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Amyotrophic lateral sclerosis (ALS) is a debilitating disease characterized by progressive loss of voluntary

motor neurons leading to muscle atrophy, weight loss and respiratory failure. Evidence suggests that

inflammation, oxidative stress, mitochondrial dysfunction, apoptosis, glutamate excitotoxicity and

proteasomal dysfunction are all responsible for ALS pathogenesis. We review neuroprotective agents

with the ability to reduce ALS-related bodyweight loss, summarize the various therapies tested on animal

models targeting the proposed molecular mechanisms, compare their effects on bodyweight loss, muscle

damage, disease onset, duration and survival, and analyze their structure–activity relationships, with the

overall goal of creating a screening strategy for further clinical application.
Introduction
Amyotrophic lateral sclerosis (ALS), also known as Lou Gehrig’s

disease, was first described in 1869. The prevalence of ALS is �30 000

in the USA, with a slightly higher incidence in men. About 10% of

ALS cases are familial (fALS) [1] and the most common mutation

known to cause fALS is C9orf72, a hexanucleotide repeat expansion

[2]. The second most common mutation is found in the copper/zinc

superoxide dismutase (SOD1) gene, resulting in a toxic gain of

function [1]. About 90% of ALS cases are sporadic (sALS) and

unassociated with any known genetic mutations. Considering

the relatively high incidence and severity of ALS, there is a severe

lack of effective clinical treatment. Riluzole, the only FDA-approved

treatment, prolongs patient life by only three months. Thus, cura-

tive therapies are urgently needed [3].

Weight loss and muscle atrophy in patients and animal
models of ALS
Weight loss is ubiquitous among ALS patients [4–6] and can arise

through loss of muscle mass [6,7]. Muscle ultrasonography reveals
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marked abnormalities including diminished thickness, increased

echo intensity and fasciculation. Muscle thickness correlates with

bodyweight, function and grip strength [8]. In 50–81% of patients

with ALS the presenting sign is dysphagia [9,10], which results

from oropharyngeal muscle dysfunction [11] and affects quality of

life in nearly all patients. Dysphagia can lead to weight loss via

decreased food intake and malnutrition [9,10].

Hypermetabolism is a generalized metabolic dysfunction also

present in patients with ALS [12–14], which, combined with

negative energy balance, leads to bodyweight loss [5,9]. The

mechanisms underlying hypermetabolism in ALS remain un-

known, but growing evidence indicates that mitochondrial defects

(mainly muscular in origin) inherent to the disease, not only in

motor neurons but also in skeletal muscle [12], drive hypermetab-

olism [15,16].

A loss of bodyweight >10% or a body mass index (BMI)

<18.5 kg/m2 in ALS patients are negative predictors of survival

[17]. Significant evidence suggests that low BMI and malnutrition

can increase mortality of ALS patients sevenfold [18–20]. Survival

outcomes in patients with BMI 30–35 were better than those with a

BMI <30 or >35 [21]. Bodyweight loss in the first two years after

diagnosis significantly correlates with shorter survival and faster
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progression [22]. However, a study on athletes with ALS reported

that slimness might be an early manifestation of ALS rather than a

risk factor [23]. Nevertheless, based on most clinical and experi-

mental evidence, weight loss stabilization and nutritional support

improve patient quality of life and prolong the survival of ALS

animals.

The first animal model of ALS was created in the mouse,

encoding a mutation found in fALS that converts glycine residue

93 to an alanine (G93A) in the SOD1 protein [24]. That model

shows pathogenesis of muscle paralysis similar to that observed in

clinical cases and all the histopathological hallmarks observed in

fALS and sALS. Other mutant SOD1 mouse models include G37R,

G85R, G127X, D90A and H46R. Mainly based on disturbances in

RNA metabolism and protein homeostasis, mutations in genes

encoding TAR DNA-binding protein 43 (TDP-43), FUS/TLS, TAF-

15, ubiquilin 2 and C9ORF72 have also been investigated [25] and

a number of animal disease models generated. Among these,

transgenic mice carrying a human TDP-43 mutation (A315T)

develop features similar to those of ALS, and progressive motor

neuron (pmn) neuronopathy and wobbler mice are two other

animal models in use. The pmn model resembles the SOD1 model,

with hind-limb paralysis and progressive motor neuron degenera-

tion due to a defect in microtubule function for axonal transport

[26]. So far, preclinical drug testing has primarily been performed

in a high-copy SOD1G93A mouse model of ALS. We therefore

collected data from preclinical animal studies in a high-copy

SOD1G93A mouse model mainly using the guidelines established

by Ludolph et al. [27] In general, the mortality, onset and progres-

sion of disease (behavioral signs and weight loss) and/or histologi-

cal changes had been performed in the drug-treated group

comparing with the vehicle group. In this review, we compared

and summarized the reliable results from different laboratories and

research sites. Our focus was to select agents that attenuate body-

weight loss, improve muscle function and produce a significant

change in onset, progression or mortality.

Mechanism-based preclinical drug development
The complex mechanisms underlying ALS pathology include in-

flammation, oxidant stress, apoptosis, mitochondrial dysfunction,

excitotoxicity and SOD1 protein aggregation. We will compare the

effects of drugs targeting these mechanisms on bodyweight loss,

muscle damage, disease onset, duration and survival (Table 1, Fig. 1).

Bodyweight loss occurs in ALS experimental animals and in

human patients, owing in a large part to muscle atrophy. However,

bodyweight is not only a sign of ALS onset but also directly

correlated to prognosis, and has often been used to evaluate

therapeutic benefits. Rotarod performance is often used to deter-

mine the onset of ALS disease and assess muscle function in

preclinical animal studies. In addition, the following neurobeha-

vioral tests are commonly used: (i) postural reflex [28]; (ii) balance

beam [29]; (iii) screen and paw-grip endurance (also known as the

hanging wire test); (iv) tail suspension or extension reflex [30]; (v)

footprint analysis [31]; and (vi) Basso-Beattie-Bresnahan locomo-

tor rating [32].

Anti-inflammatories
Although motor neuron death is the hallmark of ALS, the concept

of ‘non-cell-autonomous’ neurodegeneration has been applied to
66 www.drugdiscoverytoday.com
ALS [33], and studies indicate that non-neuronal cells including

microglia, astrocytes and Schwann cells interact with damaged

motor neurons and each other to mediate and affect ALS disease

[34,35]. Interestingly, the loss of motor neurons in transgenic

mouse models of ALS [36,37] and in ALS human postmortem

tissues [38–41] are accompanied by a robust glial reaction and

proliferation, as well as microglial activation. Increasing evidence

shows that neuroinflammation involving microglia and astrocytes

contributes to disease progression [42] and motor neuron damage

in ALS [43], and when associated with astrocytes and microgliosis

leads to the release of proinflammatory cytokines [44] such as

interleukin (IL)-6 [45]. ALS-linked mSOD1 activates caspase-1 and

IL-1b in microglia, which has been implicated in neuroinflamma-

tion [46]. In addition, there is significant elevation in tumor

necrosis factor (TNF)a and Fas ligand immunoreactivity in ALS

mice and human patients [47]. Because inflammation is funda-

mental to the pathogenesis of ALS, anti-inflammatories could play

an important part in treatment.

Celastrol, derived from a traditional Chinese herb, is a triterpene

originally used as an anti-inflammatory, but also has strong anti-

oxidative effects and increases expression of heat shock protein

(HSP)70 [48]. Celastrol was administered orally to G93A mice

starting at 30 days of age; 2 and 8 mg/kg/day increased survival

by 9.4% and 13%, respectively, and significantly reduced weight

loss, improved motor function and delayed disease onset [49]. In

treated animals neuronal cell count was increased by 30% in the

lumbar spinal cord and TNFa, inducible nitric oxide synthase

(iNOS), CD40 and glial fibrillary acidic protein (GFAP) immuno-

reactivity was reduced.

Cannabinoid receptor 2 (CB2) is upregulated in microglia in

response to inflammatory stimuli [50], and CB2 agonists suppress

microglial activation in vitro [51]. Cannabinoids produce anti-

inflammatory effects through CB2. The CB2 cannabinoid agonist

AM-1241 prolongs survival of G93A mice when delivered at symp-

tom onset [52] and delays disease progression [53,54]. AM-1241

improves the motor performance of G93A mice (especially males)

but has no protective effect on bodyweight in mice of either sex

[53].

TNFa and Fas ligand immunoreactivity is greatly elevated in

lumbar spinal cord motor neurons and glial cells in transgenic ALS

mice and ALS patients [47]. Thalidomide works as an anti-inflam-

matory by destabilizing the mRNA of TNFa and other cytokines.

Treatment was administered orally with 50 or 100 mg/kg/day in a

transgenic G93A mouse model at 30 days of age. Thalidomide

delayed onset significantly improved motor performance from 98

to 155 days of age [47], and attenuated weight loss from the age of

70 days. Survival was prolonged in a dose-dependent manner from

130 days to 145 days (12%, 50 mg/kg) or 151 days (16%, 100 mg/

kg), associated with reduced TNFa and Fas ligand immunoreactivi-

ty in the spinal cord. Similarly, lenalidomide has been used to

inhibit inflammatory signals caused by ALS pathology in G93A

mice; it is less potent at reducing TNFa but more potent at

reducing other proinflammatory signals (e.g. Fas ligand, IL-1b,

TNFa and CD40 ligand) [47]. One study treated presymptomati-

cally [47] and the other treated at symptom onset [55]. Presymp-

tomatic oral treatment with 100 mg/kg/day started at 30 days of

age significantly increased survival from 130 days to 154 days

(18.5%). In the subsequent study, lenalidomide at the same dosage
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TABLE 1

Summary of agents for amyotrophic lateral sclerosis (ALS) with individual neuroprotective mechanism.

Agent Model Delivery/dosage Muscle function Onset Mortality Refs

Anti-inflammatory agents

Celastrol G93A/B6SJL Oral

2 mg/kg

8 mg/kg

Motor performance (+) 95.8 � 11 (Veh)

vs

109.5 � 8
(2 mg/kg)

128.8 � 5.6 (Veh) vs

140.8 � 7.8

125 � 7 (Veh) vs
141 � 8

[49]

AM-1241 G93A/B6SJL IP at onset

0.3 mg/kg

3 mg/kg

Motor performance

and score (+)

IP at onset 90 days

IP at onset 75 days

113.7 � 1.7 (Veh)

vs

123.4 � 2.2 (0.3 mg/kg)
vs

126.9 � 2.8 (3.0 mg/kg)

123.6 � 2.3 (Veh/male)

vs

126.7 � 1.2 (male)

134.4 � 3.4 (Veh/female)

vs

130.9 � 3.0 (female)

[53,54]

[53]

Thalidomide G93A/B6SJL Food
50, 100 mg/kg/day

Motor performance (+) 90 (Veh)
Disease onset was

delayed

130 � 8.5 (Veh)
vs

145 � 19 (50 mg)

vs
151 � 19 (100 mg)

[47]

Lenalidomide G93A/B6SJL Food

100 mg/kg/day

Motor performance (+) 102 (Veh) vs 124

40.8 � 6.7 (Veh)
vs

59.1 � 5.8 45%

130 � 4 (Veh)

vs

154 � 16

127.7 � 5.1 (Veh)

vs

142.7 � 5.4

[47,55]

NDGA G93A/

B6SJL

Diet

2500 ppm

Motor performance and

paralysis (+)

112 (Veh)

vs

120

122 (Veh)

vs

134

[56]

Pioglitazone G93A/B6SJL 40 mg/kg/

day by food

Diet
1200 ppm

Motor performance (+)

Muscle fiber diameter in

quadriceps muscle (+)

100 � 8 (Veh)

vs

110 � 11

90 (Veh) vs 124

123 � 7 (Veh) vs 133 � 6

123.8 � 6.8 (Veh) vs

139.9 � 8.1

[57,58]

Antioxidant agents

FeTCPP G93A/B6SJL

G93A/C57B6

IP

1 mg/kg/day

Motor performance (++) 101.2 � 1.4 (Veh)

vs
104.4 � 2.9

128 � 1.7 (Veh)

vs
135 � 2.4

[60]

DP109 G93A/

B6SJL

5 mg/kg Motor performance (+) 93 � 7 (Veh)

vs

100 � 6

133.5 � 6 (Veh)

vs

147 � 10

[61]

DP460 G93A/

B6SJL

10 mg/kg Motor performance (++) 93 � 7 (Veh)

vs

102 � 9

133.5 � 6 (Veh)

vs

145 � 10

[61]

M30 G93A/
B6SJL

Oral gavage
1 mg/kg,

4 times/week

General muscle strength (+) 107 � 3 (Veh)
vs

112 � 4

124 � 6 (Veh)
vs

134 � 12

[63]

Mitochondrial protective agents

Cyclosporin A G93A/
B6SJL

ICV
20 mg/week

Delays hind-limb weakness (+)
Improves physical performance (+),

hind-limbstrength and agility (+)

122.5 � 3 (Veh)
vs

135 � 3.8

130 � 3.4 (Veh)
vs

146 � 4.5

[64,65]

Olesoxime G93A/B6SJL SC

3 mg/kg
30 mg/kg per day

Grip strength (+) Bodyweight loss

delayed by 15 days
and grid performance

declined by 11 days

125 � 3 (Veh)

vs
138 � 4 (3 mg/kg)

vs

135 � 3 (30 mg/kg)

[66]

Antiapoptotic agents
Guanabenz G93A/

B6SJL

4 mg/kg

every other day

Motor performance (++) 104.5 � 2.0 (Veh)

vs

116.9 � 2.4

132.2 � 4.0 (Veh)

vs

150.7 � 4.7

[72]

www.drugdiscoverytoday.com 67

R
ev
ie
w
s
�
G
E
N
E
T
O

S
C
R
E
E
N



REVIEWS Drug Discovery Today � Volume 20, Number 1 � January 2015

TABLE 1 (Continued )

Agent Model Delivery/dosage Muscle function Onset Mortality Refs

NaPB G93A/B6SJL IP

300 mg/kg
200 mg/kg

400 mg/kg,

per day

Grip strength bodyweight,

rotarod, stride length,
motor performance (++)

70 (Veh) vs 91 126.1 � 2.7 (Veh)

vs
142.2 � 5.4 (300 mg/kg)

125.7 � 3.0 (Veh)
vs

136.5 � 5.5 (200 mg/kg)

vs

153.2 � 6.4 (400 mg/kg)

[83]

[73]

Antiexcitotoxic agents
Riluzole

+

NaPB

G93A/B6SJL IP

16 mg/kg

300 mg/kg

Forelimb grip strength,

bodyweight (+)

84 (Veh) vs 100 126.1 � 2.7 (Veh)

vs

153.2 � 9.1

[83]

Riluzole G93A/B6SJL IP

30 mg/kg/day

100 mg/ml
3 times per week

Grip strength, bodyweight (+) 11 (Veh) vs 14 weeks

95 � 12 (Veh) vs

98 � 11 (P > 0.05)

210.9 (Veh) vs 233.6

134 � 8 (Veh) vs

148 � 14

[81]

[82]

SOD1 aggregation clearing agents

Arimoclomol G93A SOD1 IP

10 mg/kg

Fatigue index of EDL (+),

contractile characteristics
of EDL (+), maximum

force of TA and EDL (+)

70 (Veh) 125 � 1.8 (Veh)

vs
153 � 2.6

[88,89]

Data in table are collected, analyzed and calculated based on original published data. + improvement of behavior or muscle performance of ALS mouse after treatment of drug compared

with control mouse; ++, obvious protective effect of drug on behavior or muscle performance of ALS mouse; N/A, no available data.

Celastrol Administration
Onset (Veh)
Endpoint (Veh)
Delayed onset
Extended survival

AM-1241
Thalidomide

Lenalidomide
NDGA

Pioglitazone 01
Pioglitazone 02

FeTCPP
DP109
DP460

M30
Cyclosporin-A

Olesoxime
Guanabenz

NaPB
Riluzole 01
Riluzole 02

Riluzole+NaPB
Arimoclomol

0 2 4 6 8 10 12 14 16

Age (Weeks)

18 20 22 24 26 28 30 32 34

Drug Discovery Today 

FIGURE 1

Comparison of effects of neuroprotective agents for amyotrophic lateral sclerosis (ALS) disease in preclinical study. Neuroprotective agents were selected based
on their ability to attenuate bodyweight loss, improve muscle function and significantly delay onset and mortality. Selected agents are displayed on the vertical

axis. Animal model lifespan is displayed on the horizontal axis in weeks, with depicted age of administration (orange triangle), onset (blue) and endpoint (black).

The time frames between treated group and vehicle-treated group are depicted as delay in onset (green) and extended survival (red). Riluzole 01, pioglitazone 02

and NaPB presented good efficacy on delaying onset of ALS, but only riluzole 01 and NaPB delayed mortality; pioglitazone 02 had moderate efficacy on mortality
of ALS. Thalidomide, arimoclomol and riluzole combined with NaPB had good efficacy on mortality of ALS, but thalidomide and riluzole combined with NaPB

elicited only moderate effects on onset of disease; arimoclomol had poor or no effects on onset of ALS. The onset of disease in most ALS animals began at age 12–

14 weeks (the average was 13 weeks in selected studies), and age of administration was 4–6 weeks in our selected studies (the average was 6 weeks). AM-1241,

lenalidomide, NDGA and riluzole 01 appeared to take effect in a relatively short period of time (1–3 weeks), but those selected agents just showed moderate or
poor effects on onset and mortality of ALS disease except riluzole 01.
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at symptom onset increased survival by only 11.7% [55]. Both

treatments improved rotarod performance and attenuated weight

loss and neuronal cell death in the lumbar spinal cord [47,55].

Nordihydroguaiaretic acid (NDGA), an arachidonic acid 5-

lipoxygenase (5LOX) and tyrosine kinase inhibitor, was adminis-

tered orally to SOD1G93A mice [56]. Increased levels of 5LOX

mRNA and protein were evident at 120 days of age. Oral treatment

starting at 90 days of age with 2500 ppm of NDGA significantly

increased bodyweight, delayed disease onset and extended surviv-

al. Lumbar spinal cord sections from treated animals revealed

reduced levels of astrogliosis and cleaved microtubule-associated

tau protein. The median duration of disease was 10 days in

untreated mice and 14 days in the NDGA-treated group, where

median survival was extended by 14 days or 9.8%.

Pioglitazone, an agonist of a peroxisome proliferator-activated

receptor (PPAR), is a neuroprotective anti-inflammatory that

delays the disease process in SOD1G93A mice [57]. Administered

in food presymptomatically at 30 days of age, pioglitazone signifi-

cantly decreased mortality by 13% and delayed symptom onset by

34 days [58], but did not affect progression once symptoms

appeared. In a similar mouse model, treatment starting at 57 days

of age with an average of 40 mg/kg consumption a day was also

effective: onset was delayed by 10 days and survival was increased

by 10 days. Pioglitazone treatment delayed weight loss and de-

creased the rapid functional decline observed in SOD1G93A con-

trol mice. Compared with untreated controls, levels of CD40,

GFAP, iNOS, nuclear factor (NF)-kB and 3-nitrotyrosine were all

lower in the spinal cords of treated animals. Among anti-inflam-

matory agents, those given after onset modestly increased survival,

indicating some effectiveness. However, earlier administration

produced greater delays in disease development and progression.

Antioxidant agents
Oxidative damage is a key component in the pathogenesis of

motor neuron degeneration in ALS, and antioxidants increase

survival [59]. However, here we limit our focus to antioxidant

agents that reduce bodyweight loss. Treatment with iron por-

phyrin (4-carboxyphenyl porphyrin, or FeTCPP) has been shown

to provide modest neuroprotection in a G93A mouse model,

with an overall increase in survival of 9 days (5%) [60]. Treat-

ment prolonged disease progression 54%, a difference of 16 to 25

days. At day 113, oxidative stress markers in all groups showed

substantial reduction in the gray and white matter of the lumbar

spinal cord from the FeTCPP-treated mouse which is comparable

with the N1029 wild-type mouse as assessed by malondialde-

hyde staining or measuring total protein carbonyls. FeTCPP not

only improved motor performance but also prevented loss of

bodyweight.

The lipophilic metal chelators DP-109 (5 mg/kg/day) and DP-

460 (10 mg/kg/day) significantly delayed onset in the G93A-trans-

genic ALS mouse model (7.5% and 9.5%, respectively) and extend-

ed survival (10% and 9%). Compared with untreated controls,

DP109 or DP460 treatment delayed progression by 7 or 3 days,

respectively. There was also a reduction (although not significant)

in ALS-related weight loss in both treatment groups, which is

consistent with motor performance [61]. In addition, DP-109

and DP-460 reduced the markers of oxidative damage in the

lumbar spinal cord of G93A mice [61].
The iron chelator M30 exerts neuroprotective effects by upre-

gulating a number of neuroprotective mechanisms and promotes

survival signaling pathways in the brain [62]. Oral gavage of M30

(1 mg/kg) to G93A high-copy transgenic mice beginning at 70 days

of age delayed disease onset by 4.6%, extended survival by 8% and

attenuated bodyweight loss [63].

Mitochondrial protective agents
Many reactive oxygen species (ROS) are generated during ATP

formation in mitochondria. In ALS an excess of ROS can lead to

release of proapoptosis molecules, causing neurodegeneration. We

next focus on two mitochondrial protective agents: cyclosporine A

(CsA) and olesoxime. CsA prevents mitochondrial transition pore

formation and is neuroprotective. Weekly intracerebroventricular

(ICV) injections of 20 mg CsA starting 65 days before onset atten-

uated the decline of motor performance in G93A mice, helped

maintain physical performance, preserved bodyweight and ex-

tended survival by 12% [64]. A similar study began administration

at 3 months, chosen as the point of late-stage onset. CsA treatment

extended survival from diagnosis point to mortality by 24.2 days,

compared with an 11.8-day change with vehicle alone [65].

Olesoxime targets the outer mitochondrial membrane proteins

[66,67] and affects microtubule dynamics [68]. Subcutaneous in-

jection of olesoxime to G93A mice delays loss of bodyweight by 15

days and decline in grid performance by 11 days [66]. In another

study, 600 mg/kg was added to the diet starting at 21 days of

age and ending at either 60 days (presymptomatic) or 104 days

(symptomatic).

Antiapoptotic agents
Apoptosis is a feature of chronic neurodegenerative diseases, par-

ticularly ALS [69,70]. Understanding the pathways affected by

antiapoptotic agents is an active area for future ALS therapeutic

studies. The best-studied of the antiapoptosis agents is Bcl-2, the

most important protein in regulating programmed cell death [69].

Overexpression of Bcl-2 delays onset, attenuates the degeneration

of spinal cord motor neurons and prolongs survival in ALS mice

[71].

One recent report shows that the antihypertensive guanabenz

significantly increased the expression of Bcl-2 but downregulated

BAX (proapoptosis) in SOD1G93A mice. Administration of 4 mg/

kg every other day beginning at 40 days of age delayed disease

onset by 12 days, extended lifespan by 18 days and delayed

bodyweight loss in SOD1G93A mice [72].

Sodium phenylbutyrate (NaPB) is a histone decacetylase

(HDAC) inhibitor. It arrests growth, induces differentiation and

reduces apoptosis [73]. NaPB has emerged as a potential therapeu-

tic drug for a broad spectrum of neurological diseases [74,75].

Intraperitoneal (IP) administration of 400 mg/kg per day signifi-

cantly extended survival by 21%, improved motor performance

and neuropathological phenotype and ameliorated bodyweight

loss in G93A mice. NaPB treatment also reduces the release of

cytochrome c and subsequent induction of activated caspase-9 and

caspase-3 activity in ALS mice [73].

Antiexcitotoxic agents
Another explanation for neurodegeneration in ALS is glutamate-

mediated toxicity [76]. A disturbance in astrocytic glutamate
www.drugdiscoverytoday.com 69
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transport was shown to elevate levels of glutamate in the cerebro-

spinal fluid of ALS patients [77], and glutamate-mediated toxicity

is noted in ALS [76]. G85R, A4V and I113T SOD1-mutant mouse

lines show a marked loss or inactivation of glutamate transporters

[78,79]. Evidence from clinical and animal models supports

excitotoxic death of motor neurons as a mechanism in ALS

pathogenesis.

Riluzole, the only FDA-approved ALS treatment, prolongs pa-

tient life by only a few months [80], with the proposed mechanism

being antiexcitotoxicity. Riluzole delays onset of muscle weakness

and extends lifespan by 4–6 weeks in animal models of ALS [81,82].

When 16 mg/kg of riluzole was combined with 300 mg/kg of

NaPB, survival was increased over either treatment alone: NaPB
TABLE 2

Neuroprotective agents delay bodyweight loss in animal models of

Mechanism Bodyweight Che

Anti-inflammatory agents (+) 

(+) 

(+) 

(+) 

(+) 

(++) 

70 www.drugdiscoverytoday.com
increased survival by 12.8%; riluzole 7.5%; the combination ex-

tended survival 21.5%. All groups had increased bodyweight and

grip strength compared with untreated animals, with the combi-

nation group showing the greatest increase [83].

Antiaggregation agents
Misfolded proteins and abnormal aggregation of proteins are

pathologically characteristic of neurodegenerative diseases includ-

ing ALS [84,85]. Misfolded proteins are often thermodynamically

stable and form aggresome-like structures; ALS progression can

correlate with a propensity toward protein aggregation. The heat

shock response (HSR) is a highly conserved cytoprotective mecha-

nism; enhanced HSP expression not only directly affects protein
 amyotrophic lateral sclerosis (ALS).

mical structure of agent Refs

[49]

[53]

[47]

[47,55]

[56]

[57,58]
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TABLE 2 (Continued )

Mechanism Bodyweight Chemical structure of agent Refs

Antioxidant agents (++) [60]

(+) [61]

(+) [61]

(+) [63]

Mitochondrial protective agents (+) [64]

(+) [66]
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TABLE 2 (Continued )

Mechanism Bodyweight Chemical structure of agent Refs

Antiapoptotic agents (+) [72]

[73]

Antiexcitotoxic agents (++) [81–83]

SOD1 aggregation clearing agents (+) [88]

Neuroprotective agents inhibiting bodyweight loss and their major action mechanisms. + drug with modest increase of body weight of ALS mouse; ++, robust effect of drug on body

weight gain.

X

Y
O

N

R1

R2

R2

R1
R1

R1

X

Y
N

M+n

M+n

M+n

M+n M+n

N
X

Y
O

M+n

O

Y

Z O

NX

Y

Z N

NX

Y

Z O

OX

Drug Discovery Today 

FIGURE 2

Thermodynamic stable chelating complexes formation of positive cationic

with amyotrophic lateral sclerosis (ALS) potential heteroatom therapeutics.

Three types of 5-membered ring metallic complexes are shown in the upper

panel through the lone pairs or negatively charged oxygen or nitrogen
atoms; oxygen represents hydroxy, ether, carboxylate, etc., and nitrogen

stands for primary amine, secondary amine, tertiary amine, imine, enamine,

etc., which are all strong electron-donating functionalities. Three other types
of 6-membered ring metallic complexes are shown in the lower panel, where

oxygen and nitrogen have the same or similar functionalities as in the upper

panel. The functionalities attached to therapeutic reagents readily chelate

metallic cations. Mn+: Cu2+, Fe2+, Cu1+ and all excess redox-active transition
metallic cations. X/Y/Z: aliphatic C, aromatic C or heteroatom (e.g. S, P, N, etc.).

R1/R2: H, aliphatic carbon side-chain and aromatic carbon. Broken line:

aliphatic side-chain, aliphatic cyclic fused ring and aromatic fused ring.
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aggregation but also leads to more-effective clearance of protein

aggregates via the unfolded protein response [86,87].

The HSR is modulated by stress-inducible heat shock transcrip-

tion factor-1 (Hsf-1). Arimoclomol, a co-inducer of HSPs, signifi-

cantly delays disease progression in SOD1G93A mice [88,89]. Mice

were treated with IP 10 mg/kg of arimoclomol daily at 35 days

(before onset) or at 70 days of age (onset), extending survival by

22% or 18%, respectively. Progression was measured using

electrophysiological assessment of hind-limb muscle function.

At 120 days of age the untreated mouse measured 8.3 motor units

compared with the wild-type mouse at 28 units. Treatment elicited

a significant increase (14.3 units) in motor unit survival [88]. There

was a 74% increase in motor neuron cell count in the sciatic motor

pool of lumbar spinal cord sections of treated animals at 120 days

of age. Neuroprotection was probably associated with the pro-

longed activation of Hsf-1, and in spinal cord sections HSP70 and

HSP90 levels were increased.

Structure-guided drug screening
In ALS patients, greater loss of bodyweight has been associated

with poorer prognosis [18]. Because early changes in bodyweight

are significantly correlated with progression of symptoms and

survival [90], we discuss agents that prevent bodyweight loss in

animal models (Table 2). Very interestingly, the six anti-inflam-

matory agents reviewed were all found to reduce bodyweight loss

and improve motor performance and survival in ALS mice. We

further analyze the structure–activity relationship of the small

molecules in Table 2. Despite differences in their action mecha-

nisms and original design, some of their chemical structures

display common characteristics.

Among the six anti-inflammatory agents that increased body-

weight, the chemical structures (ranging from core skeletons to

substitution functionalities) of NDGA, AM-1241, pioglitazone,

thalidomide and lenalidomide vary. Five of the anti-inflammatory

agents have obvious common features (Fig. 2): (i) potential che-

lating properties with cations to form 5- to 6-membered rings that

are thermodynamically stable; (ii) antioxidation moiety, phenol

or different amines; and (iii) strongly negatively charged atoms as

hydrogen-bond acceptors.
72 www.drugdiscoverytoday.com
These characteristics are common not only to the anti-inflam-

matory agents but also to the other small molecules in Table 2. For

instance, antioxidants and anti-inflammatories share some chem-

ical structures. DP109, DP460 and M30 are classified as antiox-

idants; DP109 and DP460 are analogs with the same core skeleton

and different-length side-chains; both exhibited structural fea-

tures distinct from M30, whereas all three possess: (i) chelating

properties with cations to form 5- or 6-membered rings that are

thermodynamically stable (Fig. 2); (ii) antioxidation properties at
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phenol and aniline moieties; and (iii) hydrogen binding to protein

or enzyme receptors. Thus, combining chemical structural analysis

with the knowledge that certain small molecule compounds can

increase bodyweight and improve motor performance and survival

could be a feasible strategy with which to search for drug candi-

dates for ALS treatment based on ameliorating bodyweight loss.

Concluding remarks and future perspectives
Riluzole has been demonstrated to have a beneficial effect in

people with ALS as well as in SOD1G93A mice. At the same time,

its effects are modest and other scientifically promising therapeu-

tic candidates exist. Unfortunately, many previously promising

candidate therapeutics have shown beneficial effects in the

SOD1G93A mouse model of ALS only to meet with a lack of

benefit when tested in people with ALS. Examples include thalid-

omide [91] and olesoxime, which was well tolerated but failed to

show efficacy in a large Phase II–III clinical trial [92], and piogli-

tazone, which did not show survival benefit in a Phase II trial [93].

These examples highlight the poor track-record of translation

from survival studies in the SOD1G93A mouse model into

humans.

However, even as evidence mounts that survival studies in the

mouse model might have a poor positive predictive value for

human clinical trials, in vivo leads have also fallen short for

predicting success in human trials, and the SOD1G93A mouse

model has become even more entrenched as a preclinical screen-

ing tool, guiding the choice of promising therapeutic agents to

carry forward to human trials.

Our review summarizes changes in bodyweight and muscle

function, demonstrates that these outcome measures in mouse

studies have been underutilized and suggests that bodyweight and

muscle function should be relied upon more heavily in future

studies in the ALS mouse model. Rather than relying heavily on

survival, more-comprehensive criteria for the selection of promis-

ing ALS therapy candidates might include: (i) significant prolonga-

tion of survival and delay in onset of weakness; (ii) survival

prolongation after disease onset because most people with ALS

are diagnosed after onset the window of prevention has closed and
the goal of therapy must be to slow disease progression, rather than

staving off symptom onset; (iii) delay in bodyweight loss; and (iv)

improvement of muscle functions.

Because ALS is a multifaceted pathological disease, various

pleiotropic agents and exciting new therapies targeting one or

more molecular pathogenic mechanisms are currently being stud-

ied [94,95]. Novel therapeutic agents could even have differential

effects at different times in the progression of disease. Further-

more, there could be numerous pathologically and/or genetically

distinct forms of the disease, which might be best targeted with

distinct therapies. In addition, some agents shown to improve

muscle function failed extended survival in ALS animals [96–99].

As a result, a broad range of selective therapeutics might each

have a minimal effect on the whole population of ALS, or a

substantial effect in one patient subgroup and virtually no effect

in another subgroup. This could suggest that, with appropriate

animal models, treatment with combinations of therapies could be

better explored. Motor-neuron-targeted agents might be com-

bined with other classes of drugs, for example skeletal-muscle-

targeted treatments, to increase effectiveness.

Given the complexity of the disease, the likelihood of a complex

solution emerging is high. Solving such a complicated problem

will require collaboration between academia and biotech and

pharmaceutical industries. Furthermore, biomarker discovery

might help us to recognize the earliest symptoms of ALS, ultimate-

ly improving prognosis and contributing to clinical trials with ALS

patients. Ongoing therapeutic trials in animal models of ALS will

provide insight into promising therapies to decrease bodyweight

loss, improve motor performance, extend survival and delay dis-

ease progression. Our review could imply a novel, practical and

feasible strategy for drug discovery applicable to ALS.
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