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Drug combination therapy increases
successful drug repositioning
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Repositioning of approved drugs has recently gained new momentum for rapid identification and

development of new therapeutics for diseases that lack effective drug treatment. Reported repurposing

screens have increased dramatically in number in the past five years. However, many newly identified

compounds have low potency; this limits their immediate clinical applications because the known,

tolerated plasma drug concentrations are lower than the required therapeutic drug concentrations. Drug

combinations of two or more compounds with different mechanisms of action are an alternative

approach to increase the success rate of drug repositioning.
Introduction
Although the pharmaceutical industry spends billions of dollars

on R&D [1], the number of new drugs approved has been around

40 per year over the past five years (http://www.fda.gov/Drugs/

DevelopmentApprovalProcess/DrugInnovation) (Fig. 1a). The suc-

cess rate of new drug discovery and development does not satis-

factorily address the unmet clinical need for disease treatments.

Common diseases such as Alzheimer’s disease (AD), Parkinson’s

disease, congestive heart failure and pulmonary hypertension still

lack effective therapeutics. In addition, there are over 7800 rare

and neglected diseases (https://rarediseases.info.nih.gov), most of

which lack approved drug treatments. Although there are 281

approved drugs for these orphan diseases and 600 compounds

in clinical trials, there are still approximately 7000 diseases with-

out drug treatment (Fig. 1b). Despite an increase in FDA approvals

for drugs for use in rare or orphan diseases in 2014 and 2015 [2]

(Fig. 1a), alternative approaches to speed up the drug development

for these 7000 diseases are urgently needed.

In the past decade, new technologies such as induced pluripo-

tent stem cells (iPSCs), clustered regularly interspaced short palin-

dromic repeats (CRISPR) gene editing, proteomics and next-

generation sequencing have emerged and greatly enhanced re-

search for target identification, disease modeling and drug discov-

ery. Phenotypic screening has regained momentum and has been
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extensively used in drug discovery and development. However,

the translation rate from basic research and drug discovery to

approved drugs remains rather disappointing. In the 10-year peri-

od from 2006 to 2015, the number of original investigational new

drug (IND) applications submitted was stable at around 700 per

year (http://www.fda.gov/Drugs/DevelopmentApprovalProcess/)

(Fig. 2a); but over this period only 20–40 new drugs were approved

each year (Fig. 1a), a less than 6% success rate. Development of new

drug therapies remains time-consuming and costly. New strate-

gies, new approaches and new technologies are needed to acceler-

ate new drug discovery and to improve the success rate of drug

development. Repositioning existing drugs and drug candidates

offers an alternative approach to develop new therapeutics quickly

for many diseases that currently do not have treatments.

Different types of drug repurposing
Historically, a number of drugs have been repurposed based on

clinical results. Sildenafil (Viagra1) was initially studied for the

treatment of hypertension and angina pectoris by Pfizer in the

1980s. It failed for angina, but unexpectedly showed erectile

effects. This compound was then marketed as the first oral treat-

ment for erectile dysfunction in the USA [3]. This is an example of

drugs that were originally meant to treat one malady but were

discovered during clinical trials to have other effects.

The second mode of drug repurposing is arrived at via com-

pound screening using approved drug collections. This type of
www.drugdiscoverytoday.com 1189
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FIGURE 1

The gap between current drug development, untreated rare diseases and growth of drug repositioning screens. (a) Number of new molecular entities (NMEs) and
biologics license applications (BLAs) approved by the Center for Drug Evaluation and Research (CDER) from 2006 to 2015. Data from Drugs@FDA (http://www.fda.

gov/Drugs/DevelopmentApprovalProcess/DrugInnovation). (b) The percentage of currently approved drugs and investigational drugs for rare diseases. Data from

http://www.prnewswire.com/news-releases/global-orphan-drug-market-to-reach-us-120-billion-by-2018-244195511.html.
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drug repurposing has been boosted in the past five years owing to

the availability of drug collections and improved screening tech-

nologies as evidenced by publications that increase from under

100 to over 400 per year (Fig. 2b). In 2007, Chong et al. identified

itraconazole as a potent hit for inhibiting angiogenesis from a

screen of the Johns Hopkins Drug Library (JHDL) [4]. In the follow-

up preclinical studies, itraconazole showed promising results in

several cancer models. It directly entered into several Phase II

studies and showed positive results in advanced lung cancer,

prostate cancer and basal cell carcinoma trials [5].

The third method of drug repurposing elucidation is a recent

program initiated by the National Center for Advancing Transla-

tional Sciences (NCATS) at the National Institutes of Health (NIH).

Launched in 2012, this initiative connected academic researchers

and eight of the largest pharma companies for the opportunity to

repurpose 58 unsuccessful investigational drugs for new disease

indications. Huge amounts of effort and resources had been spent

for advancing these compounds into clinical trials. By making
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FIGURE 2

(a) Number of original investigational new drug (IND) applications received by th

DevelopmentApprovalProcess/. (b) Growth of drug repositioning (repurposing) sc
PubMed with key words of ‘drug repositioning’ and ‘drug repurposing’ with publica

was started from 01 January and ended with 31 December.
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available these drugs to academic researchers, the hope is that

novel therapeutic indications might be found for these abandoned

compounds. For example, in 2015 AstraZeneca’s AZD0530, a failed

new drug for solid tumors, exhibited Fyn kinase activity and is a

promising therapeutic candidate for the treatment of AD [6,7].

Currently, a Phase IIa clinical trial of AZD0530 for treating patients

with AD is underway [6]. This development demonstrates the

utility of these previously failed drug candidates and a great

shortening of drug development times by eliminating preclinical

drug development and further Phase I clinical trials.

Compound collections for drug repurposing screens
As of 31 December 2015, 1539 drugs had been approved by the

FDA since its establishment in 1938. Every year another 20–40 new

drugs will accumulate in this pool with current trends. In 2015,

WHO announced 409 essential medicines [8]. In addition, there is

a pool of drug candidates that are either in active clinical trials or

have failed in different stages because of insufficient efficacy.
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e FDA from commercial sources. Data from http://www.fda.gov/Drugs/

reens indexed in PubMed from 2006 to 2015. In January 2016 we searched
tion dates from 01 January 2006 to 31 December 2015. Search for each year
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Clinical studies registered in the USA as of 14 January 2016

numbered 78,140 (Clinicaltrials.gov.), and 15,130 of them are

currently at the patient recruitment stage. Approximately half

of these clinical studies are registered as drug or biologic inter-

ventions. All these approved drugs and drug candidates have

passed the preclinical drug development stage with appropriate

profiles of animal efficacy, pharmacokinetics (PK) and toxicology.

Most of them include rich information on clinical pharmacology

and toxicology.

Repositioning of approved drugs has emerged as an alternative

approach to identify new treatments for diseases that lack effective

treatments. In January 2016 we searched PubMed for literature

regarding drug reposition with the keywords ‘drug repositioning’

and ‘drug repurposing’ with publication dates from 01 January

2006 to 31 December 2015. In the past ten years, there has been a

significant increase in published papers for drug repositioning

and/or repurposing (Fig. 2b). The increase in the number of

accessible approved drug collections combined with the drug

repurposing screening efforts by academia, government and in-

dustry has contributed greatly to the increase in drug-reposition-

related publications.

Three groups of compounds are usually included in screening

collections for drug repurposing. The first one comprises drugs

approved for marketing by the FDA or other regulatory agencies;

these are available in pharmacies. The second one consists of drugs

that were previously approved but that are no longer used, and

that need to be accessed by customized synthesis or purchased

from commercial vendors. The third group comprises clinical

investigational compounds that could be obtained from pharma-

ceutical companies, commercial vendors or by customized syn-

thesis. Table 1 shows a list of drug libraries available from academic

and government organizations; many commercial libraries are

also available.

Phenotypic screening assays
Phenotypic screens have a new momentum in drug discovery

[9,10]. Different from molecular-target-based ones, phenotypic

screens do not require detailed understanding of the disease

targets and networks. Phenotypic screens offer the advantage of

identifying potential treatments for complicated diseases, where

there might be difficulty in identifying the primary therapeutic
TABLE 1

List of various FDA-approved and other-approved drug collec-
tions and the number of compounds in each.

Drug collection Number of
drugs in

collection

Johns Hopkins Drug Library (JHDL) [64] 1600

National Chemical Genomics Centera [65] �2750
National Institutes of Health (NIH) clinical

collectionb [66]

�450

National Institute of Neurological Disorders

and Stroke (NINDS 1040) [67]

1040

a This pharmaceutical collection is at the National Center for Advancing Translational

Sciences (NCATS), which is also known as NCGC Pharmaceutical Collection (NPC).
b This clinical collection can be accessed commercially through the company Evotec.
targets. Executing this approach requires a characteristic pheno-

type associated with the disease that is known. Cell-based pheno-

typic assays usually use primary cells [11], isolated pathogens [12],

engineered cell lines [13] or the recently emerged iPSC-derived

cells including neuronal cells, cardiomyocytes, hepatocytes and

epithelial cells [14–16]. As an example of this, Eggan, Woolf and

co-workers discovered hyperexcitability as a result of a reduced

delayed-rectifier potassium channel as a disease phenotype in

iPSC-derived motor neurons from amyotrophic lateral sclerosis

(ALS) patients [16]. An approved anticonvulsant, retigabine was

then shown to correct the phenotype and improve the in vitro

survival of motor neurons derived from ALS patients. Because

retigabine is an approved drug, a Phase II clinical trial of retigabine

in ALS subjects was immediately started in 2015. This report

indicates that iPSC-derived disease models can provide an alterna-

tive to animal models for drug screening and drug efficacy tests

before human clinical trials.

High IC50 values of identified compounds: a bottleneck
in repurposing screens
An emerging challenge for drug repurposing screens is the inability

to identify clinically useful compounds for new indications. This

could be because of either weak potency of the identified hits, with

effective concentration for 50% of the maximum response (IC50)

values higher than the safely achievable plasma concentrations in

humans, or a simple lack of active compounds. In a malaria

repurposing screen [17], 27 of 32 hits identified had high IC50

values (>10 nM) compared with dihydroartemisinin (IC50

<10 nM) [18], a standard drug. According to the non-profit foun-

dation Medicines for Malaria Venture (MMV), for a candidate to be

considered as a late lead, the IC50 or IC90 of a compound needs to

be less than 10 nM for potency in erythrocyte assays. The weak

potency of these hits prevented their use as a single drug therapy

for malaria infection. Weak potency of hits from repurposing

screens was also reported for other diseases, such as chronic

lymphocytic leukemia [19] and metabolic disorders [20].

In another repositioning screen for identification of compounds

that block Ebola virus entry [21], 53 hits had been found but only

four of them have efficacies (IC90) at or below their maximum

serum concentration (Cmax) values in human blood. If a drug’s

achievable blood concentration is below its efficacy value for the

new indication, this newly identified compound obviously cannot

be used in patients. Although these hits can provide new chemical

scaffolds and potential new targets for drug development, the low

efficacy and/or limited PK profiles of hit compounds hamper rapid

drug repositioning efforts. This problem has become a bottleneck

in the use of drug repurposing screens for the identification of

clinically useful compounds.

Drug combination can reduce required drug
concentrations of individual drugs
From the literature search and our own recent practice, we have

found that drug combination therapy using two-to-three com-

pounds with different mechanisms of action can overcome the

above described drug repurposing screen challenge. The use of

drugs in combination can produce a synergistic effect if each of the

drugs impinges on a different target or signaling pathway that

results in reduction of required drug concentrations for each
www.drugdiscoverytoday.com 1191
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individual drug. Therefore, use of drug combinations could in-

crease the success rate of drug repurposing screens. This can be

achieved in two steps: the drug repurposing screen with approved

drug collections to identify hit compounds and then a drug

combination test with the identified hit compounds to find effec-

tive drug combinations for clinical use with a new indication.

Based on our experience we propose two approaches to finding

synergistic combinations using hits from drug repositioning

screens. The first type of synergistic combination will address

the issue related to weak compound potency relative to toxicity.

As shown in Fig. 3a, the concentrations of drug 1, drug 2 or drug 3

exhibit 90% efficacy at a concentration that would trigger severe

cytotoxicity if used by themselves. However, the synergistic effect

of a three-drug combination enables the reduction of each of the

individual drug concentrations to 1/10 of the concentration used

in the single drug treatment.

The second type of synergistic combination is to correlate the

effective drug concentrations with the reported achievable drug

concentration in human blood. As shown in Fig. 3b, the effective

concentration of drug 1, drug 2 or drug 3 as a single use medication

is five-fold higher than their achievable human blood concentra-

tion (Cmean or Cmax). It is obvious that these drugs individually are

not practically useful for clinical application. The effective drug

combinations can be identified by screening of different sets of

three-drug combinations with individual drug concentrations

equal to or below their achievable human blood concentrations

(Fig. 3b).

Polypharmacology: another factor for drug
combination therapy
Recently, the importance of multifactor and polygenic pathologies

is being recognized for many diseases including neurodegenera-

tive diseases, cancer, diabetes and hypertension. The high attrition

rates of drug candidates in clinical trials could partly result from
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Two synergistic combination models to optimize hits from drug repositioning screen
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underestimation of the complexity of the pathophysiology in

these diseases [22,23]. These diseases might not be caused by a

single factor or genetic variant but rather are associated with

multiple factors or genetic determinants. In addition, disease

manifestations can be affected by many other factors, such as

age, tissue type and environmental stimuli. Therefore, simulta-

neous targeting of different proteins or signaling pathways of a

disease network might be necessary to combat these diseases when

previous efforts using single drugs have failed to produce effective

therapeutics.

One of the polypharmacology approaches is a single drug that

binds to and modulates the functions of multiple targets related to

disease pathophysiology [24]. Another polypharmacology ap-

proach is the use of multiple drugs that interact with different

targets related to the disease pathogenesis. A combination of two-

to-three drugs to treat a disease, also known as drug combination

therapy, has been more broadly used in clinical practice. Although

it is still up for debate whether a single multitarget drug or a

combination with selective drugs is a better treatment strategy,

drug combination therapy is clearly a practical useful approach to

extending the clinical applications of drug repositioning.

Computational approach for polypharmacology
Computer-aided drug design is also useful for development of

multitargeted drugs or combination therapies. Structure-based

methods, ligand-based approaches, QSAR or docking simulation

and deep learning are well documented virtual screening technol-

ogies [25,26]. The Connectivity map (CMAP) established the first

collection for genome-wide transcriptional expression data from

small-molecule-treated human cells and simple pattern-matching

algorithms [27]. Butte and colleagues performed a large-scale

correlation analysis for chemical structures and gene expression

from PubChem and Library of Integrated Network-based Cellular

Signatures (LINCS) [28]. By using the expression data from CMAP
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and LINCS, the connection among small molecules, genes and

diseases could guide future drug repurposing efforts. Recently,

Reutlinger and co-workers developed a quantitative polypharma-

cology model for 640 human drug targets [29]. Rodrigues et al.

designed quantitative bioactivity models to achieve structurally

novel, selective, potent and ligand-efficient 5-hydroxytryptamine

2B receptor (5-HT2B) modulators with sustained cell-based effects

[30]. Gujral et al. combined elastic net regulation with mRNA

expression profiling of 32 kinase inhibitors to reveal kinases that

are important for epithelial and mesenchymal cell migration [31].

The RCSB Protein Data Bank (RCSB PDB; http://www.rcsb.org)

provides 3D structures of macromolecules. The use of structure-

based methods to search second- and off-targets will improve the

understanding of diseases and repurposed drugs [32]. A retrospec-

tive cohort study showed that population-based electronic health-

care records (EHRs) could provide early drug safety profiles [33].

Existing drug combination therapies
Dysregulation of multiple signaling pathways is a hallmark of

cancer [34–36]. Targeting multiple proteins such as kinases in

the key pathways might be more effective than a drug targeting

a single protein. For example, bosutinib, an approved drug for the

treatment of chronic myelogenous leukemia (CML), is an ATP-

competitive inhibitor of multiple kinases including the breakpoint

cluster region-Abelson fusion protein (Bcr-Abl) tyrosine kinase and

Src family kinases (Src, Lyn and Hck) [37]. Metformin in combi-

nation with temozolomide showed promising synergistic efficacy

for treatment of glioblastoma [38]. In addition, in 2014, using a

pharmacological drug combination screen of 76 drugs, a combi-

nation of repurposed drug AZD with crizotinib showed marked

efficacy in vitro and in vivo for cancer treatment and for overcoming

cancer drug resistance [39].

The drug combination therapy for HIV infection was developed

in the 1990s [40], and is now routinely applied with three- or four-

drug cocktails. So far the FDA has approved 13 fixed-dose two-to-

four drug combination therapies for the treatment of HIV. In 2014,

the FDA approved a four-drug combination therapy (ombitasvir,

partaprevir, ritonavir, dasabuvir) for hepatitis C virus (HCV) geno-

type 1 infections [41].

For infection with malaria, in the 1990s WHO recommended

artemisinin-based combination therapy as a first-line treatment to

overcome drug resistance to the previous gold-standard drug

chloroquine. With increasing reports of resistance to artemisinin

in Southeast Asia [42], in 2015, a two-way screening of 13,910 drug

pairs identified repurposed drug NVP-BGT226, artemether (ATM)

and lumefantrine (LUM) with antimalarial activities in vitro and in

vivo [43]. Existing drugs (benznidazole and nifurtimox) for Chagas

disease infected with Trypanosoma cruzi are characterized with

weak potency and significant toxicities. A repurposing screen of

300 two-way combinations of 24 drugs discovered two pairs of

drugs with demonstrated efficacy in vivo [44].

In the world of rare diseases, Acanthamoeba keratitis, a rare

disease caused by parasitic infection of the eye, can result in

permanent visual impairment or blindness. A combination of

miltefosine and olyphexamethylene biguanide is effective for

treatment of Acanthamoeba keratitis infection [45]. Langerhans

cell histiocytosis (LCH) is a rare disorder predominantly occur-

ring in infants and children. A combination of prednisone and
vinblastine and 6-mercatopurine was able to control the disease

[46]. Charcot-Marie-Tooth disease type 1A (CMT1A) is a heredi-

tary motor and sensory neuropathy with no treatment available.

A combination of three repurposed drugs (baclofen, naltrexone

and sorbitol) showed promising results in a Phase II study [47]

and its Phase III trial is ongoing.

Drug combination therapy with different antibiotics and/or

antifungal agents is frequently used in the intensive care unit

(ICU) for patients with severe infections [48]. In the emergency

situation where the exact pathogens are not identified, two-drug

(or more) combinations are the practical approach to control the

infections. In 2015, the FDA approved the drug combination of

avibactam and ceftazidime for treatment of infections caused by

multidrug-resistant bacteria. Multidrug-resistant bacteria produce

beta-lactamases which break down beta-lactams, causing resis-

tance to ceftazidime and other b-lactam antibiotics. Although

avibactam itself has no antibacterial activity, avibactam covalently

bonds to and inhibits the activity of b-lactamase [49].

Potential for drug–drug interaction with drug
combination therapy
The potential for adverse drug–drug interactions (DDIs) is a con-

cern when selecting and prioritizing drug combinations with

synergistic efficacy for clinical applications. Several types of DDI

have been identified and characterized. An adverse DDI could be

pharmacodynamic (PD) (target) in origin [45]; however the most

common and best characterized adverse DDIs are PK (ADME) in

origin. An example of a victim–perpetrator pair is the combination

of selective estrogen receptor modulator tamoxifen and selective

serotonin reuptake inhibitor (SSRI) paroxetine. In the 1990s,

doctors prescribed SSRIs to patients with breast cancer to treat

depression and reduce the side effects of tamoxifen. Later, it was

reported that the paroxetine (the perpetrator) reduced the plasma

concentrations of endoxifen, the active metabolite of tamoxifen,

through inhibition of the metabolism of tamoxifen (the victim) by

cytochrome P450 (CYP)2D6 [50]. In 2010, a study showed that this

DDI led to a significant increase in the risk of death from breast

cancer in patients who took paroxetine and tamoxifen compared

with patients taking only tamoxifen [51].

The most common metabolic enzyme, CYP3A4, is responsible

for many PK DDIs [52]. NS3 viral protease inhibitors boceprevir,

telaprevir, simeprevir and faldaprevir for treatment of HCV are

metabolized by CYP enzymes. Their combination use with CYP3A

inhibitors (e.g., ketoconazole) leads to higher toxic levels of the

drugs, whereas CYP3A inducers like rifampin lead to lower, less

efficacious levels of the drugs [53].

Advantages and shortfalls of drug combination therapy
for drug repurposing
As we discussed above, there are three major advantages of drug

combination therapy for drug repositioning. The first one is the

potential for synergistic effects of a drug combination that signifi-

cantly reduces required drug concentrations for each of the indi-

vidual drugs used in the combination. This greatly increases the

chances for useful clinical applications of such drugs identified

from drug repurposing screens, which are otherwise insufficiently

active as single agents. The second benefit is the reduction or delay

of the development of drug resistance as a result of the multiple
www.drugdiscoverytoday.com 1193
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targeting mechanisms of the drug combination. Additionally, it

has been reported that partial inhibition of a small number of

targets could be more efficient than complete inhibition of a single

target [54].

The potential for adverse DDIs should be considered with drug

combination therapy. DDIs can increase drug adverse effects or

toxicity, or might reduce drug efficacy. Another issue is that

formulation of multiple drugs is more complex than individual

drugs. In 2009, Merck delayed its three-drug combination for the

treatment of high cholesterol because of a formulation issue [55].

For example, one drug might physically or chemically interact

with the other drug(s). Differences in drug solubility and stability

in the combination need to be considered.

Useful tools for drug combination therapy
Computation models are useful tools for predicting drug combi-

nations for potential clinical uses. A comprehensive summary of

various bioinformatics approaches and databases for drug reposi-

tioning studies has been reviewed [56]. A recent study described an

efficient combination drug screening method using feedback sys-

tem control (FSC) [57]. This method used a phenotypic cell viabil-

ity assay to generate dose–response curves for each drug first. Then,

a differential evolution (DE) algorithm was used to predict new

combinations from applied drug combinations.

DrugBank provides a drug–target network that reveals the po-

tential target (1466 proteins, metabolizing enzymes, carriers and

transporters), off-target, DDIs and side effects of 1486 FDA-ap-

proved drugs and 828 investigational drugs that include new

molecular entities (NMEs) and repurposed drugs [58]. PharmGKB

provides comprehensive information for pharmacogenetics inter-

actions. Other databases are the side effect resource, SIDER, FDA
1194 www.drugdiscoverytoday.com
Adverse Event Reporting System (FAERS) and DailyMed. But the

data from animals for repurposed drugs are also included in some

databases, which might not accurately predict the real situation in

humans. For approved or investigational drugs, DDIs can be found

in established databases such as DrugBank or SIDER. Several

methods have been developed to search existing DDIs rapidly

from published results [59,60]. For relatively novel compounds,

a recent study reports a similarity-based computational approach

to predict PK and PD DDIs [61]. In 2012, hundreds of new DDIs

were reported based on the tests of 656 approved drugs and 73

targets [62]. Clinicians are encouraged to report case studies for

drug combination therapies, even when they show limited or no

efficacy in trials [63].

Concluding remarks
Drug combination therapy with a synergistic effect can increase

the success rates of drug repositioning. A phenotypic repurpos-

ing screen allows identification of new therapies from approved

drug collections without an understanding of the disease patho-

physiology. The identification of effective, synergistic drug

combinations could lead to an increased understanding of

complicated disease pathophysiology and to the design of better

treatments for the disease. Drug repositioning offers hope to the

many people afflicted with rare diseases with no present thera-

pies.
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