �60 kDa. Unfortunately, the very addition

of a ‘half-life solution’ could thereby limit or even eliminate one of

the key advantages of non-antibody scaffolds, namely their rela-

tively small size and low molecular weight (2–20 kDa). An increase

in mass could also reduce other advantageous properties of these

molecules, such as high soluble expression and stability (Box 2).

Scaffold-based molecules with long plasma half-lives thereby risk

resembling IgG-like molecules with overall limited differentiation.

Tissue penetration
It is well documented that a low-molecular-weight therapeutic, if

of sufficiently high affinity to the target, will distribute more

effectively into tissue (Fig. 3), and extensive clinical data, particu-

larly relating to drug penetration into solid tumors, has been

reported [15,16]. This is particularly the case for smaller scaffolds

in the 2–4 kDa range, which are expected to extravasate and

diffuse into tissue effectively [17]. Whereas tissue penetration is

a recognized and crucial factor in the design of novel oncology

treatments, it is also relevant for other indications, if significant

organ diffusion is required following parenteral administration.

Examples include targeting less-vascularized tissues and organs,

such as intestine, adipose tissue and muscle, as well as renal and

lung lumina where, in each case, antibody IgG penetration is

limited [18]. Owing to their relatively low molecular weight,

unmodified scaffolds (e.g. without half-life extension) display

relatively fast tissue penetration in comparison with human IgG
www.drugdiscoverytoday.com 1275
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FIGURE 3

Tissue penetration of scaffolds and monoclonal antibodies. Non-antibody scaffolds are capable of high levels of tissue penetration, owing to fast extravasation

from the capillary lumen through the vascular endothelium and basement membrane. By contrast, monoclonal antibodies of the IgG isotype are characterized by

slow tissue penetration. Unlike unmodified scaffolds, monoclonal antibodies display long serum half-lives, as a result of reduced renal filtration and recycling by
FcRn present in the vascular endothelium [11]. Abbreviations: RBC, red blood cell; FcRn, neonatal Fc receptor.
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monoclonals (Fig. 3) [19–21]. In combination with short serum

half-lives, this can be exploited to engineer compounds with

excellent signal:noise ratios in imaging applications (Box 3)

[22]. A successful example is the development of radiolabeled

Affibody molecules for the imaging of human epidermal growth

factor (HER2)-positive tumors [19].

However, for therapeutic applications, a general advantage of

non-antibody scaffolds is less apparent. Owing to their large

molecular weight of �150 kDa, human IgG antibodies were ini-

tially considered to be limited to targets accessible directly from

the vasculature [7]. However, more-recent clinical data showed

that if dosed highly enough monoclonal antibodies can distribute

effectively in less-vascularized tissue [18]. The limiting factor of

antibody therapy in respect to tissue penetration therefore does

not just relate to the molecular mass of the therapeutic molecule

but also to the therapeutic index (i.e. dose at which toxicities will

occur) and cost of manufacture (i.e. total dose per patient per year).

As long as dose-limiting toxicities occur at doses that are signifi-

cantly higher than those required for efficient tissue penetration

(typically 1–10 mg/kg for IgG), antibody therapeutics can effec-

tively access most tissues in the body. Indeed, owing to their

intrinsically high potency, selectivity and specificity, therapeutic

indexes of antibodies are often large, enabling high doses to be

used clinically that are safe and well tolerated. Notable exceptions

relate to the brain and central nervous system [23,24]. In these

areas, although high doses will still lead to relatively higher

uptake, total drug levels are likely to be too low for significant

pharmacological action [25].

In summary, the need for alternative, highly tissue penetrating

scaffolds only arises if toxicities occur at doses insufficient for
1276 www.drugdiscoverytoday.com
effective IgG tissue penetration (as can be observed after conjuga-

tion with cytotoxic agents, see section below) or if the antibody

dose required increases costs of goods to a commercially unviable

level. It should also be noted that the total dose is influenced by

the amount of drug required for the desired pharmacology and the

frequency of administration. For instance, an unmodified scaffold

antagonist might be administered at one-tenth of the dose of an

equivalent IgG therapeutic, but will require daily instead of bi-

weekly or monthly dosing. Scaffolds, however, could offer advan-

tages for locally administered therapeutics (such as for intravitreal

injection for ocular diseases), owing to their lower molecular

weight and higher solubility, and for applications in which Fc-

mediated immune effector functions are unnecessary or undesir-

able (for instance the neutralization of soluble signaling factors).

Advances in monoclonal antibody technology
Human antibodies of the IgG isotype are characterized by long

serum half-lives in the range of days to weeks [9]. Antibody half-life

can be further increased to timescales of several months, provided

that there is low target-mediated clearance, by engineering the

interaction of the antibody Fc region with the FcRn receptor,

resulting in increased uptake and favorable dosing regimens

[26]. Protein engineering approaches have also allowed the gener-

ation of smaller human antibody reagents, thereby reducing the

size-advantage of non-antibody scaffolds. For instance, Fcabs (F-

star) eliminate the requirement for antibody variable domains,

and instead rely exclusively on the antibody Fc region, by engi-

neering novel antigen-binding sites into constant regions [27].

These antibody variants combine the size advantage of a scaffold

with the intrinsic antibody half-life extension mechanism
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BOX 2

Differentiation among non-antibody scaffolds

The large number of non-antibody scaffolds under development, encompassing a wide range of protein architectures, raises the question of
differentiation, and whether certain scaffold types might be particularly suited to specific applications. In terms of architecture and molecular
weight, scaffolds fall into two classes (domain-sized and peptide-derived; at 6–20 kDa and 2–4 kDa, respectively). This difference in molecular
weight directly relates to differences in production, with peptide-related compounds having the additional advantage of being amenable to
manufacture by chemical synthesis [167,100]. By contrast, domain-sized scaffolds generally need to be expressed in bacteria, or alternatively
in CHO-, Pichia-pastoris- or HEK-293-based eukaryotic systems (Table I). Overall lower molecular weight compared with IgG therapeutics is
also considered to be of particular importance for imaging applications (Box 3) and could allow the targeting of otherwise cryptic epitopes
within protein clefts and other poorly accessible structural features [100,168,169].
When conducting comparative analyses it should be noted that many scaffolds are proprietary to biopharmaceutical companies and that
data access might be restricted. Moreover, published studies could well have been conducted using varying conditions and methodologies,
further complicating analyses. Nevertheless, it is evident that there appear to be more similarities than differences between the properties
of different scaffold types. This is perhaps not surprising considering similar driving forces faced by companies developing non-antibody
scaffolds as human therapeutics. For example, most of the parental scaffold proteins have relatively high melting transitions, such as a Tm of
>80 8C for Adnectins [170], 79 8C for Anticalins [171] and �70 8C for Fynomers [108] – up to �120 8C for the recently developed
Alphabodies [172] – and most are reported to be well expressed in bacteria. By contrast, relatively large variation of properties can be
observed among binders of a single scaffold type (Table I). For instance, large differences in melting temperatures have been reported,
depending on the actual sequence and antigen specificity of each selected binder. This behavior is probably caused by the small size of the
scaffolds, resulting in the effect that relatively minor sequence changes can induce profound changes of overall biophysical or
pharmacokinetic properties [173]. Owing to their smaller size (2–20 kDa), residues in non-antibody scaffolds could be involved in high
affinity binding, as well as important biophysical properties, such as thermodynamic or colloidal stability [174]. Recognition of different
molecular targets could therefore have direct impact on a wide range of scaffold characteristics, which is in marked contrast to human
antibody therapeutics of the IgG isotype (150 kDa). Although the effect of sequence variation could in principle be analyzed by
computational or high-throughput methods, further releases of preclinical and clinical data will ultimately be necessary to evaluate
robustness and applicability of different scaffold types.

TABLE I

Biophysical and pharmacokinetic properties of non-antibody scaffolds.

Scaffold Expression Stability Half-life (in vivo)

Adnectins Escherichia coli 20–40 mg/l [115] Tm parent = 84 8C [116]

Tm selected = 37–73 8C [115,117]

>53 h (PEG) [78]

Affibodies Peptide synthesis [118] E. coli [119] Tm parent = �75 8C [120]

Tm = 42–71 8C [118]

4–14 min [121]

Affilins E. coli 100 mg/l [85] g-B-crystallin-based

Tm parent = 80 8C
Tm selected = 56–72 8C [85]

n/a

Ubiquitin-based

Tm parent = 82 8C
Tm selected = 54–66 8C [122]

20–56 h in mice (PEGylated,

Fc- or MSA-fused) [122]

Anticalins E. coli 2–20 mg/l [123] Tm parent = 79 8C
Tm selected = 53–73 8C [123–125]

�6 d (PEG) [126]

Atrimers E. coli [127] Stable at 70–80 8C [95] �24 h (parental tetranectin)[95]

Avimers E. coli � 1.4 g/l [49] No aggregation after 2 weeks at 50 8C [49] 30 h (Fc binding domain)[96]

Bicyclic peptides Peptide synthesis [100]

HEK-293 �80 mg/l [128]

n/a 30 min in mice [129]

>24 h in mice (ABP- or Fc-fused)
[128,129]

Centyrins E. coli Tm parent = 93 8C
Tm selected = 46–87 8C [102]

n/a

Cys-knots E. coli 5–20 mg/l [130,131]

Peptide synthesis [132]

Tm > 100 8C [133,134] <35 min in mice [135]

DARPins E. coli

Up to 200 mg/l [136]

Tm > 66–89 8C [35,136] � 13 d (PEG, ocular half-life) [137]

3 min in mice [20]

Fynomers E. coli 24–78 mg/l [138]

CHO 3.5–20.7 mg/l [46,139]

Tm parent = �70 8C [139] 68 h in mice (Fc-fused) [139]

Kunitz domains Pichia pastoris [140] �75% active after heating to 95 8C [140,141] 2 h [142]

OBodies E. coli 100–200 mg/l [113] Tm = 66–81 8C [113] n/a

Tn3 E. coli 40–400 mg/l [60] Tm = �83 8C [143] 36 min in mice [60]

Abbreviations: ABP, albumin-binding peptide; CHO, Chinese hamster ovary cells; Fc, fragment crystallizable; HEK, human embryonic kidney cells; MSA, mouse serum albumin; PEG,

polyethylene glycol; Tm: melting temperature.
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BOX 3

Imaging applications of non-antibody scaffolds

Non-antibody protein scaffolds (including Affibodies, Bicyclic peptides, Cys-knots, DARPins, Anticalins and Adnectins) have been successfully
conjugated to radionuclides and near-infrared (NIR) fluorescent dyes for in vivo imaging of solid tumors, reviewed in [175]. These reagents
with affinities down to the nanomolar to picomolar range have several biophysical properties that make them ideal candidates for molecular
imaging in preclinical and clinical studies. Important properties that distinguish them from antibody-based reagents are the absence of the
immunoglobulin Fc region and an overall small size (2–20 kDa), enabling efficient capillary extravasation and tissue diffusion (Fig. 3). This
behavior is particularly relevant to diagnostic applications in oncology [176,177]. In addition, unmodified scaffolds that do not include
antibody Fc regions or bind to IgG or albumin, display short serum half-life and are rapidly cleared from the body (Fig. 2). Such protein
scaffolds offer the potential of increased signal:noise ratios in comparison to antibody-based imaging reagents. This is exemplified by the
iodinated ABY-002 Affibody molecule, which displays excellent bioavailability and image contrast when benchmarked against the anti-HER2
monoclonal antibody trastuzumab (HerceptinW; Genentech) [19].
More recently, multiple studies have provided insights into the biophysical characteristics that maximize tumor uptake and minimize off-
target effects. In addition to low molecular weight as a key determinant of vascular permeability and tissue accessibility [177,178], these
studies have also revealed other effects that influence the retention of the label in the tumor. These include affinity and avidity of the
scaffold, as demonstrated for DARPins [20] and Affibodies [151], and whether it is internalized and degraded [179]. In addition, overall
hydrophilicity has been shown to determine whether the scaffold is retained in off-target sites such as the liver or the kidneys. This has been
demonstrated for Adnectins, which are relatively hydrophilic and have been shown to have longer renal than hepatic retention [180].
Similarly, removal of electric charges from Cys-knots [181] and Adnectins [180] has been shown to reduce renal retention. Importantly,
chelators used to conjugate protein scaffolds to radionuclides for positron emission tomography (PET), single-photon emission computed
tomography (SPECT) and scintigraphic imaging, and NIR dyes for optical imaging have the potential to alter size, affinity and charge. For
example, the substitution of a positively charged lysine residue with the neutral serine has been shown to decrease renal retention of an
Affibody molecule [182].
An innovative concept, originally developed to improve the delivery of therapeutic payloads and imaging reagents by monoclonal
antibodies, is the use of pre-targeting with a bi-specific molecule [183]. The approach involves the use of bi-specifics recognizing tumor
antigen and a small ligand, which can be administered at a later stage after the antibody has been cleared from the circulation and from off-
target sites. This ligand can serve as a vehicle for payload delivery for therapeutic or imaging applications. Examples include an Anticalin
domain specific for fluorescein fused to an antibody specific for a tumor antigen. This pre-targeting strategy has enabled sensitive in vivo
imaging of tumors using a fluorescein–NIR-dye conjugate [184].
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through FcRn binding and could potentially offer significant

tumor uptake per injected dose by combining the advantages of

small size and long circulating half-life [27,28]. The clinical evalu-

ation of an anti-HER2 FcabTM (NCT02286219) will determine

whether these favorable pharmacokinetic properties are translat-

able into humans.

Although non-antibody scaffolds often display high thermody-

namic stabilities, it is evident that the stability of human antibody

reagents can be increased through well-established protein engi-

neering approaches [3]. A generally low propensity to aggregate is

another desirable property of non-antibody scaffolds; however,

methods for increasing the aggregation resistance of human anti-

body reagents are increasingly becoming available [3,29–31]. Fi-

nally, the cost of production of non-antibody scaffolds is

potentially lower, because of the possibility of using bacterial

rather than mammalian expression systems [32,33]. However,

with a large number of antibody therapeutics transitioned into

commercial production and increased economies of scale, the cost

of goods for CHO-cell-expressed antibody IgG therapeutics is

decreasing, and can often be adequately controlled through effi-

cient chemistry, manufacturing and control (CMC) processes [32].

Strategies for the generation of differentiated non-
antibody scaffold drugs
To overcome challenges associated with serum half-life, tissue

penetration and advances in monoclonal antibody technology,

a wide range of protein engineering and drug delivery approaches

have been applied to non-antibody scaffolds. Here, we discuss

current advances and propose further areas of innovation.
1278 www.drugdiscoverytoday.com
Formulation and novel delivery devices
Owing to the problems associated with half-life extension the use

of slow-release formulations and innovative drug delivery, devices

could become an attractive strategy for non-antibody scaffolds.

Provided the required efficacious total dose is sufficiently low (in

terms of mg), both approaches can enable high serum concentra-

tion, despite the use of drug candidates with intrinsically short

serum half-life. Slow release formulation has a long track record in

the administration of agonistic peptides (including Zoladex1 and

Bydureon1), but has not been extensively applied to non-anti-

body scaffolds [34]. This is because of the antagonistic pharmacol-

ogy of most scaffold-based drug candidates, which generally

require relatively high doses to neutralize a significant proportion

of the target molecule stoichiometrically. Such doses had been

considered too high to be formulated successfully through a slow-

release approach. However, with recent reports of scaffolds engi-

neered to reach antibody-like affinities in the picomolar [35] to

femtomolar [36] range, such limitations might no longer apply for

next-generation candidates. With the typical molecular weight of

a non-antibody scaffold at one-tenth of an IgG monoclonal (as-

suming unmodified scaffolds), doses of up to 10 mg per adminis-

tration could thereby become feasible, which are accessible

through slow-release formulation. Alternatively, innovative drug

delivery devices, such as mini-pumps, are increasingly becoming

available. Such devices were pioneered in the treatment of diabetes

patients, and are currently in late-stage clinical testing [37]. Exam-

ples include exenatide, a short-half-life glucagon-like peptide

(GLP-1) receptor agonist, administered through up to yearly dos-

ing. Significant opportunities exist through the use of such devices
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BOX 4

Immunogenicity of non-antibody scaffolds

Immune responses to administered protein therapeutics remain a
significant challenge for clinical success. For non-antibody scaffolds
immunogenicity can represent a greater challenge than for
antibodies, particularly for those derived from non-human or
synthetic proteins. An innovative approach relates to the recent
development of scaffolds chemically synthesized with D-amino
acids (Reflexion Pharmaceuticals) [185]. These compounds are
mirror images of their parental protein G B1-domains and are
expected to be structurally nonimmunogenic [186].
To date, there have been few reported clinical trials of non-
antibody scaffolds. KalbitorW (ecallantide; Dyax), currently the only
non-antibody scaffold protein therapeutic approved by the FDA,
has undergone extensive clinical trials for the treatment of
hereditary angioedema [187,188]. In 216 patients treated with
ecallantide, 36 (17%) developed anti-drug antibodies, along with
several reported cases of patients developing antibodies to Pichia
pastoris, the organism used to manufacture the drug. BMS-844203
(angiocept; Bristol-Myers-Squibb), an Adnectin targeting vascular
endothelial growth factor receptor (VEGFR)2 has been assessed at
escalating intravenous doses in patients with advanced solid
tumors [78]. This study reported anti-drug antibodies in 31 of 38
(82%) patients. Subsequent epitopic analysis revealed that the anti-
drug antibodies bound to the engineered binding loops of the
Adnectin. A Phase I study of PRS-050 (AngiocalW; Pieris), an
Anticalin targeting VEGF-A, in 25 patients with advanced solid
tumors also reported no anti-drug antibody responses in any of the
patients [126].
It remains difficult to draw general conclusions from what is so far
a small number of clinical studies, in terms of predicting
immunogenicity and the effects on safety and efficacy. Moreover,
immunogenicity is a complex phenomenon that is known to be
influenced by factors outside of the molecular structure of the
therapeutic (including dosing, formulation, excipients, the
presence of contaminants such as host cell proteins or degradation
products, the route of administration, and the immune and genetic
status of the patient) [189]. Although preclinical assessment of
immunogenicity risk can be conducted using in silico or in vitro
prediction methods or by in vivo assessment of anti-drug
responses in rodents or non-human primates [190], clinical data
required to determine relative utility in predicting anti-drug
responses in patients is not yet publically available. Further clinical
studies of non-antibody scaffold therapeutics will ultimately be
required to address the relative immunogenicity of different
scaffolds classes.
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to turn potent but short half-life scaffolds into differentiated drug

candidates. This area has remained largely unexplored, however it

might well see increasing interest as companies try to find new

ways to generate candidates out of their often significant invest-

ment in scaffold technologies [38,39].

Multi-specificity
The concept of dual (or multiple) specificity has attracted consid-

erable attention in recent years [40–42]. Many approaches focus on

the concept of taking two or more validated biologics and com-

bining them in one construct. Such constructs have the ability to

target either multiple proteins or multiple epitopes on the same

molecule simultaneously [43] and several examples of scaffold-

based constructs have been reported (including DARPins, Antic-

alins, Affibodies, Adnectins and Fynomers) [44–50]. The latter

strategy can potentially lead to enhanced neutralization efficacy

[51] or to increased clearance through the induction of large

immune complexes [52]. Although considerable advances have

been made in the design and manufacture of antibody-based bi- or

multi-specifics, challenges remain. In particular, accurate predic-

tion of the resulting combined pharmacology and the accurate

adaptation of each pharmacological activity to result in a potent

but nontoxic molecule at, effectively, a fixed dose have turned out

to be more complex than first anticipated. Furthermore, a multi-

selective biologic might require multiple biomarkers to assess the

therapeutic window accurately for each pharmacological moiety,

resulting in a significant increase in development costs – discussed

in further detail, in particular in comparison to polyclonal anti-

body approaches, in a recent review on bi-specifics [53]. Conse-

quently, a majority of the limited number of non-cell-crosslinking,

bi-specific antibodies progressing to pivotal Phase IIb studies target

highly related biological pathways, thereby simplifying the trans-

lational medicine and safety strategy. Examples include antibodies

against IL-4/IL-13 (Sanofi) [54], Her1/Her3 (Genentech/Roche)

[55] or Her2/Her3 (Merrimack Pharmaceuticals) [56]. However,

the targeting of related pathways could also ultimately limit the

differentiation of the resulting bi-specific versus the mono-specific

parental antibodies or, indeed, combinations of the parental anti-

bodies.

The remaining technical complexities of generating multi-spe-

cific antibody therapeutics open up possibilities for the develop-

ment of non-antibody scaffolds, either on their own or as an ‘add-

on’ to antibody therapeutics [51,50]. Indeed, multimerization

plays to the advantage of scaffold platforms, which provide highly

soluble, stable and well-expressing monomer building blocks for

such strategies. Moreover, a potentially unique feature of scaffold

multimerization is the ability to generate potent agonists, which

can be readily achieved for targets that can be activated through

simple di- or tri-merisation. Examples for this behavior include the

tumor necrosis factor (TNF) family of receptors [57] and many G-

protein-coupled receptors (GPCRs) [58]. The approach is exempli-

fied by the targeting of TRAIL-R2 (also known as death receptor 5,

DR5) with several candidates under preclinical [59,60] and clinical

[61] development. Multimerization has also been described as a

pragmatic way to boost the potency of the often more weakly

binding monomer [62,63]. Scaffold multimerization is not with-

out challenges, for instance repeating identical epitopes within a

molecule can trigger innate immunity [64]. Protein multimeriza-
tion can also initiate aggregation processes, which increase the

immunogenic potential (Box 4) [64,65]. However, the high intrin-

sic stability of non-antibody scaffolds is likely to limit such pro-

cesses [7].

Drug conjugates
Although nonmodified IgG antibodies typically show toxicities

only at super-pharmacological doses, they are more common for

antibody–drug conjugates (ADCs) at even moderate dose levels

[66]. These toxicities can be dose-limiting in the clinic, and in turn

limit the penetration of the ADC into solid tumors (this is in

contrast to liquid tumors where malignant cells are mostly acces-

sible in serum and generally less affected by dose restrictions) [59].

Scaffolds have the potential to offer significant advantages in such

a scenario, by delivering a toxic moiety deep into a solid tumor

mass while being rapidly cleared from systemic circulation. Early
www.drugdiscoverytoday.com 1279
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ADC designs were based on human antibody fragments. Examples

include moxetumomab pasudotox (Medimmune/AstraZeneca), a

CD22-targeting antibody fragment fused to a shortened Pseudo-

monas exotoxin, which has now reached Phase III trials [67].

Furthermore, antibody-based ADCs can suffer from aggregation

owing to the hydrophobicity of the attached chemical payload

[68,69]. Stable and nonaggregating scaffolds can therefore provide

an attractive alternative in such situations, in particular if an

overall small molecular weight compatible with high tumor up-

take can be maintained [17,70] and a wider range of conjugation

chemistries can be explored compared to working with IgG anti-

bodies [71]. A number of reports demonstrate that scaffolds, in

particular constrained peptides, unmodified and as conjugates to

radionuclides, are highly metabolically stable [72,73] and were

shown to be secreted intact in the urine [74]. This high metabolic

stability is achieved by working with fully synthetic molecules

where a stable and highly inert linkage between the scaffold

peptide and the conjugate can be easily selected.

Concluding remarks
Over the past decade, a large number of pharmaceutical companies

have invested significantly in either acquiring or building in-house
1280 www.drugdiscoverytoday.com
scaffold technologies. The first generation of such non-antibody

drug candidates is now progressing into clinical trials. However,

challenges remain, and the wider translation of scaffold drugs

into clinical practice will require additional innovation. Al-

though a handful of promising and differentiated scaffold drug

candidates continue to advance clinically, it could be their use as

drug conjugates, or the combination with advanced formulation

and delivery technology, that will ultimately drive value crea-

tion. Considering that the expenditure of developing over 50

scaffold technologies will have to be recovered, this will require

considerable time and the development of new and differentiat-

ed therapeutic leads. Scaffold-based platforms could also allow

the development of fast and efficient diagnostics, resulting in a

reduced cost of clinical imaging, an application with significant

promise. Disruptive innovation could also result from further

reducing the molecular size of the scaffolds down to the propor-

tions of macrocycle drugs [75]. This could open up new and

exciting opportunities, including the targeting of intracellular

interactions and oral administration. In summary, further crea-

tivity will be required to transform this promising class of

binding molecules into validated therapeutic and diagnostic

modalities.
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