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MicroRNAs (miRNAs) are noncoding RNA molecules that regulate gene expression through diverse

mechanisms. Increasing evidence suggests that miRNA-based therapies, either restoring or repressing

miRNA expression and activity, hold great promise. However, the efficient delivery of miRNAs to target

tissues is a major challenge in the transition of miRNA therapy to the clinic. Cationic polymers or viral

vectors are efficient delivery agents but their systemic toxicity and immunogenicity limit their clinical

usage. Efficient targeting and sustained release of miRNAs/anti-miRNAs using nanoparticles (NPs)

conjugated with antibodies and/or peptides could reduce the required therapeutic dosage while

minimizing systemic and cellular toxicity. Given their importance in clinical oncology, here we focus on

the development of miRNA nanoformulations to achieve enhanced cellular uptake, bioavailability, and

accumulation at the tumor site.
Introduction
MicroRNAs (miRNAs) are 22 nucleotide-long, noncoding RNA

molecules that act as regulators of gene expression and regulate

a range of biological functions, including cell survival, prolifera-

tion, apoptosis, tumor growth, and metastasis [1]. miRNAs bind to

a complimentary mRNA sequence and result in post-translation

repression or degradation and silencing. miRNAs are formed by

transcription of RNA polymerase II, which folds back to form a

distinctive hairpin structure, whereas other small mRNAs are

formed from longer hairpin structures [2]. Processing of miRNAs

as primary (pri)-miRNA and pre-miRNA (in the nucleus); mature

miRNA duplexes, RNA-induced silencing complex (RISC) strand-

mediated complex, and complementary mRNA sequence forma-

tion cause translation repression and mRNA degradation (in the

cytoplasm) [3,4].

miRNAs have significant roles in cancer, as evident from the

more than 24,000 peer-reviewed reports (Fig. 1a) and clinical
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studies on this topic over the years. Although several miRNAs

modulating carcinogenic processes have been identified, their

clinical translation is limited because of their unsuccessful deliv-

ery at the tumor site and their broad functionality, which results

in off-target effects. Lentiviral vectors have shown efficient cellu-

lar delivery, but their activation of oncogenes and/or excessive

immunogenicity raise concerns over the safety of genomic inte-

gration. To overcome such limitations, nonviral miRNA delivery

systems, such as polyethyleneimine (PEI)-based NPs, liposomes,

polymeric micelles, dendrimers, magnetic NPs, and polymeric

NPs (Fig. 1b), have been proposed. These delivery systems protect

the degradation of miRNAs by nucleases and increase their half-

life in the blood [5], can escape from endosomal and/or lysosomal

degradation, and deliver miRNAs to the cytoplasm or nucleus

(Fig. 1c). The first miRNA replacement therapy to enter clinical

trials involved the restitution of a tumor suppressor miRNA

(miR-34) in modified liposomes (MRX34, Mirna Therapeutics;

http://www.mirnatherapeutics.com/pipeline/mirna-MRX34.

html). MRX34 showed promising results in a Phase I clinical trial,

where partial responses where observed in patients with renal cell
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FIGURE 1

Scientific evidence and nano-based delivery of miRNAs for cancer therapeutics. (a) Publications reporting miRNA (green bars) and miRNA delivery (red bars in

insert) using nanoparticle (NP) formulations from 2000 to July 2016. Data was collected from PubMed on July 26, 2016. (b) Structural differences in nanoparticle

formulations used for miRNA delivery. (i) Polyethyleneimine (PEI) or cationic polymer-based nanoassemblies; (ii) liposomal formulations; (iii) polymer micelles;

(iv) polymer NPs; (v) metal or magnetic NPs; and (vi) dendrimer-based formulations. (c) Possible routes of miRNA uptake mechanisms in cells: clathrin, caveolin,
and receptor-mediated endocytosis. The proton sponge effect leads to the release of miRNAs from NPs.
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carcinoma (RCC), acral melanoma, or hepatocellular carcinoma.

Many patients with advanced-stage disease showed promising

results while on treatment. Thus, the company plans to start

Phase 2 trials with MRX34 for patients with RCC and melanoma

by the end of 2016. Given the clinical impact of miRNAs in cancer,

we review here the strategies implemented for the delivery

of tumor suppressor miRNAs or anti-miRNAs using nanotechnol-

ogy-based formulations for the treatment of various types of

cancer.

Delivery of miRNAs: major obstacles and
nanotechnology
Although accumulating scientific evidence proves significant roles

of miRNAs in cancer, their translation into clinical application has

multiple issues.

The main reasons include poor systemic stability, rapid clear-

ance, and lack of efficient delivery. In general, oligonucleotides in

the bloodstream have a half-life of a couple of minutes; however,

suitable substitution can improve the half-life to several hours [6].

The kidney is one of the barriers that readily accumulates and

clears oligonucleotides from the body via renal clearance. The liver

is another organ that abundantly takes up these oligonucleotides

for clearance from the body [6]. The other major barrier is the

reticuloendothelial system (RES), in which Kupffer cells of liver

and spleen macrophages eliminate these oligonucleotides from

the circulation system. Phagocytosis of the oligonucleotide results

in a phagosome, which is then integrated into the lysosome, where

it is degraded by nucleases [6]. Nuclease activity in plasma and

tissue degrade the oligonucleotide very rapidly. This phenomenon

can be avoided by targeted delivery of NPs to cancer cells [7].

Nanocarrier-mediated oligonucleotide delivery is capable of cross-

ing endothelial cells into the interstitial space of the tumor [6]. In

addition, oligonucleotides can be delivered into the cytoplasm for

translation via endocytosis using a nanocarrier that can escape

endosomal degradation. There are many NPs or nanocarriers being

used to deliver miRNAs, each uniquely formulated and with

distinctive composition.

One of the most widely used groups of polymers for the delivery

of nucleic acids to cells are cationic polymers, because, being

positively charged, these can be conjugated to the negatively

charged nucleic acids. They also present low toxicity and low

immunogenic responses compared with other polymer-based sys-

tems for gene delivery [8]. Cationic polymers are subdivided into

naturally derived and synthetically derived polymers. Naturally

derived cationic polymers include chitosan (CS), dextran, gelatin,

cellulose, and cyclodextrin polymer, whereas synthetically derived

cationic polymers include PEI, poly(L-lysine), poly(amido amines),

poly(amino-co-ester), poly-(2-N,N-dimethylaminoethylmethacry-

late), and dendrimers, of which PEI and its conjugates have been

widely exploited for gene delivery purposes [8]. Low-molecular-

weight PEI polymers are considered to be efficient carriers for the

delivery of small nucleic acids, miRNAs, and small interfering

(si)RNAs because of their low toxicity compared with other trans-

fection agents [9]. The main advantage of the PEI-based delivery

system is the rapid uptake and release (‘proton sponge effect’)

(Fig. 1c) of the nucleic acid inside the cell via an endocytic

mechanism [9]. Schade et al. [10] showed that the combination

of PEI with a magnetic NP formulation led to efficient delivery of
426 www.drugdiscoverytoday.com
the nucleic acid to target cells. Quantum dots (QDs) conjugated to

PEI can enhance theranostic applications to provide imaging, gene

delivery, and cellular labeling [11]. However, limitations associat-

ed with the PEI delivery system include poorer biodegradability

inside the cell, leading to its accumulation and cytotoxicity [12].

Therefore, new research leading to improved PEI-based delivery

systems is needed.

Liposomes are amphiphilic molecules that comprise phospho-

lipids, are biocompatible and biodegradable, and, to a great extent,

resemble the cell membrane of a human cell [13]. Given their

resemblance to the cell membrane bilayer, liposomes have a

tendency to pass through cell membranes and release their encap-

sulated payloads (i.e. miRNAs). The issues of low sensitivity or

specificity and toxicity [13] can be overcome by surface modifica-

tion, as detailed in Table 1. Polymeric micelles, which are highly

soluble in water, have been largely identified as suitable carriers

for, and distributors of, anticancer drug(s). These micelles have an

outer and inner core that determine the different physicochemical

properties of these nanocarriers [14]; for example, their surface

composition, hydrophobicity, and crystallinity [14] determine the

payload release. NPs comprising polymers, lipids, hybrids, and

metal/metal oxides provide significant opportunities for targeted

delivery [15]. NPs readily accumulate at tumor sites because of an

‘enhanced permeability and retention’ (EPR) effect [16].

Here, we discuss various novel strategies to circumvent anti-

sense targeting and delivery to cancer cells through the use of

nanotechnology.

Using nanotechnology formulations to deliver miRNAs
to tumors
Breast cancer
miRNA nanoformulations targeting hyaluronic acid (HA) recep-

tors, which are overexpressed in breast cancer, is a novel approach.

A recent study showed that HA-CS NPs efficiently delivered tumor

suppressor miR-34a and doxorubicin (Dox) to breast cancer cell-

derived xenograft tumors in athymic nude mice, resulting in the

increased inhibition of tumor growth and tumor volume com-

pared with Dox-NPs or free Dox [17]. HA-CS-coated PEI-poly(D,L-

lactide-co-glycolide) (PEI-PLGA) NPs conjugated with Dox and

miR-542-3p both improved targeting and increased the uptake

of NPs in triple-negative breast cancer cells [18]. Furthermore,

delivery of PLGA-PEG NPs encapsulating antisense-miR-21 and

orlistat or orlistat NP in combination with Dox significantly

enhanced apoptotic effects in MDA-MB-231 and SKBR-3 triple-

negative breast cancer cells [19]. In another study, PLGA-b-PEG

NPs were successful in delivering anti-sense miR-21 and miR-10b

in triple-negative breast cancer [20]. A nanoporous silicon micro-

particle modified by arginine-PEI in combination with miR-18a

has been used to target breast cancer cells and resulted in a 90%

knockdown of ATMK (an miR-18a target gene) and a significant

reduction in tumor volume in a murine model of MDA-MB-231

cells [21]. Another CS-based nanoformulation incorporating neg-

atively charged poly(g-glutamic acid) (PGA) was conjugated with

QD-miRNA let-7a-gold NP (QD-RNA-Au NP) for delivery to breast

cancer cells where Dicer-mediated release of QD resulted in

fluorescence, demonstrating its theranostic effectiveness [22].

Anti-miR-21 delivery with a PEI/poly(sodium 4-styrenesulfonates)

(PSS)/grapheme oxide (GO) nanocomplex conjugated to



Drug Discovery Today � Volume 22, Number 2 � February 2017 REVIEWS

TABLE 1

Surface modification of NPs facilitates miRNA binding and successful drug delivery

Nanoformulation Modification miRNA Refs

PEI/poly(L-lysine) HA miR-542-3p [18]

E-selectin miR-146a/miR-181b [76]

Polyarginine miR-145 [30]

Carboxymethyl-hexanoyl CS miR-122 [77]
Rabies virus glycoprotein miR-124a [12]

Liposomes Chlorotoxin miR-21 [78]

Surfactant protein C miR-486 [79]

Ephrin-A1 Let-7a [80]
Cyclic RGD miR-296 [81]

Transferrin miR-1 [82]

Transferrin miR-29b [83]

N-Lactobionyl-dioleoyl-phosphatidylethanolamine miR-155 [84]

Gold NPs Folic acid miR-122 [85]

PEG-peptide-poly(e-caprolactone) copolymer NPs Gelatinase miR-200c [63]

Silica NPs GD2 miR-34a [86]

PLGA Cyclic RGD miR-132 [87]

uPA miR-10b and miR21 [20]

Magnetic NPs PEI miR-145/9/21 [88]
Cy3-DNA probe Let-7 [89]

Lanthanide cations miR-99a/486/21 [90]

PEG miR-16 [91]
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adriamycin inhibited 40% of miR-21 and 45% of ABC transporter

expression levels and resulted in a twofold increase in uptake of

adriamycin [23]. In a recent study, intravenous injection of exo-

somes conjugated with epidermal growth factor (EGF) peptide

targeting EGF receptor (EGFR)-expressing cells with encapsulated

let-7a was shown to be effective in xenograft mouse models of

breast cancer cells [24].

Prostate cancer
Various miRNAs, including miR-34a, -21, and -153, have been

implicated in prostate tumorigenesis [25]. A recent study demon-

strated that the delivery of CS-encapsulated miR-34a intrafemo-

rally reduced bone tumor growth and volume by twofold [26].

Exosomes have been shown to effectively deliver anti-miR-21

oligonucleotides to prostate cancer cells, leading to a significant

downregulation of miR-21 levels and decreased motility of pros-

tate cancer cells [27]. miR-34a delivery has shown chemosensitiza-

tion of paclitaxel treatment in prostate cancer cells by targeting

the Bcl-2 protein [28]. Let-7c miRNA, conjugated with a NP-based

system targeted for prostate cancer cells using anti-prostate specif-

ic membrane antigen (PSMA) antibody or aptamer conjugation,

showed enhanced targeting and uptake. Gold NPs formulated for

the delivery of miRNAs into cancer cells showed a payload that was

approximately 10–20 times higher than that of lipofectamine,

lower toxicity, efficient uptake, fast endosomal escape, and in-

creased half-live [29]. Introduction of disulfide linkage in PEI

(SSPEI) led to better biocompatibility and reduced the associated

toxicity, whereas delivery of polyarginine peptide (R11)-labeled

SSPEI NP showed specific uptake in prostate cancer cells [30]. This

strategy not only reduced toxicity, but also enhanced the restitu-

tion of the tumor suppressor miR-145 to prostate cancer, resulting

in decreased tumor burden in xenografted mice.
Pancreatic cancer
Deregulation of miRNAs has been shown in pancreatic cancer,

leading to enhanced tumor growth and metastasis [31]. Various

miRNAs, such as miR-221, -21, -375, -34a, and -145, have been

implicated in pancreatic carcinogenesis. miR-221 has been

known to function as an oncogene by promoting the growth

of pancreatic ductal adenocarcinoma (PDAC) by regulating the

key oncogenic PTEN-AKT pathway [32] and increased expression

of matrix metalloproteases (MMP), such as MMP-2 and MMP-9

[33]. miR-145 functions as a tumor suppressor in pancreatic

cancer and is known to target Mucin 13 (MUC13) to inhibit

pancreatic cancer growth and invasion [34]. A magnetic NP

formulation encapsulating miR-145 efficiently delivered miR-

145 to the tumor site and downregulated the expression of

oncogenic signaling, such as MUC13, HER2, and pAKT, to inhibit

pancreatic cancer growth and invasion [35]. NP-encapsulated

delivery of miRNA for pancreatic cancer treatment remains an

unexplored field that has potential therapeutic value. In a previ-

ous report, tumor suppressor miR-34a restitution was achieved

using an antibody-modified liposome/polycation delivery sys-

tem in a Panc-1 xenograft mouse model [21]. Gold NPs with

fluorophore-labeled hairpin DNA, so-called ‘gold nanobeacons’,

were used to target and silence miR-21, an endogenous miRNA

involved in cancer development and chemoresistance [36]. The

miR-375 expression level in pancreatic cancer is associated with

the carcinogenesis of pancreatic cancer cells. A solid lipid NP

delivery system in conjugation with miR-375 efficiently reached

pancreatic tumors and inhibited pancreatic cancer growth in vitro

and in in vivo models. The delivery of miR-150-encapsulated NPs

increased the expression of miR-150 in Colo-357 and HPAF cells

by 28- and 26-fold, respectively, compared with transfection of

miRNA via lipofectamine [37].
www.drugdiscoverytoday.com 427
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Ovarian cancer
The efficient delivery of anti-miR-21 to ovarian cancer cells has

been observed to reduce the tumor burden [38]. A recent study

showed a gold NP delivery system for anti-miR-21 to be an excel-

lent platform to target and silence miR-21 in ovarian cancer cells,

inhibiting the sphere-forming capacity of tumor-initiating cells.

miR-155 is downregulated in ovarian tumor-associated dendritic

cells (DCs) and is essential for optimal antigen presentation and

activation of T cells by DCs [39]. PEI-based nanocomplexes were

used to deliver miR-155 to tumor-associated DCs, which increased

the expression of miR-155 in vitro and resulted in increased anti-

tumor immunity, thus, increased survival of the mice (by 65%)

[39]. miR-124 is downregulated in ovarian cancer and acts as a

tumor suppressor by targeting proteins such as myc and increasing

the expression of p27, subsequently leading to cell cycle arrest at

G1 phase because of the loss of phospho-Rb and decreased expres-

sion of the myc protein [40]. Transfection of miR-124 in an ovarian

cancer cell line reduced the invasive and migratory capability of

ovarian cancer cells and increased their sensitivity to etoposide by

twofold. While miR-124 is restored in ovarian cancer xenograft

tumors using 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC)

NPs, it resulted in a significant decrease in tumor weight alone

and in combination with etoposide [40].

Lung cancer
Recent studies demonstrated the feasibility of systemically deliv-

ering miRNA mimics and siRNAs simultaneously to lung adeno-

carcinoma cells using polymer-based NPs in a mouse model of lung

cancer, eliciting a potent antitumor response [41]. It was shown

that miR-34a acts as a tumor suppressor and is significantly down-

regulated in lung cancer [42]. miR-34a targets the p53 signaling

pathway to regulate cell cycle progression and apoptosis induction

in cancer cells [42]. Liposomes encapsulating miR-34a were effec-

tively delivered to lung cancer cells to mediate the inhibition of

cell cycle progression and activation of apoptosis in lung cancer

cells, thereby causing a significant decrease in tumor growth and

volume in an orthotopic mouse model of lung cancer [43]. miR-

200c is a known negative regulator of ZEB1, which induces the

epithelial–mesenchymal transition (EMT) in cancer cells [44].

Liposomal NP-encapsulated miR-200c delivered to lung cancer

cells induced the activation of oxidative stress response genes

and enhanced the radiosensitivity of lung cancer cells up to 1.5

times in an in vivo mice model [45]. Multifunctional aptamer

conjugated to miRNA is another method of delivering tumor

suppressor genes, such as let7g, to lung cancer cells, significantly

reducing tumor volume compared with aptamer treatment alone

[46]. miR-29b is downregulated in non-small cell lung cancer

(NSCLC) cells and directly targets oncogene cyclin-dependent

kinase 6 (CDK6) to regulate cell cycle progression in these cells

[47,48]. Cationic lipoplex-based delivery of miR-29b to lung can-

cer cells effectively reduced CDK6 expression by almost 54% and

reduced tumor volume by almost 50% in vivo [48].

Brain cancer
Poly(amido amine) (PAMAM) has been found to be an effective

carrier for the delivery of miR-7 into glioma cells owing to its low

toxicity, high solubilization, and delayed release [49]. Similarly,

the successful delivery of tumor suppressor miRNA -conjugated
428 www.drugdiscoverytoday.com
NPs to brain cells is feasible. In another study, PLGA NPs encapsu-

lating antisense miR-21 were found to be effective in the delivery

and sustained silencing of miR-21 function in glioblastoma cells

[50]. Mesoporous silica NPs containing polyarginine-peptide

nucleic acid (R8-PNA) conjugates targeting miR221 were used to

treat temozolomide (TMZ)-resistant glioma cells. These NPs, com-

bined with TMZ treatment, led to a significant increase in apopto-

sis [51].

miRNA-mediated chemo-sensitization
Recently, the combination treatment of miRNA therapeutics with

small-molecule anticancer drugs has received much attention

because of its superior therapeutic benefit (Fig. 2). This approach

has many advantages over conventional therapies, such as revert-

ing the EMT, inhibiting drug resistance, promoting apoptosis and

autophagy, suppressing tumor angiogenesis, and inhibiting the

expression of efflux transporters, such as P-glycoprotein [52]. By

actively targeting oncogenic miRNAs using an anti-miR system or

restoring lost tumor suppressor miRNAs, it is possible to sensitize

cancer cells to chemotherapeutic drugs. This treatment modality

resulted in smaller tumor nodules in vivo, which are less likely to

show tumor relapse. Co-delivery of miRNA/siRNA along with

chemotherapeutic drugs is recommended because it has additive

or synergistic effects. Chemotherapeutic drugs can inhibit cancer

growth and proliferation but, over a period of time, cells acquire

resistance against these drugs because of the increased expression

of efflux transporters and antiapoptotic signaling. The miRNA/

siRNA platform helps to overcome drug resistance by directly

targeting efflux transporter expression and antiapoptotic signal-

ing, thereby sensitizing cancer cells to chemotherapeutic drugs

[53]. This co-delivery system is an exciting platform that holds

promise as a better therapeutic modality for treating cancer cells

and, thus, requires further investigation. Another study using a

dual miRNA combination of miR-21 and miR-10b in triple-nega-

tive breast cancer showed promising outcomes for miRNA combi-

nation therapies with drugs or with other miRNAs [20]. A recent

study demonstrated that lipid NP-loaded miR-34a with paclitaxel

induced increased anticancer effects compared with paclitaxel or

miRNA alone [54]. miR-205 is known to sensitize pancreatic cancer

cells to gemcitabine by targeting chemoresistance markers (i.e.

OCT3/4, CD44, and Tubulin b3) [55]. Gemcitabine-miR-205 con-

jugated micelles showed a highly significant reduction in tumor

volume compared with gemcitabine alone in an in vivo pancreatic

cancer model, thereby suggesting a synergistic or additive effect of

the combination treatment on tumor cells [56]. miR-34a directly

targets Notch-1 signaling in breast cancer, thereby inhibiting cell

proliferation, invasion, and chemoresistance [57]. Dox conjugated

to miR-34a HA-CS NPs not only targeted breast cancer cell migra-

tion by inhibiting Notch-1 signaling, but also sensitized cells to

Dox by suppressing Dox-mediated activation of Bcl-2 expression at

both the protein and transcriptome levels [57]. miR-21 is known to

modulate sensitivity to chemotherapeutic drugs [58]. Co-delivery

of an anti-miRNA system with chemotherapeutic drug also holds

promise as an improved treatment strategy. miR-21 has been

proven to be an oncogenic miRNA in various types of cancer,

and suppresses PTEN expression, thus promoting Akt-mediated

activation of Bcl-2 signaling and inducing chemoresistance in

cancer cells [59]. Co-delivery of miR-21 inhibitor conjugated to
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FIGURE 2

miRNA-mediated chemosensitization of cancer cells for improved therapeutics. Schematic representation: (Step 1) loading of nanoparticles (NPs) with miRNA

and drug molecules. (Step 2) antibody conjugation reaction for targeted delivery; (Step 3) targeted binding and intracellular release of miRNA induces
chemosensitization; and Step 4: drug release promotes apoptosis in cancer cells.
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Dox encapsulated in a star-branched copolymer comprising poly(-

lactic acid) and poly(dimethylaminoethyl methacrylate) showed

excellent anticancer efficacy. Tumor volume in glioma cells de-

creased by ninefold compared with control, suggesting a promis-

ing treatment approach combining gene delivery and

chemotherapeutic drugs [60]. miR-200c targets class III beta-tubu-

lin and CD44, improves the sensitivity of cancer cells to chemo-

therapeutic drugs, and reverts EMT by increasing E-cadherin

expression [61,62]. Gelatinase-stimuli NPs for co-delivery of

miR-200c and Dox in cancer stem cells (CSCs) resulted in a 75%

decrease in tumor volume compared with control, again suggest-

ing a synergistic effect of combination treatment [63]. Develop-

ment of multidrug resistance in breast cancer cells occurs when the

miR-21-mediated signaling pathway enhances expression of efflux

transporters, such as P-glycoprotein [64,65]. Graphene NPs have

excellent physical and mechanical properties. It was shown that

adriamycin and miR-21 inhibitor encapsulation in graphene NPs

had more pronounced antiproliferative effects on adriamycin-

resistant MCF7 breast cancer cells [23]. Similarly, co-delivery of

miR-21 inhibitor with 5-fluorouracil (5-FU) using a poly(amido
amine) dendrimer showed an enhanced cytotoxic effect compared

with 5-FU alone in glioblastoma cells [66]. Delivery of anti-miR-21

with poly(L-lysine)-modified PEI NPs to breast cancer cells in-

creased cell cycle arrest in G1 phase, enhanced PDCD4 expression

(a direct target of miR-21), and led to apoptosis by increased

expression of caspase-3. Furthermore, it decreased the IC50 of

Dox from 0.585 to 0.415 mg/ml and that of cisplatin from

1.051 to 0.940 mg/ml, showing the synergistic effect of anti-

miR21 and chemotherapeutic drug treatment [67].

Targeted drug delivery system
A possible solution to the problem of cell-specific delivery of

therapeutic miRNAs/anti-miRNAs is the utilization of targeted

miRNA mimics. The problem with NP-mediated miRNA and/or

drugs is that uptake by cancer cells is not specific; however, this

can be circumvented utilizing targeted approaches by coating the

surface of NPs with specific antibodies or ligands against proteins

that are specifically expressed in cancer cells. The targeted delivery

of curcumin (a natural product) was shown in C4-2 prostate cancer

cell-derived xenograft tumors using PLGA NPs conjugated with
www.drugdiscoverytoday.com 429
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I-131-labeled PSMA antibody [68,69]. These results showed re-

duced prostate tumor burden, and the efficient delivery of curcu-

min to targeted prostate tumors with reduced or no uptake by

other organs. This novel targeted PSMA delivery system can be

used to co-deliver miRNAs and chemotherapeutic drugs to pros-

tate cancer cells in a specific manner without any adverse effects.

PSMA ligand-conjugated polymeric micelles have also been used

to target prostate cancer cells. Transferrin-coated NPs have shown

an excellent ability to pass through the blood–brain barrier and

showed increased cytotoxic effects with zoledronic acid compared

with free zoledronic acid in glioblastoma cells [70]. Folate recep-

tors are highly expressed in breast cancer cells and NPs conjugated

to the folate receptor for delivery of siRNA led to the specific

uptake of NPs by breast cancer cells and the efficient delivery of

siRNA to the cancer cells [71]. Aptamer-mediated delivery of short

RNA therapeutics in cancer cells [72] has been studied, with

promising results, and this system can be further enhanced by
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FIGURE 3

Hyaluronic acid (HA) conjugation offers superior targeted delivery of miRNAs
in breast cancer cells. (a) Schematic representation of a miR-34a-targeted

nanoformulation preparation and in vitro specific targeting of triple-negative

breast cancer cells. (b) In vivo whole-mice imaging of miR-34a nanoparticles
(NPs) in an orthotopic breast cancer mouse model at different time points

after intravenous injection. (c) Photon intensity of tumor region after

injection of NPs. (d) Ex vivo excised tumor tissue exhibiting superior targeting

potential of HA-conjugated NPs. Reproduced, with permission, from [75].
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aptamer-conjugated drug NPs encapsulating short RNA therapeu-

tics and chemotherapeutic drugs for enhanced cytotoxic activity.

These examples show that the targeted delivery of short RNA

therapeutics combined with chemotherapeutic drugs not only

increases uptake by cancer cells specifically, but also inhibits

chemoresistance in cancer cells and enhances their cytotoxic

effects, suggesting a synergistic effect of combinational therapy.

Interleukin (IL)-10 is an important immunoregulatory cytokine

and has an important role in T regulatory cell function [73]. Let-7b

directly suppresses IL-10 expression in T cells and expression of let-

7b regulates tumor-associated macrophages (TAMs) and tumor

infiltrating DCs (TIDCs), leading to increased immune responses

against the cancer cells [74]. Conjugation of let-7b miRNA to

mannose moieties (TAMs and TIDCs express high levels of man-

nose receptors) and pH-responsive PEG-histamine-modified algi-

nate, which disintegrates in acidic microenvironments, led to the

targeted delivery of let-7b. This nanocomplex formulation showed

improved survivability in tumor-bearing mice, with nearly 50% of

let-7b-treated mice still alive 50 days after the start of treatment. In

addition, this formulation resulted in decreased tumor weight and

volume along with decreased levels of M2 macrophage markers,

with a subsequent increase in M1-specific gene (iNOS) and de-

creased expression of TIDCs markers, such as CD40 and CD80 [74].

A miRNA nanobeacon constructed with HA and miR-34a efficient-

ly targeted cancer cells and endocytosis through the CD44 recep-

tor, which was observed both in vitro and in vivo [75] (Fig. 3). Such

specific targeting would improve therapeutic outcomes. A future

goal would be to construct a unique nanoplatform that has inbuilt

therapeutic components in addition to miRNAs, and a specific

targeted moiety to specifically kill or eradicate cancer cells.

Concluding remarks
The successful delivery of miRNAs to cancer cells is a major hurdle

in cancer therapeutics. In this review, we have focused on various

advanced nanoformulations and new methodologies for the suc-

cessful delivery of miRNAs to tumor cells. With these complexa-

tion, encapsulation, and conjugation nanotechnology strategies,

miRNAs can be delivered to the tumor in passive, active, and

stimuli-responsive ways. Furthermore, because of the high fibrosis

and heterogeneity of tumor tissues, a single theranostic nanofor-

mulation with simultaneous therapeutic and imaging capabilities

is of current interest. In addition, nanosystems have shown re-

duced systemic toxicity, which has been an important concern

with earlier conventional transfection systems.
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