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The traditional physical-property-based argument for drug attrition is developed and
extended to one that incorporates drug–transporter interactions. A new algorithm is

proposed that facilitates the evaluation of this hybrid property space.
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Improving the efficiency of drug discovery remains a major focus for the

pharmaceutical industry. Toxicity accounts for 90% of withdrawals and

major early-stage terminations relate to suboptimal efficacy and safety.

Traditional oral drug space is well defined with respect to physicochemical

properties and ADMET risks but increased focus on ligand-lipophilicity

efficiency, maximizing enthalpy contributions and new target classes

challenge this paradigm. A hybrid space has been identified that combines

physical properties and key interactions attributable to drug transporters.

A novel algorithm is proposed that incorporates drug–transporter

interactions and its utility evaluated against popular ligand efficiency

indices. Simply reducing the bulk properties of compounds can exchange

one problem for another and creates high-risk areas that challenge the

successful delivery from a balanced portfolio.

Introduction
Recent statistics indicate that the well-documented challenges facing the pharmaceutical indus-

try continue with rising costs and attrition together with increased pressure from regulators and

payors being major contributors [1–4]. For over a decade now, companies have rightly focused on

compound properties to stem ADMET (Absorption, Distribution, Metabolism, Excretion, Toxic-

ity)-related attrition and increase the likelihood of candidates surviving early toxicity assessment,

progressing into humans and ideally achieving appropriate exposure. The latter should not only

be viewed from the systemic circulation but also at the target tissue for efficacy without paying the

penalty at tissues associated with (often) off-target safety concerns.

Clearly, intrinsic drug affinity at desired or nondesired (potentially toxic) targets is governed by

a combination of bulk physicochemical properties [5] and specific structural features for example

basic pKa for hERG (human ether-a-go-go-related gene) [6,7], phospholipidosis (PLD) inducers [8],

structural motifs for reactive metabolites [9,10] and transporter interactions such as with the bile

salt excretory pump (BSEP) [11]. Nevertheless, sufficient exposure at the target tissue will still be

required in addition to inherent affinity. Optimizing the exposure of potent compounds at the

desired site of action and in tissues associated with toxicity is fundamental to addressing attrition
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via efficacy and safety [12,13]. In turn, key determinants of drug

exposure are the molecular properties of the drug candidate [14–

16]. The overarching goal therefore remains to achieve good

pharmacokinetics and optimized exposure from a modest dose

often preferring the oral route. Therefore, an enhanced under-

standing of the interplay between molecular structure and expo-

sure remains paramount to successful drug discovery and we move

to a paradigm based upon ‘design better, develop faster and

succeed more often’ from the rather uninspiring but often quoted

mantra of ‘fail fast and fail cheap’.

Drug-like metrics: rules and indices
Emphasis has therefore been placed on defining a series of rules

and indices for compounds at various stages of preclinical devel-

opment. It is important to distinguish between efficiency metrics

that incorporate the affinity of compounds for their targets from

more-generic drug-like properties. The term drug-likeness is ap-
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FIGURE 1

Schematic timeline illustrating major developments of generic drug-like

properties (above timeline) and efficiency metrics (below timeline). Rule of

Five (Ro5) [20], ligand efficiency (LE) [59], oral drug-like [15,49], Rule of Three

(Ro3) [60], binding efficiency indices (BEI) [49], surface efficiency indices (SEI)
[49], ligand-lipophilicity efficiency (LLE) [29,30], Rule of Four (Ro4) [23],

lipophilicity-corrected ligand efficiency (LELP) [61], drug efficiency index (DEI)

[62], quantitative estimate of drug likeness (QED) [25].
plied in drug discovery to identify virtual or real molecules that

occupy what is considered to be drug-like chemical space, based on

physicochemical properties [17–19]. Often this entails examining

the calculated physicochemical properties of molecules and favor-

ing those found in marketed drug molecules or clinical candidates.

It is now widely accepted that drug-like compounds tend to

demonstrate certain favorable ADMET properties such as aqueous

solubility and cell permeability. One approach is to use property

cutoff filters above which compounds fail, for example the now

famous Rule of Five (Ro5) [20].

Clearly, the value of these filters depends on the method used

for their calculation and their associated errors [21]. Nevertheless,

this concept and resulting rules have gained popularity as a result

of their simplicity; they are easy to interpret and the molecular

properties on which they rely can be readily calculated and it is

easy to identify compounds that meet or fail the criteria and to

develop optimization strategies. The underlying rationale is to

increase the probability of designing, prioritizing and thereby

developing compounds with an acceptable ADMET profile and

to minimize property space that is sparsely populated with mar-

keted drugs (exception space). Precedence for the success of the

latter group is rare and would be exceptional [22].

Recognition of the property inflation or molecular obesity

associated with compound progression has led to more rigorous

rules or filters, for example Rule of Four for leads [23] and the Rule

of Three for fragment-based lead generation [24]. However, their

specificity can be poor and concern has also been expressed that

these rules or indices should not be seen as hard cutoffs but rather

guidelines given the errors in their measurement [25,26], and that

application of multiparametric optimization methods would add

considerable insight and benefit [27,28]. Moreover, several valu-

able therapeutic discoveries lie in chemical space beyond typical

oral drug space – so-termed exception or beyond the Ro5 (bRo5)

space [22].

It can therefore be concluded that adopting the rules for drug-

like properties biases the odds in favor of finding a successful

compound, but applying these rules as rigid filters runs the risk

of rejecting valuable compounds. Consequently, several groups

have cautioned that such assessment should go beyond such

simple rules. The introduction of the term ligand efficiency (LE)

was the first of several expressions that have recognized the
importance of combining physicochemical properties and poten-

cy at the intended target [29,30]. A comprehensive review of the

development of these metrics or indices is beyond the scope of this

work. The interested reader is directed to Fig. 1, which provides the

chronology of major developments in this area.

Analysis of historical oral marketed drug data might not be

reflective of future trends in preclinical drug discovery because

increasingly different approaches are adopted particularly for

target engagement. These include optimization of receptor kinet-

ics through consideration of enthalpy binding [31], novel target

classes [32,33], allosteric modulators [34] and targeting novel

signaling pathways such as b-arrestin [35]. These relatively recent

approaches could yield compounds with a physical property dis-

tribution distinct from that previously observed and characterized.

If this is coupled to classical strategies for the optimization of

ADMET properties using traditional methodologies with estab-

lished compound collections, vigilance and the early identifica-

tion of chemical space which could deviate from our previous

experience is paramount. Maintaining compound properties that

are based on historical drugs while targeting novel mechanisms for

efficacy might not serve the industry well. Therefore we need to be

able to respond rapidly to an ever-changing concept of what

constitutes drug-like space.

Compound properties and their relation to attrition
A recent study by Pfizer [36] reported an analysis of compound

attrition resulting from preclinical toxicity in rat demonstrated an

increased likelihood of failure if compounds were basic and had

log P > 3, PSA < 75 Å2. One interpretation of these findings would

be that lipophilic, relatively promiscuous compounds with little

polar functionality tend to have an increased incidence of toxicity.

A similar finding was also reported around this time for a range of

veterinary drugs [37] and reports have indicated the importance of

lipophilicity in hepatotoxicity with a log P > 3 being suggested as

a threshold, together with considerations of total daily dose. A

similar analysis by AstraZeneca [38] on their compound failures

revealed a different profile, with the majority of attrition occurring

with PSA > 75 Å2 and log P < 3. Although attrition in the high-

log P–low-PSA space can readily be rationalized via consideration

of promiscuity and interactions across a range of systems [30], the
www.drugdiscoverytoday.com 73
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FIGURE 2

(a) Mapping of >900 compounds on a bivariate plot of PSA versus c log P –

Biopharmaceutical Drug Disposition Classification System (BDDCS) class II

compounds (dark circle) compared with class III compounds (open circle). (b)
Comparison of BDDCS class I (closed squares) and class IV (open squares).

TABLE 1

Confusion matrix for the classification of Biopharmaceutical Drug
Disposition Classification System (BDDCS) class III compounds
from other BDDCS classes using c log P and PSA

Observed class III Observed other

Predicted class III 170 77

Predicted other 157 506
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apparent failure of compounds in the low-clog P–high-PSA region

is arguably less intuitive.

This apparent dichotomy can be rationalized by several factors

such as: chemist bias in design strategies and synthesis; targets

within the companies’ portfolios at any given time. Such factors

have been theorized by others: a recent analysis [2] has suggested

that companies like Pfizer and Vertex synthesize compounds with

low molecular weight (MW), low log P and few H-bond donors

(HBDs) and/or H-bond acceptors (HBAs); whereas compounds

profiled in companies such as AstraZeneca and Roche appear to

achieve low log P while increasing HBDs and HBAs and MW.

Interestingly, an analysis of AstraZeneca and Bayer compounds

has also revealed marked differences in their compound collec-

tions reemphasizing the ‘organizational factor’ [39]. An update

from Pfizer has demonstrated a shift in their attrition data with

more compounds appearing in the PSA > 75 Å2, log P < 3 space

again indicating the importance of the time element and probably

targets within a portfolio and their associated chemical strategies.

The fundamental role played by exposure was also re-emphasized

in this publication [40].

These reports are intriguing because they have been very pow-

erful, abundant and yielded valuable and influential datasets.

However, although clearly philatelic, little mechanistic or func-

tional rationale has been provided. The recent paper utilizing the

quantitative estimate of drug-likeness (QED) algorithm started to

address this link with respect to ADMET properties but requires

numerous physicochemical descriptors. Given the obvious link

between drug disposition and exposure in target tissues for efficacy

and toxicity, we endeavored to analyze further the 3/75 rule with

respect to the Biopharmaceutical Drug Disposition Classification

System (BDDCS) (Fig. 2).

BDDCS and transporter interaction
The BDDCS [41] looks to separate compounds into four classes

based on their permeability and solubility properties. The system

has been insightful in predicting drug–transporter interactions,

particularly gastrointestinal and hepatic efflux [multi-drug-resis-

tance protein (MDR)1] and hepatic uptake [e.g. organic anion

transporting polypeptide (OATP)1B1 and OATP1B3] [42]. This

model has highlighted that compounds falling into BDDCS class

III tend to be soluble, metabolically stable, poorly permeable and

demonstrate disposition related to transporter interactions.

Figure 2 also shows that, for this dataset of >900 compounds

[38], class III compounds separate significantly from other BDDCS

groups based upon a simple bivariate plot of PSA and log P. The

observation that compounds with PSA > 75 Å2, c log P < 3 tend to

be class III is important and suggested that this rather simple,

visual relationship should be examined further for statistical sig-

nificance.

The hypothesis that compounds with PSA > 75 Å2, log P < 3

belong to BDDCS class III whereas compounds for which this

condition is not true belong to class I, II or class IV is a typical

2 class situation and is normally summarized in a confusion or

error matrix that cross-tabulates the observed and predicted pat-

terns as shown in Tables 1 and 2. The analysis indicates a correct

classification rate of 74.3% which supports the hypothesis that

BDDCS class III compounds tend to have PSA > 75 Å2, log P < 3.

However a more rigorous predictive measure of the model is the
74 www.drugdiscoverytoday.com
kappa (k) value, which considers chance correlations within the

data. In this case a k value of 0.41 indicates a strong model with

moderate-to-high predictive power [43].

It is important to specify that this simple, binary hypothesis is

central to our thinking because the authors are suggesting that

significant attrition can be associated with class III compounds,

because they tend to be transporter substrates or inhibitors. It also
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TABLE 2

Statistical analysis for classification of Biopharmaceutical Drug
Disposition Classification System (BDDCS) class III compounds
from other BDDCS classes using c log P and PSA

Measure Model prediction

Correct classification rate 74.3%

Sensitivity 51.9%

False-positive rate 13.2%

False-negative rate 48.0%

Positive predictive power 68.8%

Negative predictive power 76.3%

Kappa (k) 0.41
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FIGURE 3

Mapping of c log P versus PSA demonstrating the overlap between rat

(closed circles) and human (open circles) organic anion transport proteins

ligands.
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supports a more mechanistic interpretation regarding what has

previously been a simple empirical observation.

This analysis suggests that the compounds reported by Astra-

Zeneca [38], and more recently by Pfizer, in profiling their attrition

[36] are probably class III – poorly permeable, metabolically stable

substrates for uptake transporters. Such compounds can have

concentrations in certain tissues in excess of the circulating plas-

ma that could well be species-dependent and confound interpre-

tation and translation of efficacy and, perhaps more importantly,

toxicology studies. Profiling compounds recently reported to be

substrates for rat [44] and human [44–47] OATPs supported the

hypothesis that they do conform to the paradigm of PSA > 75 Å2,

c log P < 3, although the influence of log P is less obvious in one of

the more limited human datasets (Fig. 3). Building on this exercise,

a further challenge became defining an algorithm that could

quantify the relative risks in this PSA/log P transporter space.

Several groups have proposed and/or reviewed a range of ligand

efficiency metrics, which continue to gain popularity [48].
ADMET efficiency index (AEI): a hybrid index
encompassing ligand-lipophilicity efficiency (LLE)
and BDDCS space
As discussed earlier, consideration of PSA [as in surface efficiency

index (SEI)] [49] in such metrics has perhaps not been as promi-

nent as it could be, although it has been suggested by several

groups as potentially offering differentiation beyond lipophilicity

alone. Our analysis of the PSA/log P grid led us to consider an

algorithm that encompassed the key benefits of LLE (pActivi-

ty � log P) yet also factored in consideration of PSA, typically

normalized to a value documented to be compatible with exten-

sive human absorption [49,50]. This new indirect efficiency metric

that aims to encompass the LLE but encodes for an ADMET score is

described in Eqn 1:

AEI ¼ ðpActivity � jlogPjÞ
PSA

� 100 (1)

This algorithm benefits from LLE which has been demonstrated

to be effective in reducing attrition through a secondary pharma-

cology argument generally considered to be nonspecific in nature

[30]. The PSA term is used to score the data with respect to potential

transporter interactions for which moderate lipophilicity coupled

with a propensity for H-bond interaction contribute to the generic

pharmacophore [51]. This is also supported by the observation that

BDDCS class III compounds have PSA > 75 Å2 and c log P < 3 and

are known to have an increased prevalence of transporter interac-

tions. The authors also considered the need for log P and PSA terms

in this index because both can be considered ways in which the

general polarity of compound can be modified. However, the need

for both terms is rationalized by that fact that the octanol:water

partition coefficient, log P, is a poor descriptor for H-bonding ability

of a compound owing to the relatively high concentration of water

in saturated octanol [52]. Hence, to accommodate general lipophi-

licity and H-bonding potential into this index, log P and PSA are

required. The form of the log P term in the AEI is the modulus and

can be rationalized. Firstly, to moderate the influence of the LLE

term (pActivity � log P) from overpowering the influence of PSA in

AEI the modulus of log P has to be used. It is clear that the term in

LLE becomes positive when log P is negative and, although this is

useful in terms of rationalizing ligand efficiency, this becomes

detrimental in terms of rationalizing ADMET properties such as

permeability and hence absorption which should become less fa-

vorable as log P becomes negative. By contrast, large positive values

of log P are detrimental to LLE and AEI.

During the preparation of this manuscript, an assessment of the

utility of the QED algorithm in its ability to predict the pharma-

ceutical and pharmacokinetic profiles of oral drug molecules was

published. In this analysis a dataset of 771 oral drug molecules

were separated into the top and bottom 25 compounds based upon

the QED score [53]. These top and bottom 25 compounds were

then analyzed for differences in their physical properties and

human pharmacokinetic data. With the exception of fraction

absorbed the QED algorithm was unable to separate the top and

bottom 25 compounds in terms of pharmacokinetic parameters. It

is seen from Fig. 4 that a simple bivariate plot of log P and PSA

clearly demonstrates that the compounds described as ‘ugly’ are

separated by PSA with all ugly compounds having PSA > 73 Å2,

which fits well with the cutoff proposed by Pfizer and all non-ugly
www.drugdiscoverytoday.com 75
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FIGURE 4

Plot of TPSA versus Atom based log P (Alog P) for the top 25 scoring (closed

circles) and bottom 25 scoring (open circles) drugs based on quantitative
estimate of drug likeness (QED) index.
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FIGURE 5

Plot of TPSA versus log P for top US 200 prescribed drugs. All compounds

(open circles), injectable route of administration (closed circles) and sartans,
statins and HIV protease inhibitors (closed squares).
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drugs having PSA < 100 Å2. Although it is not possible for us to

calculate AEI for all of these compounds owing to the lack of

readily available potency data, it is clear that PSA is a significant

factor in this separation, justifying further its inclusion in AEI. This

conclusion is also supported by an analysis of the top 200 US

marketed drugs [54] (Fig. 5), which reveals that class III com-

pounds are relatively limited in this group and dominated by

certain therapeutic classes – antimicrobial (bacterial and viral),

angiotensin II antagonists and statins, the disposition of which is

known to be influenced by drug transporters [55]. To validate this

approach further, the resultant ADMET score was applied to a

range of datasets.
TABLE 3

Comparison of properties, ligand efficiency (LE), ligand-lipophilic ef
together with the new ADMET efficiency index (AEI) for two well-st

Compound pIC50 log P Nh

HIV protease inhibitors

Darunavir 10.9 2.8 38 

Indinavir 9 2.8 45 

Lopinavir 11 4.7 46 

Amprenavir 9.6 2.4 35 

Saquinavir 9.5 3.2 49 

Tipranavir 12.1 7.8 42 

Nelfinavir 9.3 4.7 40 

Atazanavir 10.4 4.5 51 

Ritonavir 10 5.2 50 

HMG-CoA reductase inhibitors
Cerivastatin 8.3 2.6 33 

Rosuvastatin 9 1.9 33 

Pravastatin 7 1.6 30 

Fluvastatin 6.5 3.8 30 

Atorvastatin 8 5.4 41 

76 www.drugdiscoverytoday.com
HIV protease and HMG-CoA reductase inhibitors
These compound classes are often studied because of the interest-

ing balance between enthalpic and entropic contributions to their

efficacy [56]. Table 3 shows that, for the HIV protease inhibitors

analyzed, darunavir was ranked the highest by LLE and AEI and

represents the most recent HIV protease to reach the market and

hence can be expected to have enhanced properties over historical

antivirals. Amprenavir and atazanavir start to highlight and

differentiate AEI from LLE and other indices. Amprenavir and

atazanavir show good potency but possess greater PSA or lower

affinity than darunavir and hence the indices start to diverge.

The properties of atazanavir limit its absorption from acidic
ficiency (LLE) and lipophilicity-corrected ligand efficiency (LELP)
udied compound classes

PSA LE LLE LELP AEI

149 0.40 8.1 7.1 5.4

118 0.28 6.2 10.2 5.3
120 0.33 6.3 14.3 5.3

140 0.38 7.2 6.4 5.1

167 0.27 6.3 11.9 3.8

114 0.40 4.3 19.8 3.8
127 0.33 4.6 14.7 3.6

171 0.29 5.9 16.2 3.5

202 0.28 4.8 19.1 2.4

99.9 0.35 5.7 7.5 5.7

149.3 0.38 7.1 5.2 4.8

124.3 0.33 5.4 5.1 4.3

82.7 0.30 2.7 12.8 3.3
111.8 0.27 2.6 20.3 2.3
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FIGURE 6

Compounds highlighted in this article. 1 Cerivastatin an HMG-Co reductase inhibitor withdrawn from the market because of reports of rhabdomyolysis.
2 Melagatran a thrombin inhibitor and the active form of ximelagatran withdrawn from market owing to liver injury. 3 Telaprevir a protease inhibitor for the

treatment of hepatitis and discontinued as a result of increased competition. 4 Sitaxsentan is a endothelin-A antagonist used in the treatment of pulmonary

arterial hypertension and withdrawn from market because of liver toxicity.
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environments only, whereas amprenavir was subsequently

replaced by the prodrug fosamprenavir which exhibits enhanced

drug-like properties and was designed to reduce pill burden, and

improved dissolution properties showed a clear improvement in

bioavailbility relative to amprenavir. These small but significant

changes in the balance of potency, lipophilicity and H-bonding

potential start to highlight the benefit of AEI.

For HMG-CoA reductase inhibitors, a fairly good agreement was

observed across all indices aside from a switch between cerivastatin

(compound 1 in Fig. 6) and rosuvastatin. Although the magnitude

of the AEI value for all HMG-CoA reductase inhibitors would indi-

cate nonoptimal properties, this serves as a useful reminder that

some transporter interactions can be beneficial and indeed targeted

in drug design. In the case of HMG-CoA reductase inhibitors hepatic

uptake is integral to their mechanism-of-action and safety profile.

The hepatic uptake for rosuvastatin and atorvastatin is much higher

than cerivastatin and this is reflected in their relatively lower AEI

score. Of course this does not diminish the fact that these com-

pounds would be flagged as having the propensity for transporter

interactions or account for the fact that cerivastatin was withdrawn

from the market for concerns around rhabdomylosis as a conse-

quence of several well-documented drug–drug interactions (DDIs).

Compounds optimized by applying LLE
A comparison was also made between LLE and AEI for a recently

published dataset of 59 compounds (47 targets) where LLE was
explicitly applied in their optimization. It is important to note that

these compounds should theoretically have been optimized for

oral delivery and contain no fatal flaws (e.g. metabolic instability)

[2]. Although broad agreement between LLE and AEI was observed

for this dataset (see Supplementary material online) [63], there

were notable exceptions. For example lorcaserin scores very highly

on AEI and moderately on LLE and can be rationalized in terms of

its relatively low affinity (0.1 mM) and moderate lipophilicity

(c log P = 3.2) giving rise to moderate LLE. However, because the

H-bonding potential (as reflected in PSA) is very low (PSA = 12 Å2)

this compound scores well in terms of AEI. Melagatran (compound

2; Fig. 6) is an example of a compound scoring higher in LLE than

in AEI and serves to highlight the difference between a ligand-

based index and a more drug-like index. Melagatran is a potent

(pActivity = 8.8) hydrophilic compound (c log P = �0.75) with

high H-bonding potential (TPSA = 148 Å2). All of these properties

would give rise to this compound scoring well in the LLE index. It

is particularly interesting to note that melagatran has a negative

c log P which inflates the LLE score [LLE = 8.8 � (�0.75)]. This is in

contrast to AEI where the negative value of c log P has little

influence but the high H-bonding potential reduces the score

significantly because this can give rise to an increased probability

of unfavorable affects. It is worth noting at this stage that xime-

lagatran, the prodrug of melagatran, has been associated with a

number of unfavorable liver toxicity issues that culminated in its

withdrawal from the market and further development activities in
www.drugdiscoverytoday.com 77
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TABLE 4

Categorization of 57 recent ligand-lipophilic efficiency (LLE) optimized compounds

Class N LLE AEI Daily dose (mg) % class with daily dose (mg)

Mean SE Mean SE Mean Median <10 <50 �300 >300 >1000

A 15 6.62 0.29 9.91 1.58 71.37 25 33 80 93 7 0

B 17 5.87 0.45 5.42 0.18 181.32 100 18 29 76 24 0

C 16 3.02 0.33 2.78 0.22 926.56 600 0 0 44 56 31

Class A: ADMET efficiency index (AEI) > 7. Class B: 4 < AEI < 7. Class C: AEI < 4 compounds together with the maximal prescribed daily dose. Also shown is the percentage of compounds

within a banded range of total daily dose.
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2006. Interestingly, the lowest scoring drug with the new AEI

is telaprevir (compound 3; Fig. 6), an antiviral agent for the

treatment of hepatitis C, which was recently withdrawn (for

commercial reasons) by Vertex after only 2 years of marketing.

To broaden the utility of AEI, an attempt was made to relate it to

the maximum daily dose of compounds using this same dataset.

The maximum daily dose is a single numerical value that is a

distillation of pharmacokinetics, pharmacodynamics and toxicity

associated with any drug. High daily doses have been related to
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FIGURE 7

Catogerization of 59 ligand-lipophilicity efficiency (LLE) optimized

compounds by (a) ADMET efficieny index (AEI) and (b) total daily dose. Class

A: AEI > 7. Class B: 4 < AEI < 7. Class C: AEI < 4.
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adverse events [57] and a low daily dose has been described as a

way to mitigate deficiencies in potential therapeutic agents [58].

Hence targeting low daily dose represents a measure of drug

efficiency and represents a multiparametric, integrated goal in

drug discovery. From our analyses (Table 4) we propose three

categories for the AEIs: Class A: AEI > 7, Class B: 4< AEI < 7,

Class C: AEI < 4, the rationale for this being: clear distinction

for best compounds; reference to total daily dose; approximately

even distribution across this dataset. Figure 7 shows the relation-

ship between AEI and maximum daily dose and demonstrates

values of AEI > 7 corresponds to a low maximum daily dose. In

this way the authors suggest that AEI values >7 identify com-

pounds with superior intrinsic properties and minimal transporter

interaction.

Compounds falling into class A have AEI > 7 with an AEI

ranging from 7 to 31 and a mean of 9.9. For this class the median

daily dose is 25 mg with 93% of this class having a total daily dose

of <300 mg. Compounds within the range 4 < AEI < 7 (class B)

tend to show higher maximum daily dose and potential subopti-

mal ADMET properties. The mean dose for this class is 100 mg with

24% having a total daily dose of >300 mg. Class C compounds

where AEI < 4 are the most concerning representing a relatively

poor LLE and ADMET profile. The median dose for these com-

pounds is 600 mg and 44% have doses >300 mg daily.

This analysis also afforded a valuable comparison within a target

class. This is exemplified in Table 5 for endothelin antagonists. As

with statins, the AEI score for several of these compounds would

trigger some further thinking. For example, as first-to-market in

pulmonary arterial hypertension (PAH) bosentan still earns �US$1

billion per year. However, whereas hepatic uptake is key to statin

efficacy and benefits their safety profile overall, it is believed to be

linked to hepatic toxicity of compounds such as bosentan via

elevation of intrahepatic concentrations and inhibition of trans-

porters such as BSEP, as illustrated in this dataset. By contrast, the

AEI score for ambrisentan is superior as a result of improved

potency and physicochemical properties and this culminates in

a much reduced, once-daily dose. These properties also address the

propensity to be actively taken up by the liver and inhibit BSEP.

The much improved AEI scores for sitaxsentan and macitentan

are also consistent with a lower, once-daily dose compared with

bosentan. However, sitaxsentan was withdrawn from the market

suggesting these improvements were not sufficient to address

hepatotoxicity, which could also have been linked to reactive

metabolite formation, probably via the methylene dioxy motif.

Interestingly, Table 5 suggests that macitentan has similar intrin-

sic OATP and BSEP liabilities to bosentan but these might be offset

by the much lower dose and associated exposure in the liver.
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FIGURE 8

Decision tree proposed as a useful framework by which it is possible to gauge and anticipate potential attrition scenarios using ADMET efficiency index (AEI) in a

drug discovery setting.

TABLE 5

Application of ADMET efficiency index (AEI) thinking to a series of endothelin antagonists indicating how potency and physical
properties relate to AEI and ligand-lipophilic efficiency (LLE) together with the transporter affinity for organic anion transporting
polypeptide (OATP)1B1 and bile salt excretory pump (BSEP)

Bosentan Sitaxsentan Macitentan Ambrisentan

Daily dose (mg) 250 100 10 10

MW 552 455 588 378

pIC50 7.9 8.9 8.9 8.6

c log P 4.2 2.8 3.4 3.8

PSA 146 144 128 82

LLE 3.8 6.1 5.5 4.8

AEI 2.6 4.2 4.3 5.9

OATP1B1 IC50 (mM) 5 ND 2 47

Cell: media 20 40 100 2

BSEP IC50 (mM) 42 25 12 >100

‘Effective’ BSEP IC50 (mM) 2.1 0.6 0.1 >50
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Individual company strategies to compound
optimization
Individual companies have clearly committed significant resource

and effort to understand the underlying science influencing com-

pound attrition. These company-specific approaches have identi-

fied different working practices within organizations and analysis

reveals different companies tend to occupy different areas of

chemical space [2,36]. Some organizations [38] have challenged

the attempts to find simple guidelines that describe safety-related

drug attrition and conclude the current models do not adequately

describe their attrition data. They further conclude that if these

models had been applied then a number of compounds would

have failed to reach Phase II and hence would have been prevented

from having potential clinical utility. The work of Leeson and

colleagues [2] examined a number of physical properties of com-

pounds acting at specific drug targets across a number of pharma-

ceutical companies. Careful examination of these data helps

rationalize this juxtaposition between Pfizer attrition data and

that of AstraZeneca: AstraZeneca manipulate c log P into a positive

area of property space by increasing PSA whereas Pfizer appear to

manage c log P without increasing polarity and presumably by

maintaining a lower MW. If this is put in the context of AEI then

it is plausible to argue that the attrition observed across different

organizations differs because they work in different areas of prop-

erty space.

Although, in general, organizations strive to maintain good

overall lipophilicity, they differ significantly with respect to their

HBA and HBD profiles. By implication, we argue that attrition can

indeed relate to general physicochemical-property-related attri-

tion but for some companies could be the result of the relatively

high PSA values, which enhances the probability of the com-

pounds falling into BDDCS class III and increased transporter-

related attrition.

Concluding remarks
Arguments have been presented for a new index that seeks to

balance the physicochemical properties, which are known to give

rise to nonspecific toxic events, with the increasing implication of

drug–transporter interactions in drug toxicity. The AEI score looks

to bridge the well-established lipophilic efficiency and known

ADMET properties to maximize target engagement by ensuring

suitable exposure at the site of action while minimizing drug–

transporter involvement, which can often lead to DDIs or toxicity.

By implication AEI presents an alternative paradigm to the tradi-

tional physical-property-related attrition which distinguishes be-

tween physical-property-related toxicity and transporter-related

toxicity. Compounds for which PSA > 75 Å2 and c log P < 3 dem-

onstrate an increased propensity for drug–transporter interactions,

typified by BDDCS class III compounds. PSA, an often understated

ADMET-related property, has been demonstrated to be a pharma-

cophoric component of drug–transporter interactions in addition

to specific structural motifs.

A key feature of AEI is its potential link to clinical dose. In all

scenarios it is possible to mitigate potential defects in compound

properties by targeting a low clinical dose. For example, in the case

of the endothelin antagonists ambrisentan and bosentan, both
80 www.drugdiscoverytoday.com
compounds have c log P > 3 and PSA > 75 Å2 and drug–transport-

er liability but, because of its superior potency and pharmacoki-

netics and low dose, ambrisentan is better tolerated. To facilitate

the use of AEI in discovery programs we have demonstrated the

utility of a simple in silico model that utilized the fact that many

BDDCS class III compounds interact with drug transporters. The

model shows that compounds having c log P < 3 and PSA > 75 Å2

have a 73% probability of being a BDDCS class III compound. This

statistically significant model facilitates early identification of

compounds falling into this class and hence suitable mitigation

can be put in place if required.

Here, to facilitate the use of AEI further in drug discovery

projects the authors have put forward a decision tree (Fig. 8) to

facilitate decision making and identify areas that might require

further investigation. The tree starts by looking at the intrinsic

potency of the compounds that should ideally be less than 0.1 mM

and asks if AEI < 4. If, in general, potency is less than 1 mM but

PSA < 100 Å2 and the compound is not too lipophilic our analysis

would suggest that the series needs to be further optimized only in

terms of potency while retaining the balance of properties already

present in the compounds. Ideally this would be conducted as

part of a multiparametric optimization program incorporating

desired ranges of properties together with associated errors, which

negates the requirements for hard cutoffs [27]. In this way, a more

probabilistic approach would be adopted. If the properties are as

described above but the compounds are becoming rather lipo-

philic, c log P > 3, then general physical properties need to be

modified. The potential fate of such compounds would be typified

by the Pfizer 3/75 rule. For compounds with AEI score <4 and

PSA > 100 Å2 consideration needs to be given to the compounds

being BDDCS class III and hence potential transporter substrates

or inhibitors. The project teams could then consider further

investigation of the benefit:risk of occupying this area of property

space. The properties of such compounds can be inconsistent with

oral delivery from simple formulations and hence other

approaches could be considered: parenteral administration, en-

hanced formulations or designing a prodrug to overcome absorp-

tion issues, depending on a number of considerations including

the intended therapeutic use. For larger molecules, creative syn-

thetic solutions might also be considered including intramolecu-

lar H-bonding and macrocyclization.

The aim of the AEI is not to restrict the properties of new

compounds to regions considered as marketed drug space but

rather to act as an indicator of the potential deficiencies or

challenges in a compound series. It is recognized, for example,

that natural products represent one source of drug products often

with properties that are bRo5. As drug discovery continues to

target innovative approaches to more effective medicines, such

as the disruption of protein–protein interactions, AEI serves to

highlight concerns that small-molecule drug discovery needs to

address early on rather than leaving late-stage attrition to continue

to take its toll on the industry.

Appendix A. Supplementary data
Supplementary material related to this article can be found, in the

online version, at http://dx.doi.org/10.1016/j.drudis.2015.09.010.

http://dx.doi.org/10.1016/j.drudis.2015.09.010
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