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The significant reduction in the number of newly approved drugs in the past decade has been partially

attributed to failures in discovery and validation of new targets. Evaluation of recently approved new

drugs has revealed that the number of approved drugs discovered through phenotypic screens, an

original drug screening paradigm, has exceeded those discovered through the molecular target-based

approach. Phenotypic screening is thus gaining new momentum in drug discovery with the hope that

this approach may revitalize drug discovery and improve the success rate of drug approval through the

discovery of viable lead compounds and identification of novel drug targets.
The goal of all drug discovery efforts is to develop efficacious and

safe therapeutics to effectively treat human diseases. Modern drug

development for a given disease usually begins with either target-

based or phenotypic-based screening of a compound library. Well

before molecular target-based drug discovery became popular,

phenotypic-based screening strategies were the foundation of

pharmaceutical drug discovery (Fig. 1). In the past 25 years,

molecular target-based drug screening has become the main drug

discovery paradigm used in both the pharmaceutical industry and

in academic translational research centers. Recently, however,

there appears to be renewed interest in reinventing phenotypic

screens for lead discovery as a means of reenergizing drug dis-

covery.

Molecular target-based screening
The foundation for a molecular target approach of drug develop-

ment started with advances in pharmacology, as well as synthetic

and medicinal chemistry beginning in the early 20th century. The

wealth and depth of research performed in the 1950s and 1960s on

enzymes and enzyme kinetics provided a method for precise

calculation of a compound’s potency (IC50 or EC50) and efficacy

(% maximal response) of an enzyme [1]. Hundreds of enzymes

were discovered and purified during this period, later becoming

important molecular targets of drug discovery [1]. The methodol-

ogy of enzyme kinetics was extended to receptor pharmacology in
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1970s [2], although the molecular entity of receptors was largely

unexplored at this time. The progressive research in receptor

pharmacology and the nature of druggability later made receptors

the most popular targets for drug discovery [3,4]. Technological

advances in molecular biology and genome science initiated a

modern era of molecular target-based approach for drug discovery

in the late 1980s. Recombinant DNA technology enabled the

generation of new assays for a wealth of molecular targets, allow-

ing rapid screens of large chemical libraries using purified recom-

binant proteins or engineered cell lines [5–8]. This, along with

developments in combinatorial chemistry, assay miniaturization

and robotic automation, greatly facilitated the emergence and

rapid development of high-throughput screening (HTS) in the

1990s [9,10].

The molecular target-based approach for drug discovery, also

called ‘reverse pharmacology’ or ‘reverse chemical biology’ [11–

13], generally starts with target identification relevant to a disease

of interest (Fig. 2a). Molecular targets are often discovered in basic

research, with studies involving animal disease models and clinical

observations of patient phenotypes. For example, an abnormal

function of a specific protein, an aberrant signaling pathway, or a

mutation in a specific gene can be identified in basic research with

connection to a disease. Once a suitable target has been identified

and validated, assay development is initiated, followed by HTS of

chemical libraries to identify hits such as enzyme inhibitors or

receptor antagonists against the target. The most active com-

pounds, usually compounds making up one to three lead series,
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FIGURE 1

Evolution of drug screening and lead discovery.
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are then confirmed and validated in orthogonal assays that are

more physiologically related to the target. This is then followed by

chemical optimization to characterize the structure–activity rela-

tionship (SAR) of the lead series and to enhance favorable absorp-

tion, distribution, metabolism, and excretion (ADME) and

pharmacokinetic/pharmacodynamic properties of the com-

pounds. In this paradigm, only a few lead compounds with a

defined mechanism of action and demonstrated efficacy in disease

models are able to move to preclinical drug development, toxicol-

ogy studies, and hopefully, clinical trials. In the past 20 years,
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molecular target-based screening has become the major approach

in early drug discovery. G-protein-coupled receptors (GPCRs), ion

channels and enzymes are the most common and successful

molecular targets for drug discovery [5–8]. It is interesting to note

that all the biologics approved for treatment of human disease are

target-based therapeutics [14]. In contrast to some small molecule

compounds, biologics such as proteins (e.g. enzymes, antibodies),

hormones, peptides, vaccines, and blood components are made

through biological processes and their mechanism of action is

dependent on a specific target.
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TABLE 1

Comparison of target based and in vitro phenotypic screens for lead discovery

Features Target-based screening In vitro phenotypic-based screening

Advantage Disadvantage Advantage Disadvantage

Molecular target of a disease Known Have to know Do not need to know Unknown

Screening throughput and assay Higher; relatively easy
to set up

Assay may be less
biologically relevant

Medium or low;
biologically relevant

Could be low;
could have higher cost

Mechanism of action
of lead compound

Known at onset, which

can accelerate

preclinical drug
development

Limited possibility

of identifying

a new mechanism

Multiple targets and

signaling pathways

can be targeted; may
involve native biological

targets and complexes

Unknown at onset

Methods for confirmation
of lead compound

Direct binding assay,

modeling, X-ray
crystallography, or other

biophysical methods

Need to be confirmed

in cell- based and
phenotypic assays with

native targets and

complexes

Can move to in vivo

study quickly

Target identification

may be required;
which can be complicated

and time consuming

Methods for SAR optimization Readily available and direct Additional assays may

need to support SAR

May need to develop

a more targeted assay

Disease relevance
of lead compound

Direct if it is relevant Drug target may not be

disease-relevant, as lack

of human efficacy found

in late-stage clinical trials

Usually disease relevant;

may target more

complex diseases

Hypothesis limitation
of lead compound [77]

Limited by the

hypothesis, simple

Less hypothesis-restricted
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There is no doubt that molecular target-based screening has

some distinct advantages over phenotypic screening (Table 1). For

example, a molecular target and its related screening assay are

often vital in guiding subsequent chemical optimization of lead

compounds and necessary to fully characterize the SAR. Addition-

ally, knowledge of a molecular target can help guide toxicology

studies during preclinical development. Biomarker development,

which is critical for evaluation of drug effects in animal disease

models and clinical trials, may also be facilitated by the known

molecular target and its signaling pathway.

It has been recognized recently, however, that target-based drug

discovery may have its limitations. Recent analysis has revealed

that high attrition rates in Phase II and III clinical trials are mainly

due to lack of drug efficacy along with other factors [15,16].

Although the lack of drug efficacy in late stage drug development

can be the result of multiple factors, including poor correlation of

animal models with human diseases and genetic variation of

patient populations, invalidated targets for disease is a significant

factor for many failed drug candidates. Additionally, the numbers

of validated druggable targets currently available for drug devel-

opment are seemingly more limited than previously thought

[8,17]. A recent review of FDA approved drugs indicated that there

currently exist only 435 effective drug targets although the success

of human genome program has revealed a total of approximately

20,000 human genes that encode approximately 500,000 proteins

[8]. Thus, identification of new drug targets from the human

genome remains an unmet biomedical research goal.

The success of target-based screens used for drug discovery has

also recently come into question. Swinney and Anthony [14]

analyzed the first-in-class small molecule drugs approved by the

FDA between 1999 and 2008 and found that 28 of them were

discovered using a phenotypic screening approach compared to 17
drugs discovered by a molecular target-based approach. This sur-

prising discovery has contributed to growing interest and recon-

sideration of phenotypic screens for drug development in both

pharmaceutical industry and academic research centers, with a

hope that newly increased application of this traditional approach

can rejuvenate early-phase drug discovery and improve the success

rates in late stage drug development (Fig. 1).

Phenotypic screening in drug discovery
Today, the main application of cell-based phenotypic assays is to

screen large compound libraries, composed of 0.4–2 million com-

pounds, to identify lead compounds for drug discovery projects.

Historically, drug discovery was phenotypic by nature – with new

drugs either accidently found, as in case of penicillin, or through

designed bactericidal screens to discover additional antibiotics

[18]. The phenotypic screening approach for drug discovery is

also called ‘forward pharmacology’, ‘classical pharmacology’ or

‘forward chemical biology’ [11–13] and the molecular mechanism

and protein target can remain unknown even after the drug’s

activity and efficacy are determined. Generally, a characteristic

associated with the disease is exploited to develop a cell-based

assay for a modern phenotypic screen (Fig. 2b). Compounds are

then screened in the phenotypic assay to identify active lead

compounds that ameliorate the disease phenotype, exemplified

by selectively killing cancer cells [19], eliminating pathogens in

culture [20], or reducing lysosomal cholesterol accumulation in

Niemann Pick disease type C patient cells [21].

The phenotypic screen is usually more physiologically relevant

and less artificial because intact cells and native cellular environ-

ment are used. Primary hits identified in the phenotypic screens

can potentially target different types of proteins (receptors,

enzymes, transcription factors, among others) and even different
www.drugdiscoverytoday.com 1069
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signaling pathways. Lead compounds can be further selected from

the hits with or without knowledge of the target, although iden-

tification of the target can facilitate the SAR study. The phenotypic

screen in this ‘forward pharmacology’ process enables lead dis-

covery for many diseases in which a drug target has not been

identified and/or validated. Therefore, this approach can have a

useful role in drug discovery for many rare diseases which tend to

be understudied, and with most lacking an effective drug therapy.

Phenotypic screening can also be applied to the discovery of novel

drug targets, which may prove useful for common neurological

diseases such as Alzheimer’s and Parkinson’s diseases, for which

there have been many failures of target-based drug candidates in

clinical trials.

Recent retrospective analysis has found that many drugs

approved by the FDA (especially those the in 1970s) have an

unknown mechanism of action or an unknown target [22]. Not

surprisingly, many of these early approved drugs were discovered

using phenotypic screens and were approved by regulatory agencies

before their precise mechanism of action or protein targets were

identified. A famous example of this is aspirin (acetylsalicylic acid)

for which it took almost 100 years to determine the mechanism of

action and molecular target [23]. Calcium channel antagonists [24]

including 1–4 dihydropyridines (nifedipine, nicardipine and nimo-

dipine), verapamil and diltiazem were found and developed using

phenotypic screens involving smooth muscle relaxation, vasodila-

tation and reduction of high blood pressure [25,26]. The precise

mechanism of action for the treatment of hypertension and other

cardiac indications was not clear when the first of these drugs were

approved in the 1980s. They originally had the generic name of

‘calcium blockers’ [27], while the first L-type calcium channel that

these drugs act on was cloned in 1987 [28]. Ezetimibe (Zetia), a

cholesterol absorption inhibitor, was also discovered in an animal

model with a high cholesterol diet [29,30]. It received FDA clearance

in 2002 as a cholesterol lowering drug without a known molecular

target [31], which was reported later to be the NPC1L1 cholesterol

transporter [32]. Even today, regulatory agencies around the world

will approve a new drug without requiring the precise mechanism of

action or a molecular target, as long as the drug is efficacious and safe

for patients. It should be noted that in-depth characterization of the

drug properties including mechanism of action and molecular

targets can aid in the design of improved next-generation com-

pounds with reduced adverse effects.
TABLE 2

Examples of cell types used in phenotypic screens

Disease Cell type 

Primary cells
Thyroid cancer Thyrocytes 

Cystic fibrosis Bronchial epithelial cells 

Immortalized primary cells
Respiratory papillomatosis Tumor cells 

Cystic fibrosis Bronchial epithelial cells 

Engineered cell lines
Huntington disease PC12 expressing HTT Q103-GFP 

SMA U2OS expressing SM2-luciferase r

Human cells derived from stem cells
Familial dysautonomia Neural crest precursors 

NSC proliferation/differentiation Neuroepithelial-like stem cell line 
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Animal-based phenotypic screens
Historically, isolated tissues or animal models were involved in

phenotypic screening, as described briefly above. In the past 10–20

years, many disease models of several small animals including

Caenorhabditis elegans, zebrafish, Xenopus laevis, and Drosophila

melanogaster have been developed and applied to compound

screening to achieve relatively high screening throughput [33].

The phenotypic screens using in vivo model systems can provide

rich information on compound absorption, distribution, metabo-

lism and toxicity in addition to valuable efficacy data in a disease

model. Although the throughput of compound screens in rodents

or large animal models is limited, the screening capacity with C.

elegans, D. melanogaster, Zebrafish and X. laevis has been improved

by using 96-well plates [34–38] although it is still significantly

lower throughput compared to cell-based assays. One disadvan-

tage to screening with in vivo models is that potential lead com-

pounds with properties of poor drug absorption, quick

metabolism, limited cell membrane permeability and toxicity

may not be active in the primary screens. The poor relevance of

some animal models to human diseases, due to species differences

and other reasons, can contribute to failures in the late stages of

drug development. Therefore, cell-based phenotypic screening

seems more suitable for primary compound screens to identify

physiological and disease relevant lead compounds for drug devel-

opment.

Cell-based phenotypic assays
With advances in new assay technologies, the throughput of

phenotypic screening has greatly improved in the past ten years

(Fig. 2). Robotic screening platforms and highly sensitive detec-

tion systems have been developed which allow phenotypic assays

to be miniaturized and used to rapidly screen large chemical

libraries. In contrast to the lack of cellular content of many

molecular target-based assays using purified recombinant pro-

teins, cell-based phenotypic assays offer additional biological

complexity, with the cellular milieu of interacting proteins and

signaling networks, while still maintaining the capacity of HTS.

Cell-based phenotypic assays usually use primary human cell

lines, immortalized cell lines (primary or engineered), or, more

recently, specific cell types differentiated from induced pluripo-

tent stem cells (iPSCs) derived from patient or normal human cells

(Table 2).
Assay type References

TSH responsive proteins [79]

Electrophysiology [80]

Cell viability (ATP content) [19]
Electrophysiology [81]

Protein aggregates (GFP) [43]

eporter RNA splicing (luciferase) [82]

RT-PCR [63]

Cell viability (ATP content) [65]
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Cell viability assays, cell signaling pathway assays, and disease-

related phenotypic assays are three types of cell-based phenotypic

assays commonly performed in lead discovery. These assays can be

miniaturized to a robotic screening platform and have higher

screening throughput. Active compounds are identified that con-

fer a change in a cellular phenotype such as killing pathogens or

cancer cells, activating or inhibiting a signaling pathway, or

normalizing a phenotypic change associated with human disease.

Additionally, other types of phenotypic assays are also available

including autophagy, apoptosis, cell cycle analysis, cell infection,

cell motility, cell secretion, cytoskeletal rearrangement, nuclear

translocation, receptor internalization and neurite outgrowth.

Cell viability assay
The cell viability assay is one of the most common phenotypic

assays performed and has multiple assay formats. Active com-

pounds are identified that kill cancer cells or exogenous pathogens

including bacteria, fungi, protozoa, and parasites. The assay prin-

ciple of different cell viability assays involves mitochondrial activ-

ity, cellular metabolism or the activity of enzymes associated with

viable or dead cells. The AlamarBlue assay has been used in

mammalian cell lines as well as in bacteria, yeast and protozoa

[39] and involves a cell permeable profluorescent dye (resazurin)

that is reduced to a fluorescent product (resorufin) upon oxidiza-

tion in mitochondria of viable cells. The colorimetric MTT assay is

commonly used to assess compound cytotoxicity that also relies

on mitochondrial metabolic activity in viable cells in which 3-(4,5-

dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) is

reduced to a product with a purple color [40]. Additionally, cell

viability can also be assessed by the release of intracellular enzymes

upon cell death such as the lactate dehydrogenase (LDH) assay and

protease release assay [43,44], or by quantitating fluorescent dyes

intercalated into DNA, such as Hoechst dye (cell membrane

permeable; live cell stain) and propidium iodide dye (membrane

impermeant; dead cell stain) [41]. The ATP content assay is a newer

addition that measures the ATP levels in live cells and is a more

robust with better signal-to-basal ratio for HTS compared with the

MTT, AlamarBlue and DNA dye assays [42].

Signaling pathway assay
Signaling pathway assays are generally considered to be partially

phenotypic, as a known signaling pathway such as a GPCR, nuclear

receptor, MAPK/ERK, transcriptional or ubiquitin–proteasome

pathway is targeted. The signaling pathway assay links a complex

network of protein–protein interactions to transcriptional activa-

tion and expression of a reporter gene (e.g. luciferase, beta-lactamase

or enzyme complementary coupling) or fluorescence protein (GFP

and YFP), which produces a measurable luminescence or fluores-

cence signal [45–47]. Targeting all proteins and components in a

pathway is the main advantage of a signaling pathway assay. Active

compounds identified from signaling pathway-based screens may

interact with molecular targets at any point or multiple points, in

the pathway, an advantage that is not achievable in the single target-

based drug discovery approach [48,49].

Disease-related phenotypic assay
Many diseases are characterized by cellular phenotypic changes

relative to healthy cells, such as morphological changes, or
differences in protein translocation, expression, activity, or func-

tion. For example, expression of long CAG trinucleotide repeats in

the mutant HTT gene in Huntington’s disease is cytotoxic and

results in cell death, which can be detected by a cell viability assay

[43,50]. In Niemann Pick disease type C, lysosomal cholesterol

accumulation in patient cells is a characteristic disease phenotype

that can be measured by a filipin staining assay [21,51].

There are many examples of phenotypic assays that measure

cellular morphological changes associated with disease cells and a

compound’s effect on normalizing those changes. Examples of

these assays include neurite outgrowth assays for Alzheimer’s and

Parkinson’s disease, measurements of aberrant cytoskeletal struc-

ture for myopathy and CNS pathologies [52], and nuclear mor-

phology for cellular apoptosis associated with many diseases [53].

Recently, high content screening has been broadly applied to

measure phenotypic morphological changes [54], such as visualiz-

ing neurite outgrowth using an antibody specific to b-tubulin,

fluorescent dye-tagged phalloidin for the actin cytoskeleton, and

Hoechst dye for assessing nuclear morphology. Additionally,

intracellular localization of a GFP-tagged protein of interest has

been used to analyze protein expression levels or translocation of

the tagged protein to subcellular compartments and structures.

High content screening assays require an automated fluorescence

imaging system and quantitative software analysis of the resulting

fluorescence-based images, which may limit its use to a well-

equipped central laboratory or core facility.

Many diseases are associated with an altered activity or expres-

sion level of certain proteins due to disease status or genetic

mutation, resulting in dysregulation of important cellular signal-

ing pathways or functions. Measurements in DNA content,

nuclear morphology and protein levels involved in the cell cycle

can be used for screening of cell cycle modulators, such as mitotic

inhibitors [55,56]. Bioluminescence resonance energy transfer

(BRET), fluorescence resonance energy transfer (FRET) or protein

fragment complementation assays can be used to identify com-

pounds that inhibit or enhance the intracellular protein–protein

interactions that may be altered in a disease [57]. Reporter gene

assays can be used to probe for changes in cell signaling pathways

[58].

Application of primary cells and human cells derived
from stem cells
Although recombinant cell lines and immortalized primary cells

are commonly used in phenotypic screens to identify lead com-

pounds, largely because they rapidly proliferate and can be

expanded for the generation of large quantities of cells needed

for HTS, primary human cells and patient derived cells are more

desirable for phenotypic screens because of their biological insight

and disease relevance. Primary human cells have been used in

compound screens that are more biologically relevant for drug

discovery [59]. However, limited availability of large amounts of

cells and cell types has prevented the broad application of isolated

primary cells in lead discovery. Embryonic stem (ES) cells and

induced pluripotent stem (iPS) cells are capable of being differ-

entiated into expandable progenitor cells that can be further

differentiated to many types of mature cells such as neurons,

cardiomyocytes and hepatocytes for drug screens [59,60]. In addi-

tion, the capability of generating iPS cells from a patient’s skin,
www.drugdiscoverytoday.com 1071
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blood or other cells allows establishment of disease models using

patient cells that have better pathophysiological relevance to

human disease [61,62]. While the methods for stem cell differ-

entiation including the differentiation efficiency, scale-up, repro-

ducibility and cost effectiveness are still being improved, several

pilot compound screens using stem cell differentiated progenitor

cells have been recently reported. High throughput screens of

smaller compound collections have been performed using pre-

cursor cells derived from patient or normal stem cells, including

neural crest stem cells (from iPSCs with familial dysautonomia,

IKBKAP expression) [63], neural progenitor cells (from normal iPS

cells, Wnt/b-catenin signaling) [64], neuroepithelial-like stem cells

(from normal iPS cells, cell proliferation and viability) [65], and

neurons (from ES cells, AMPA glutamate receptor) [66]. Addition-

ally, several other types of human cells derived from stem cells

have also been used to assess drug efficacy and evaluate compound

toxicity for a small set of compounds [67,68].

Phenotypic screening to identify new indications and
new targets of approved drugs
The second application of a phenotypic assay is to identify new

indications of known drugs – an application that is particularly

useful for diseases without an effective therapy. An approved drug

collection has recently been established at our center [69] and has

been used to identify lead compounds for new applications in

different diseases including Giardiasis [20], NF-kB signaling [70],

Niemann Pick disease type C [21], Chronic Lymphocytic Leukemia

(CLL) [71], Chordoma [72], adrenocortical cancer [73] and thyroid

cancer [74]. Similarly, a smaller collection of approved drugs has

become available (http://www.nihclinicalcollection.com/) that

has been used to identify lead compounds for the CaV1.3-selective

L-type calcium channel and a lithium mimetic project [75,76]. The

identification of new applications for approved drugs can save

time and resources in drug discovery and development, while
1072 www.drugdiscoverytoday.com
reducing the risk of failure in early clinical trials [77,78]. This

approach is particularly useful in attempts to identify potential

therapies for the vast number of rare diseases, as well as neglected

diseases, in which it is imperative to find an effective drug quickly at

the lowest possible cost (Fig. 2c). Additionally, phenotypic screen-

ing of approved drugs may lead to the identification of new drug

targets, because of the known pharmacological properties of the

drugs on a specific enzyme, receptor or protein. The information

obtained from the phenotypic screen can be used for a new drug

development program once the new target is validated (Fig. 2d).

Concluding remarks
It has been recognized that there is a genuine need for more

biologically relevant screening platforms for drug discovery that

may lead to the identification of high quality lead compounds.

The new phenotypic screening assays should have great potential

to meet this challenge as they are usually much more biologically

and/or disease relevant. While the screening throughput and

disease relevancy of animal models still needs to be improved,

the new cell-based phenotypic screens including those utilizing

primary cells and stem cell derived human cells have recently

emerged for lead discovery in early drug discovery in parallel to the

molecular target-based screening approach. The application of

using differentiated cells derived from patients for phenotypic

screening assays can greatly expand the types and numbers of

cell-based disease models. Therefore, phenotypic screening using

newly developed cell-based disease models may lead to a new era of

lead discovery and contribute to development of personalized

medicine.
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