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This review provides a comprehensive description of the conceptual foundation and
computational developments in the field of in silico repurposing. Furthermore, a generic

modular description for repurposing workflows is described.
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Here, we provide a comprehensive overview of the current status of in silico

repurposing methods by establishing links between current technological

trends, data availability and characteristics of the algorithms used in these

methods. Using the case of the computational repurposing of fasudil as an

alternative autophagy enhancer, we suggest a generic modular

organization of a repurposing workflow. We also review 3D structure-

based, similarity-based, inference-based and machine learning (ML)-based

methods. We summarize the advantages and disadvantages of these

methods to emphasize three current technical challenges. We finish by

discussing current directions of research, including possibilities offered by

new methods, such as deep learning.

Introduction
Currently, pharmaceutical companies face a challenging economical and societal environment

that requires them to continuously look for strategies to improve their capacities to develop

original drugs at reduced cost [1,2]. Within this context, the pharmaceutical community

considers that finding novel indications and targets for already existing drugs, a method called

‘drug repurposing’, first discussed by Ashburn and Thor in 2004 [3,4], can compensate for the lack

of technical efficiency of the traditional drug discovery approaches that results in a high failure

rate and continual decline in the number of new approved small-molecular entities released by

pharmaceutical industry pipelines [5,6]. The major advantages of a drug-repurposing approach

are that the preclinical, pharmacokinetic, pharmacodynamic and toxicity profiles of the drug are

already known, reducing the risk of compound development. Thus, the compound can rapidly

translate into Phase II and III clinical studies, resulting in a decreased development cost [6], a

better return on investment and an accelerated development time [7]. Drug repurposing is also

interesting from the point of view of intellectual property (IP) and patent protection, because

patent protection for a new use of an existing drug whose composition of matter patents are still

running can be obtained assuming that the new use is not covered and proven in the original
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GLOSSARY

Bipartite graph A graph with two types of node (e.g. nodes
for disease and nodes for drugs); edges (interactions)
between nodes of the same type are prohibited.
Chemoinformatics The field of study of all aspects of the
representation and use of chemical and biological
information on computers.
Chemoproteomics The field of study linking chemicals to
molecular targets with therapeutic indications.
Disease signature A relatively short list of genes associated
with disease or drug effects derived either by manual
curation or automated filtering from high-throughput
experiments.
Genomics Sequencing, assembling and analyzing the
function and structure of genomes.
New candidate Either a drug candidate compound that
does not have any known targets or a target candidate
protein that is not targeted by any drugs or compounds in
the network of interactions investigated for repurposing
purpose.
Phenomics Measures how the genetic and epigenetic effects
affect the physical and biological traits in an organism.
Proteomics The large-scale study of proteins with an
emphasis on their structures and functions.
Receiver operating curve (ROC) A quality measure obtained
by computing the true positive rate (TPR) and false positive
rate (FPR) at different thresholds.
Sensitivity The ratio of the successfully predicted
experimentally verified drug–disease associations to the total
experimentally verified drug–disease associations. It is
mathematically defined as TP/(TP + FN), where TP and FN are
the number of true positives and false negatives, respectively.
Specificity The percentage of the negative (unknown or
random) drug–disease associations predicted by the
algorithm among all negative drug–disease associations. The
specificity is computed using the formula TN/(TN + FP),
where TN and FP are the number of true negatives and false
positives, respectively.
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patents [8,9]. Furthermore, reusing already approved drugs can

help to protect the original IP of the pharmaceutical company

against competitor adjacency moves and can provide alternative

models to outlicense some of its clinical drug candidates [10].

For example, the company can retain the original use rights to

the drug, and outlicense the rights to the new indication. As a

consequence of these opportunities, the initiatives of several

governments for developing drug repositioning have also

emerged. For example, in the USA, the National Centre for

Advancing Translational Sciences (NCATS) has launched the

Discovering New Therapeutic Uses for Existing Molecules Pro-

gramme. In the UK, the Developmental Pathway Funding

Scheme of the Medical Research Council (MRC) provides

researchers with funding for repurposing clinical studies, where-

as the Netherlands Organisation for Health Research and Devel-

opment (ZonMw) has funded a project on the stimulation of

drug rediscovery related to drug repositioning.

Drug repurposing is used to find alternative candidates to cure

various types of disease. Moreover, there are high expectations

regarding the use of repurposing approaches for addressing major

health issues. Examples include Alzheimer’s disease, for which
several alternative candidates are at different development stages

or already in clinical trials [11,12]. Other investigations have

looked for alternative candidates for antiaging therapies [13].

Moreover, with only 5% of the oncology drugs that enter Phase

I clinical trials being approved, there is great demand for new

anticancer drugs and for cell- and target-based screening assays;

thus, drug repurposing also attracts attention from the field of

anticancer drug discovery [14,15]. Many known drugs, including

metformin [16] and vitamin D [17], have been analyzed to identify

potential anticancer properties. The advanced development stage

and ongoing clinical trials of other alternative candidates are

reviewed in [18]. Finally, drug-repurposing methods could help

to find cures for orphan diseases [19]. Indeed, there are 400 million

people worldwide affected by such diseases, but with current

research and development costs, it is impossible to develop de

novo therapies for each of the 5000–8000 orphan diseases identi-

fied so far [20,21].

Drug repurposing is performed either by using an experimental

approach, called ‘activity-based drug repositioning’, or by making

use of a specific computational method [18]. The latter approach,

named ‘in silico drug repurposing’, is one of the latest application

areas of computational pharmacology, a larger field that encom-

passes in silico-based methods developed to investigate how drugs

affect biological systems. From a technical perspective, the devel-

opment of efficient algorithms for in silico drug repurposing is

made possible by two technological trends [18,22]. First, the

accumulation of various high-throughput data generated from

different research areas, such as proteomics, genomics, chemo-

proteomics and phenomics. As a result, entire pathway maps, as

well as data providing characterizations of disease phenotypes and

drug profiles, are available. The second technological trend is the

progress made in computational and mathematical sciences [23]

that, combined with increasingly powerful computational

resources, allows the development of not only repurposing algo-

rithms, but also software for retrospective analysis as well as the

maintenance of web-based databases, which are required for the

gathering and classification of the experimental data [21,22,24–

26].

Compared with activity-based repositioning techniques, in silico

methods allow a faster repurposing process at a reduced cost.

However, these methods require high-resolution structural infor-

mation of targets as well as either disease and phenotype informa-

tion or gene expression profiles of drugs, depending on the nature

of the targets, making any of them strongly dependent on the

availability of experimental data. Moreover, the biological signifi-

cance of the putative targets predicted by the algorithm must also

be assessed. This step necessitates supplementary experimental

testing [4,22]. Regardless of these challenges, various directions of

research have been followed by the scientific community and the

arsenal of traditional methods relying on ligand-based [27] or

receptor-based [28] approaches has been enriched with, for in-

stance, network- and phenotypic-based inference algorithms

[29,30]. These efforts to improve and extend the use of in silico

repurposing techniques are also pursued by companies using state-

of-the-art computational approaches for prioritizing existing can-

didates, performing targeted searches and identifying new targets

for repurposing. Research and results include the identification of

tricyclic antidepressants as inhibitors of small cell lung cancer by
www.drugdiscoverytoday.com 211
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NuMedii [31]; the development of monoclonal antibodies to

innovative and therapeutic targets in oncology and autoimmune

disease by Capella Biosciences; the development and use of a

cloud-based drug discovery platform by TwoXar that aims to find

unanticipated associations between drug and disease with a focus

on therapeutic areas, including autoimmunology, oncology and

neurology; and the development and use of parametric and artifi-

cially intelligent drug discovery and repurposing systems by Insi-

lico Medicine [32,33].

Several authors have recently reviewed different aspects of in

silico repurposing approaches. Hodos et al. [21] considered three

aims and applications of computational pharmacology: prediction

of drug–target interactions; application to drug repurposing; and

prediction of side effects or adverse drug reactions. The description

of these applications was supported by a presentation of the

methods to measure and quantify the pharmacological space

and by a description of the main databases and tools used for data

processing. Some algorithms were described with an emphasis on

their performances and drawbacks. Alaimo et al. [34] focused on

the algorithmic aspects of in silico repurposing approaches, de-

scribing the different classes of method [27], followed by the

mathematical foundations of network-based inference methods.

Using the DT-hybrid algorithm as an example, they discussed

several current issues of in silico repurposing. Here, we present a

global description of the key properties of the main classes of in

silico repurposing method [24] to show that such methods are

organized as workflows of three modules devoted to specific tasks,

namely, data processing, in silico generation of putative candidates

for repurposing and validation of the predictions. Furthermore, we

emphasize that, in addition to their specific advantages and dis-

advantages, repurposing methods share three technical issues: the

inability to predict drug–target interactions involving target or

drug for which no interaction is known, the high dependence of

the in silico methods regarding the model parameters; and the

dependency of the methods on data sets that are biased with

respect to different aspects. This broad synthesis should provide

the reader with a comprehensive overview of the most effective

approaches for designing a repurposing workflow while empha-

sizing the main pitfalls to be avoided.

To introduce the reader to the key steps of in silico repurposing,

we begin with an example of a repurposing workflow. The follow-

ing section then generalizes the main steps of the repurposing

process to encompass the main approaches currently used. The

gathering and processing of the data as well as current limitations

inherent to their use that must be taken into account when using

them are covered. We then describe algorithms of each category

(structure-based, similarity-based, inference-based and ML-based

techniques), along with their main features as well as their advan-

tages and disadvantages. We conclude this section with a descrip-

tion of the procedure for assessing the algorithms and its

predictions. We end our review with a conclusion summarizing

the key technical challenges to be addressed and different

approaches suggested to address them.

Identification of fasudil as an alternative autophagy
enhancer
To introduce the main steps of the in silico repurposing procedure,

the method MANTRA, presented in [35], is used as an example and
212 www.drugdiscoverytoday.com
its application for identifying fasudil as a new autophagy enhancer

serves as a case study. MANTRA belongs to the class of similarity-

based methods. These methods use the intuitive notion that

similar compounds have similar properties. In the case of MAN-

TRA, alternative drug candidates are found by analyzing similari-

ties between transcriptional responses of various types of tissue to

the addition of drugs under different experimental conditions.

The first step for developing such method is to assemble the data of

interest. Here, the Connectivity Map (cMap) [36], a repository that

contains 6100 genome-wide expression profiles obtained by treat-

ment of five different human cell lines at different dosages with a

set of 1309 different molecules, was used. One would want to

represent the information contained in these data by using a drug

network (DN) whose nodes are the drugs, as shown in Fig. 1,

Module 1. By default, these nodes are connected to each other

with edges of arbitrary length. From a biological point of view, one

would want to interpret the length of the edge between two drugs

as a function of the similarity between them.

Thus, the second step is to build a metric, called the similarity

measure, for quantifying in terms of pairwise distance the similar-

ity of the transcriptional response between two drugs. The proce-

dure requires converting the transcriptional profiles obtained for

each drug and tissues into a set of pairwise distances between

drugs. This procedure can be described as follows [Fig. 1, Module

2(A)]. First, the lists of genes are ranked according to their differ-

ential expression following drug treatment, from the most upre-

gulated to the most downregulated. Then, the ranked lists of genes

obtained by treating cells with the same drug are merged in one

single list using a rank-aggregation algorithm [37]. This is a three-

step algorithm using a measure of the distance between two

ranked lists (Spearman’s Footrule [38]), the Borda Merging Method

to merge two or more ranked lists [39], or the Kruskal algorithm to

obtain a single ranked list from a set of lists in a hierarchical way

[39]. The output is a single prototype ranked list (PRL) of genes for

each drug. The PRLs are then used to compute pairwise distances.

The distance between drugs A and B is computed using an optimal

signature (i.e. a subset of the most differentially expressed genes in

the corresponding PRLs of the two drugs). To assess the degree of

similarity between the PRLs, the randomness in the distribution of

the genes of the optimal signature of drug A along the PRL of drug

B, and vice versa, is quantified using gene set enrichment analysis

(GSEA) [40]. The two enrichment scores (one for the optimal

signature of drug A and one for the optimal signature of drug

B) are combined to compute the distance between A and B. If the

number of pairwise distances is very high, the empirical probabili-

ty distribution of these data is used to estimate a significance

threshold for the distance (the upper bound of the 5% quartile

of the empirical pdf, as shown in Fig. 1). The network is interpreted

as follows. Drugs closely connected to, or neighbors of, another

drug induce similar transcriptional responses and are assumed to

share common mode of action (MoA). This interpretation is

confirmed by investigating the topology of the network [41].

Indeed, gene ontology (GO) fuzzy-enrichment analysis of com-

munities identified using the affinity propagation algorithm [42]

confirmed that compounds belonging to the same community

share similar MoA [Fig. 1, Module 2(B)]. Furthermore, drugs of a

given community share similar ATC codes and common target

genes.
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- Prediction assessment by 
computing ROC values
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from cMap online tool
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FIGURE 1

Flowchart of the MANTRA algorithm. Module 1: data sets are genome profiles of cell lines treated with different drugs. For each sample, a ranked list of genes is

created. Module 2(A): ranked lists of genes are merged together and a single prototype ranked list (PRL) is associated with each drug. Then an optimal signature is

built and pairwise distances with all other drugs are computed. Module 2(B): using a clustering algorithm, the community is computed. Module 2(C): benchmark

microarray experiments are used to validate the method. Module 3(A): the method is validated on benchmark data sets by computing receiver operating curve
(ROC) values. The method is then used to identify alternative enhancers of autophagy. Module 2(D): the network is used to identify alternative candidates. Module

3(B): the findings are validated by wet-lab experiments.
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The final step of the development of the method is to quantify

the reliability of its predictions. This is done by applying the

method on benchmark data sets and by comparing the results

with the ones of an already validated algorithm, in this case the

cMap Online Tool [Fig. 1, Module 2(C)]. Concretely, a traditional

signature of differentially expressed genes (a list of significant

genes according to t test corrected with a false discovery rate)

from microarray experiments is used to compare the classification

results, by means of receiver operating curve (ROC) [43] analysis,

with those obtained using the cMap online tool [Fig. 1, Module

3(A)]. cMap measures the signature-profile similarity by generating

a signature from one profile and by using a nonparametric tech-

nique to assess the nonrandom distribution of these signatures in

another ranked profile. The output is a list of drugs connected to

each of the input signatures. The drugs that were predicted to be

negatively connected to the input signature are filtered out, and

each of the remaining drugs is considered a true positive if it

belonged to at least one of four different reference golden standard
sets. The reference sets included the counterpart of the tested drugs

already present in the cMap. The drugs included in these sets are all

those known to have the same MoA as the tested drugs. Overall,

the DN approach performed comparably and sometimes better

than the cMap classic online tool. The percentage of cases in which

the first neighbor of a tested compound in the DN was a true

positive was equal to 89% for the average distance. This value

increases to 100% in cases where there is at least a true positive

among the first two neighbors of each tested compound, for both

the distances.

The MANTRA algorithm and its associated DN have been used

on different case studies [35], including finding alternative drug

candidates that could enhance autophagy. In practice, the DN was

screened for drugs similar to 2-deoxy-D-glucose (2DOG), a mole-

cule with the ability to induce autophagy [44]. 2DOG was found in

a community with other molecules including, in increasing order

of distance, fasudil, sodium-phenylbutirate, tamoxifen, arachido-

nyltrifluoromethane and novobiocin. Fasudil was the closest drug
www.drugdiscoverytoday.com 213
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to 2DOG, whereas tamoxifen is another known autophagy inducer

[45]. A supplementary analysis was performed by analyzing the

distances of 2DOG from the other compounds in the DN inde-

pendently of the community they belonged to. Again, in order of

similarity, fasudil appeared to be the closest compound to 2DOG

and, therefore, could be a suitable candidate as new autophagy

enhancer. To test the validity of this hypothesis, the effect of

fasudil on the induction of the autophagic pathway was experi-

mentally tested by evaluating the LC3-II levels in wild-type human

fibroblasts treated with fasudil, and other experiments using HeLa

cells confirmed the findings [Fig. 1, Module 3(B)]. The fact that

fasudil has the ability to enhance autophagy was not previously

known. Thus, this example illustrates that drug repurposing can

also lead to unexpected observations in drugs, contributing to our

fundamental biological understanding.
Data class 1:
Information about drug and protein
functionalities, genomic sequences,
protein structures, and other intrinsic
properties of molecular compounds 

Data class 3: tools for connectin

Drug repurpo
data chall

• Types of data rarely 
available

• Lack of experimentally 
validated interactions 

Requirement t
heterogeneous

multiple s

Data are

References for gene annotations, drugs, and disease lab
is merged in an unified scheme with symbolic, natural la
techniques (standard rules for combining different disea
chemical substances, SMILES, UMLS, MESH, MetaMap

FIGURE 2

Modular organization of the drug repurposing pipeline. Module 1: assembly of the d
whereas the edges represent the interactions occurring between the compounds

repurposing are based on simple assumptions to define the similarities. The algor

based; (iii) inference-based; and (iv) ML-based methods. Module 3: using benchmark

by computing quality measures. Literature-based searches and alternative comput
confirmation of the in silico predictions (comparison against orthogonal database

terms using the MeSH disease tree), but definitive validation of the biological rel
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Technical characteristics of in silico repurposing
workflows
Despite the various methods and data types available, the different

steps emphasized in the previous section are common to all in silico

methods. Generally, the key modules of these methods are struc-

tured as shown in Fig. 2. Here, provide a description of the

technical characteristics of each module.

Module 1: integration of data
Although the method presented above integrates only one type of

data, many recent methods combine different types of data to

improve their predictive power. Indeed, as emphasized by Hodos

[21], the generation of more accurate and biologically relevant

predictions relies on the capacity of the methods to capture as

many characteristics of the systemic drug–target interaction
g data from different sources

sing input
enges

Data sets are biased 
• Information is available 

for a restricted set of 
molecules

• Lack of negative 
examples regarding 
drug effects

o combine
 data from 

ources

 noisy

Data class 2: 
Information about the nature and

properties of the interactions between
compounds of the same and/or different

types with, for instance, drug–drug
interactions, adverse effects, protein–
protein interactions or disease–drug

relations
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eling. The information available in natural language 
nguage processing and computational linguistic 
se nomenclatures, unified textual identifier for 
, etc.)

ata sets. The nodes of the network of interactions represent the compounds,
. Module 2: all algorithms that generate lists of potential candidates for

ithms are classified into four categories: (i) 3D structure-based; (ii) similarity-

 data sets, the ability of the algorithm to make reliable predictions is assessed

ational methods using text-mining techniques can be used to obtain partial
s, text-mining methods for mapping connected diseases onto known MeSH

evance of the predictions must be done by wet-lab experiments.
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Statistical methods  can obtain desired 
numerical results and can algorithmically deal 
with large-scale problems. One disadvantage  
is their relatively heavy computational burden

Deterministic methods rely on optimization 
techniques. These methods are fast in terms of 
computational speed, but it is difficult to deal 
with large-scale networks

Statistical or deterministic
method

Identification of the relevance and mechanism of action among
diseases and drugs can be done at three different levels

Using the molecular origin profile.
The method repositions drugs against 
diseases by exploiting the relevance or 
overlap of diseases and drug 
molecular origins

Using molecular activity data . These data 
represent the molecular activities of a 
biological system under specific conditions 
and also reflect the effects of the disease 
and drug

Using phenotypic characteristics.
The behavioral or physiological 
changes in response to drug 
treatment can be measured as drug 
indications and adverse effects

Network-based methods offer two advantages: 

Analysis of topological features of the network, such as communities and connectivity, can itself lead to the discovery of new
relations between compounds

Network-based or non-
network-based methods 

Similarity, network topology measures, and clustering algorithms linked to topological properties of the network can be used to  
reinforce the hypothesis based on biological-based measures or to obtain predictions when biological information is missing 
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FIGURE 3

Data types used for drug repurposing and technical issues. Data used for in silico drug repurposing are categorized into three main classes. Class 1 is used to gather

information about intrinsic properties of molecular compounds. Class 2 gives information about the characteristics of the interactions between compounds. Class

3 provides tools for gathering all these data types together in an efficient way. Current data sets and databases have several limitations and bias. These limitations
can complicate the use of in silico methods and introduce various biases into the network topology of known interactions.
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scheme as possible, essentially by combining data of different

origins. As explained in Fig. 3 Top and Table S1 in the supplemen-

tal information online, although they cover a range of different

types of biological information, databases can be classified into

three main classes. The two first classes contain information about

compounds and interaction properties, whereas the class three

contains tools for integrating data of multiple origins within a

unified nomenclature scheme. Using these web-based databases

and software for data processing that is now available, it is possible

to design sophisticated algorithms for investigating interactions

not only between diseases and genes [30,46], diseases and drugs

[4,47–51], drugs and genes [29,35,52], but also by combining

interactions between diseases, drugs and proteins [53] or the

associated genes [19,54–56]. Other methods look at the complex

interplay between adverse effects of the drugs and targets [57]

(Table S2 in the supplemental information online). However,

although many methods perform their analysis at the molecular

level, several approaches work at a larger scale by investigating
how the activation of an entire biological pathway is affected by

the addition of drugs. Indeed, signaling pathways form a network

with many crosstalks that are responsible for drug adverse effects,

cancer resistance [58], or common activation of pathways under a

given perturbation [59]. Pathway-based approaches for drug repur-

posing provide as an output a prioritized list of drug-induced

pathways that can be assembled as a database for further analysis.

Examples of such drug-induced pathways database are presented

in [60,61], while, in [62], an inference-based drug–target pathway

prediction method is implemented.

However, as summarized in Fig. 3, current data sets and data-

bases suffer from several biases and imperfections. Given that

computational repurposing methods are dependent on the avail-

ability and quality of these data, many of these technical imper-

fections affect the validation process or intervene during the

repurposing process and can reduce the ability of a method to

elaborate a prioritized list of putative targets. Methods have been

suggested to correctly introduce the topology of networks of
www.drugdiscoverytoday.com 215
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known interactions [63] or to take into account the fact that most

data used as an input usually contain not only many reliable

positive examples (i.e. a drug is effective against a disease), but

also many less high-confidence negative examples [64]. Other

methods have been suggested to address specific issues ([65–67];

reviewed in [68]).

Module 2: algorithms for identifying candidates for repurposing
Current algorithms are classified into four categories: 3D structure-

based, similarity-based, network inference-based and ML-based

methods [24]. In addition to this classification, repurposing meth-

ods are characterized by three generic properties, as described in

Fig. 4. First, the level at which the interactions between the

compounds are considered. Second, the type of computational

approach used (i.e. stochastic or deterministic). Third, the method
Data class 3

Data class 1
Proteomics, genomics,
chemical structure, adverse
effect phenotype, pathways

Data class 2
Nature and properties of 
the interactions

Classes of method for predict
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FIGURE 4
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can be network based or not depending on whether it explicitly

uses topology properties to gain additional information about the

interactions.

Although these classifications hold for many algorithms, a

direction of research for improving the efficiency of these methods

is to combine features of different algorithms, leading to the

implementation of more complex hybrid methods [21,34]. Nev-

ertheless, a common feature of these algorithms is that they rely on

simple assumptions to define similarity measures that are used as

quantitative metrics to identify alternative candidates and targets.

As an output, these algorithms provide a list of candidates match-

ing a set of predefined criteria. Although a straightforward way for

selecting the most significant candidates is to order them in

descending order and to collect the Top-L ones, a more objective

approach based on the computation of P value scores is preferable
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[34]. This approach requires the calculation of a supplementary

similarity taking into account the function of the targets, for

instance using ontological terms. This similarity is used to build

correlation measures between subsets of targets, and evaluate, for

each drug, which subset of predicted targets has a similarity

unexpectedly high correlation with respect to the validated tar-

gets. The P value is used to provide a quality score for the associa-

tion between predicted and validated targets of a single drug.

3D structure-based methods

3D structure-based methods make predictions of interactions by

mining, for example, the chemical–protein interactome. These

methods use the chemical structure files of the compounds to

compute docking scores [28,69,70]. Hence, in [70], a docking

program was used to calculate the binding energy between an

uploaded molecule and other library drugs. A second algorithm is

then used that utilizes the docking scores to compute association

scores between the uploaded molecule and each library drug. An

advantage of these methods is that the interaction can be analyzed

with respect to the structural properties. Nevertheless, docking

algorithms are computationally expansive and rely on structural

files, which are not easily available.

Similarity-based methods

In addition to the approach described above, many similarity

measures have been implemented using biological, chemical, or

topological properties of the targets, drugs and known interac-

tions. Performance and prediction power vary according to the

similarities used and, generally, the accuracy of similarity-based

methods improves with the amount of data available. However,

current results show that not all similarity measures are equal

regarding the type of information they have access to. For in-

stance, topology- or network-based similarities do not give infor-

mation regarding the drug MoA. For that reason, algorithms

combining different similarity measures are advantageous, al-

though such methods require the use of different data types. In

[49], a disease–disease, drug–drug and disease–drug network was

assembled by matching molecular profiles of disease and drug

expression profiles. Two methods are used to compute the simi-

larity for the pairs of genomic profiles. The first is based on

correlations that measure the profile–profile similarity by calcu-

lating the Pearson correlation of the cyber-T t-statistic values from

two profiles. The second method is based on the concept of

enrichment and follows the procedure described in [36]. In [29],

a combination of two similarity measures was implemented: (i) a

chemical similarity measure based on the relations between terms

related to the drugs annotated with distinct but closely related

terms; and (ii) a phenotypic adverse effect similarity using the

observation that there is a correlation between adverse effect

similarity and the likelihood that two drugs share a protein target.

Both similarities are applied to infer common target between two

drugs. Results obtained showed that the two methods combined

are more sensitive than when applied separately. In [71], a bipar-

tite network of drugs and pharmaceutical compounds was built

and a statistics-based chemoinformatics approach was developed

to predict new off-targets. The core of the algorithm, the similarity

ensemble approach (SEA) [72,73], relies on the chemical similari-

ties between drugs and targets defined by its ligands to compare

targets by the similarity of the ligands that bind to them, expressed

as expectation values. Newly predicted off-targets are assumed to
have a biological relevance if they meet at least one of the three

following criteria: (i) the new targets contribute to the primary

activity of the drug; (ii) they mediate drug adverse effects; or (iii)

they are unrelated by sequence, structure and function to the

canonical targets. The network-based method developed in [19]

is based on a new proximity measure that combines six different

topological measures and uses topological structures called ‘dis-

ease modules’. A disease module is formed by genes associated

with a given disease [46]. The authors hypothesized that a drug is

effective again a disease if it targets proteins in the close vicinity of

the related disease module. The proximity measure performs

better than six of the most common similarities. Furthermore,

this method is capable of taking into account the elevated number

of interactions of targets and, as a result, it is not biased regarding

either the number of targets a drug has or their degrees; however,

this improvement requires access to disease genes, drug targets and

drug-diseased annotations.

Inference-based methods

Inference-based methods use a priori knowledge about known

interactions, referred to as the ‘training set’, to predict new inter-

actions and suggest new targets for repurposing. In [47], two

inference methods based solely on topology measures were ap-

plied to predict drug–disease associations. Following the work of

Zhou et al. [74], the problem is formulated as recommending

diseases for a drug by mining data on the properties of a drug–

disease bipartite network of experimentally verified drug–disease

associations. In [52], following a methodology derived from net-

work theory [74], three methods based on different similarity

measures were implemented: (i) a network-based similarity; (ii)

a drug-based approach using the hypothesis that, if a drug interacts

with a target, then other drugs similar to the drug will be recom-

mended to the target; and (iii) a target-based method, whose basic

idea is that, if a drug interacts with a target, then the drug will be

recommended to other targets with similar sequences to the target.

The results obtained give an advantage to the network similarity-

based algorithm. In [62], a protein complex-based Bayesian factor

analysis was developed that modeled the chemical–genetic pro-

files using protein complexes to infer, by Bayesian inference, the

MoA of drugs on protein complexes. The DT-hybrid algorithm [75]

improves the method of Cheng [52] by using a similarity matrix to

directly plug the domain-dependent biological knowledge into

the model. The similarity matrix is obtained as a linear combina-

tion of a structure similarity matrix and a target similarity matrix.

This method performs better for the prediction of biologically

significant interactions and outperforms the methods presented in

[52,74] in recovering deleted links. Nevertheless, although the

additional biological knowledge increases the performance and

improves the numerical precision, the supplementary parameter

introduced in the similarity matrix leads to practical complica-

tions because its optimal value depends on the characteristics of

the data sets and an a priori analysis is required for its selection.

ML-based algorithms

Finally, ML-based algorithms exploit similarity measures to con-

struct classification features and subsequent learning of a classifi-

cation rule that distinguishes true from false node associations.

Several ML methods have been published and, on average, their

performance and prediction power is improved by integrating

additional algorithmic approaches for dealing with the three
www.drugdiscoverytoday.com 217
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challenges. As for the other category of complex algorithms, their

design varies depending on the data sets used. For example, new

targets are predicted in [76] using multiple-category Bayesian

models trained on chemogenomics databases, whereas, in [77],

the authors used a ML method to investigate the extent to which

chemical features of small molecules can reliably be associated

with significant changes in gene expression. A review of the

network-based ML models and their use for the prediction of

compound–target interactions both in target-based and pheno-

type-based drug discovery applications has been published else-

where [26]. PREDICT is an example of a ML-based method for

predicting novel associations between drugs and diseases [48].

Using a set of known drug–disease associations constructed from

multiple sources as a training set, the algorithm ranks additional

drug–disease associations based on their similarity to the known

associations. For this step, five drug–drug similarity measures and

two types of disease–disease similarity measure are constructed.

The association scores calculated on pairs of these similarity

measures are used by a logistic regression algorithm to construct

classification features and subsequent learning of a classification

rule that helps to identify new drug–disease associations. An

advantage of this method compared with others presented in

[78] is that it can be applied to novel molecules with no indication

information. However, it requires experimentally verified negative

drug–disease associations to proceed. In [79], Yamanishi et al.

investigated new interactions for four different drug–target classes,

using the Kernel Regression Method (KRM).

In this supervised learning method, the biological information

is integrated within a ‘pharmacological space’ by combining

chemical (drugs) and genomic (targets) spaces. A drug–target

interaction network is constructed for each protein class using a

bipartite graph representation. Then, a regression model is devel-

oped between the combined chemical structure and amino acid

sequence-based similarity spaces and the pharmacological space.

The putative drugs and targets are mapped into the pharmacolog-

ical space using this regression model and new interactions are

predicted by connecting drugs and targets that are closer than a

threshold in the pharmacological space. More recently, Dai et al.

[51] suggested a matrix factorization model taking advantage of

the richness of interaction data to detect potential drug–disease

associations rather than following, similar to many others

[35,48,80,81], the usual approach of computing and matching

drug and disease profiles. The method works in two steps. First, a

gene interaction network is constructed and topology information

is extracted from this genomic space by computing a gene close-

ness metric. Using this information, low-rank feature vectors are

retrieved from the gene interaction network by using eigenvalue

decomposition. Then, feature vectors of drugs and diseases are

obtained from drug–gene interactions and disease–gene interac-

tions, respectively. Second, the matrix factorization model is

generated and used to approximate known associations between

drugs and diseases. The model provides an estimate of the possi-

bility of association between one given drug and disease. After

this training phase, the model can be used to predict novel

drug indications. Although the incorporation of topology infor-

mation allows this method to perform better than others [82,83]

when association information of drugs or diseases is rare, it

remains limited by the availability of drug–gene interactions
218 www.drugdiscoverytoday.com
and disease–gene interactions that are required for an accurate

measurement of feature vectors.

Finally, a specific class of methods, called bipartite local models

(BLMs), using similarity measures in the forms of kernels, has been

developed [84]. The advantage of these methods is that they allow

the incorporation of multiple sources of information for perform-

ing predictions [85]. The BLM can be summarized as follows [86].

The detection of drug–target interactions is done first by construct-

ing a training comprising two classes: (i) all the known targets of

the drug under investigation except the target of interest; and (ii)

the targets for which no interaction with the drug is known a priori.

Second, using the available genomic kernel for the targets, a

support vector machine (SVM) that discriminates between the

two classes is constructed. This model is used to predict the label

of the target and to determine whether the considered drug–target

pair shares an interaction. Using the chemical structure kernel, the

procedure is applied with the roles of drugs and targets reversed

and the two results are combined. BLM has also been investigated

by van Laarhoven et al. [87]. His implementation differs in that the

Gaussian kernel was constructed solely on the use of the topology

information and by using regularized least squares (RLS) classifiers

rather than SVM. The method works as follows. A bipartite net-

work of drugs and targets constructed from known drug–target

interactions is used to generate the interaction profiles from which

a Gaussian interaction profile (GIP) kernel is constructed. The

predictive power is improved by combining the GIP kernel with

a kernel representation of chemical structure similarity between

compounds and sequence similarity between proteins. These in-

teraction profiles are used as feature vectors for two types of RLS

classifier. It was concluded that the method provides more accu-

rate results when the GIP kernel is combined with the chemical

and genomic kernels, in particular for small data sets. Further-

more, it was noted that the sequence similarity for targets is more

informative than the chemical similarity for drugs. Nevertheless,

despite these promising results, the authors pointed out that the

method is sensitive to inherent biases contained in the training

data and that it can only be applied to detect new interactions for a

target or a drug for which at least one interaction is already known.

Interestingly, Mei and coauthors have released a method called

BLM-NII [84], which combines a BLM with a procedure called

‘neighbor-based interaction profile inferring’ (NII), designed to

tackle the inability to deliver predictions for drug and target that

are new, a technical issue called here the ‘new candidate problem’

of BLM. The NII procedure extends the classifier to incorporate the

capacity of learning from neighbors into the original BLM method.

Comparisons with previous methods demonstrate the capacity of

BLM-NII to predict interactions between new drug candidates and

new target candidates with high reliability.

Module 3: validation of the predictions
Once implemented, an algorithm for drug repurposing should

undergo a procedure to assess its ability to make relevant and

accurate predictions (Fig. 2, Module 3). This procedure requires

benchmark data sets to which the algorithm is applied. These are

obtained from reliable sources, such as clinical trials and Drug-

Bank, or specific case studies specifically designed for that purpose.

The accuracy of the results is measured using a set of metrics

designed to assess the reliability and accuracy of the predictions. In
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addition to the ROC, other metrics and quality measures can be

computed. A straightforward method is to compute the values of

area under the ROC curve (AUC) [19,47,79,87]. However, the

performance of the algorithm can also be evaluated by computing

characteristics such as specificity, sensitivity and positive predic-

tive value (PPV) [34,79]. Furthermore, the recall, which provides

information on the capacity of the algorithm to find the real

unknown interactions, and the precision, which indicates the

ability to discern biologically relevant interactions from untrue

ones, can also be computed to draw the precision-recall curve

[34,88]; that is, the plot of the ratio of true positives among all

positive predictions for each given recall rate. The area under this

curve (AUPR) provides an assessment of how well predicted scores

of true interactions are separated from predicted scores of true

non-interactions [84,87]. In the case of methods such as inference-

based and ML-based methods containing multiple parameters

whose values must be fixed, the validation procedure includes a

first step called ‘training’, during which the algorithm is used on a

part of the benchmark data set to find the parameter values that

optimize the algorithm performances. When the parameters are

fixed, the validation itself, which aims to test the ability of the

algorithm to generalize on different data sets using the same

parameter setting, is performed using the remaining data sets

[47,87]. Finally, when a new method is implemented or new

features are added to an already existing one, it is worth compar-

ing the performances of the new method with already established

ones using identical benchmark data sets. This step enables us to

understand at which extent and in which context the new meth-

od provides better predictions. When the validation gives satisfy-

ing results, the algorithm can be used for discovering new

relations between drugs, diseases and candidates for drug repur-

posing.

Once potential candidates are identified, the biological signifi-

cance of the finding must be assessed. A first literature search can

be performed to find evidence supporting the computational

predictions. This was the method chosen in [89] for assessing

predictions suggesting that the antiasthma drug pranlukast has

anticancer metastasis activity, and in [90] for the suggested repo-

sitioning of cardiovascular drugs to parasitic diseases and for

checking the prediction that the cancer-related kinase PIK3CG

is a novel target of resveratrol. However, we recommend that wet-

lab experiments are performed to confirm the suitability of the

candidates. Examples of successful validations include: repurpos-

ing for early- and late-stage non-small cell lung cancer [54];

identification of an application of a hypertension drug, benzthia-

zide, as a potential agent to induce lung cancer cell death [53];

prediction of the antiulcer drug cimetidine as a candidate thera-

peutic in the treatment of lung adenocarcinoma [50]; and repo-

sitioning of the anticonvulsant topiramate for inflammatory

bowel disease [55]. Nevertheless, in some cases, the predictions

are not followed by experimental validation and, thus, must be

considered with caution. This was the case in [91] with the finding

of potential candidates among hypotension-related drugs that

could be used for lowering blood pressure and in [70] with the

prediction of new drug–drug associations for rosiglitazone and the

repositioning of antipsychotics as anti-infectives. If these first tests

are successful, the candidates could go through different develop-

ment stages and, ultimately, reach clinical trials.
Concluding remarks and future perspectives
The different classes of in silico repurposing algorithm are attrac-

tive approaches for identifying alternative candidates. Neverthe-

less, as summarized in Fig. 5, they face technical issues.

The first issue concerns the dependency of in silico repurposing

procedures with respect to the availability and characteristics of

data sets. Given the current technical limitations of data sets, one

could conclude that methods that reduce the need for data sets

should be more adapted, but the progress made in developing

more efficient methods relies on the use of data of multiple

sources. Given that the dependence of a method on several types

of data can limit its use in a range of practical situations, it is

important to combine data widely available with similarity mea-

sures that have better predictive power.

The second issue is that the most elaborated algorithms use

parameters for which optimal values are not easy to establish. For

example, in the case of standard gene enrichment-based methods,

empirical findings suggest that drug signatures established with

too few genes lead to lower specificity and sensitivity. Further-

more, performances vary depending on the method used for the

selection of the genes. Investigations suggest that gene selections

based on fold change in combination with a greater P value

threshold are more reliable than those based on P value or fold

change alone [49]. For ML methods, the learning rate has a

marginal effect, whereas the regularization coefficient has an

important influence [51]. Furthermore, obtaining the statistical

significance of the retained candidates from the list of targets to

identify true positive requires the calculation of P values whose

cut-offs vary from one study to another, affecting the final result.

To summarize, reducing the dependency of the methods on the

parameters and the parameter dependency with respect to the

characteristics of data sets, as well as developing a systematic

approach to determining their optimal values, might help the

systematic use of these methods. A suggested strategy is to test the

model for different set of values and choose the optimal parameter

values according to the performance of AUC or other quality

measures [51].

Finally, standard repurposing algorithms are often limited for

making predictions involving candidates for which no interaction

is known [34,84] and existing methods must be adapted to over-

come this limitation. For instance, the DT-hybrid method [75] is

an improvement of an inference-based method and the BLM-NII

method is an enhanced version of the BLM. In the case of algo-

rithms based on topology similarity, adding other similarity mea-

sures can improve their predictive power [47,52].

Although efficient hybrid algorithms can be elaborated with a

combination of different approaches or by integrating methods

using different information [49] (Table 1), another direction of

development relies on completely new computational

approaches. For instance, DL methods could overcome several

limitations encountered by the standard ML methods. Indeed,

although recent developments with ML methods are promising, it

is not obvious that they could address all the remaining issues.

Thus, DL methods could be the next move for improving the

efficiency of repurposing techniques, for instance, for integrating

biomedical data, which are relatively small and complex. The

modern DL techniques include powerful approaches with deep

architecture, called deep neural networks (DNNs) that are applied
www.drugdiscoverytoday.com 219
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TABLE 1

The main characteristics and features of three of the most efficient methods currently available for in silico drug repurposing

Method type Characteristics Features Resources Refs

Similarity based Uses a proximity measure combined with
disease module identification on a network of

drug–disease interactions

A representative example of a network-based method relying
only on the use of a combination of topological measures. The

proposed proximity measure outperforms other topology

measures and the method is able to handle a large number of

targets and interactions

[19]

Inference based Uses a combination of structure similarity and

target similarity matrices on a bipartite network

of drug–target interactions

An example of how the inclusion, via drug and target similarities,

of biological knowledge into the formalism of an inference-

based method can improve the reliability, biological relevance

and accuracy of the predictions. It illustrates the flexibility of the
approach to combine various sources of information

R package

DT-Hybrid-NBI

[75]

ML based Uses a drug–target bipartite graph; interactions

are deduced by training a classifier exploiting

interaction information, and drug and target
similarities; it is able to make predictions for

drugs without known interactions

The latest improved version of the initial BLM. The addition of

the algorithm NII allows the prediction of interactions between

new drug candidates and new target candidates with high
reliability

BLM-NII [84]

Technical challenges faced by in silico drug-repurposing methods

Limited when it comes to make predictions
of new drug–target interactions involving

candidates for which no interaction is known

Rely on use of multiple parameters for which optimal 
values are not easy to establish

Heavily dependent on availability, 
quantity. and quality of data sets

Availability of many
experimental data

Progresses in computational
and mathematical sciences

Polypharmacology
Availability of computational resources

Design and use of more efficient algorithms and
software for data processing and analysis

Technological trends

In silico drug-repurposing techniques

Systemic paradigm

• Designing repurposing methods as integrated and automatic workflows requiring as few external and/or manual interventions as possible
• Combining data of different origins in a flexible and efficient way to capture many characteristics of the systemic drug–target interaction scheme
• Reducing dependency of methods with respect to tuning parameters, the parameter dependency in terms of characteristics of data sets, and

developing systematic approaches to determine their optimal value
• Developing hybrid methods, including deep learning approaches, to design more adapted algorithms and address specific challenges

« One drug–multiple targets » principle

Drug Discovery Today 

FIGURE 5

Foundation, technical challenges and directions of research for improving the drug-repurposing paradigm. The systemic paradigm and technological progress

made in computational sciences are the cornerstones of drug-repurposing methods. Nevertheless, despite significant progress, the current algorithms still face
three main technical challenges: (i) various technical limitations of the data sets can limit the predictive power; (ii) many sophisticated methods depend on free

parameters whose fitting is tedious because it can depend on external factors that are not easy to control; and (3) algorithms are sometimes limited when it comes

to make predictions for drugs or targets without any known interactions. Different solutions have been tested with more or less success and further possibilities
offered by deep learning (DL) algorithms should allow significant progresses.
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for unlabeled and labeled data analysis, such as image, voice and

language recognition [92]. They outperform ML methods, such

as random forest or SVM, in training on quantitative structure–

activity relation descriptors (QSAR) and for predicting various

physical and chemical properties [93]. However, although DL

methods could operate with several types of data for drug

discovery and development, such as structural data, chemical

descriptors, or transcriptomics data, and DNNs have been ap-

plied for modeling drug–target interactions using structural data

[94], they are still underestimated in biomedical application

[95]. This situation should evolve as new areas of applications

emerge. For instance, it is now possible to predict the harmful

potential of the compounds based on their raw structure using

recursive or convolutional neural networks [96,97]. This is of

particular interest in drug discovery for identifying well-

designed and effective compounds that have toxic properties

and DL-based approaches have proved to be effective for pre-

dicting such toxicity issues [98]. Furthermore, DNNs have al-

ready been applied for finding drug–target interactions using

chemical structures and known interactions and promising

results have been obtained [99,100]. However, DNNs come with
technical issues. For example, the lack of theoretical foundation

and the related lack of understanding of the method function-

alities should be clarified. These issues are known for making the

quality control and implementation of the results more com-

plicated. Moreover, attempts were realized to address these

issues with, for example, the TREPAN algorithms for extraction

decision trees from hidden layers [101].
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