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The large costs associated with modern drug discovery mean that governments and regulatory bodies

need to provide economic incentives to promote the development of orphan drugs (i.e., medicinal

products that are designed to treat rare disease that affect only small numbers of patients). Under

European Union (EU) legislation, a medicine can only be authorised for treating a specific rare disease if

it is not similar to other orphan drugs already authorised for that particular disease. Here, we discuss the

use of 2D fingerprints to calculate the Tanimoto similarity between potential and existing orphan drugs

for the same disease, and present logistic regression models correlating these computed similarities with

the judgements of human experts.
Introduction
An orphan drug is a medicinal product intended for the treatment

of a rare disease that affects only a small number of patients {fewer

than 200 000 individuals in the USA (Orphan Drug Act, Public Law

97-414, 4 January 1983) or less than five in 10 000 individuals in

the EU [Regulation (EC) No. 141/2000 of the European Parliament

and Council of 16 December 1999]} [1] (H.E. Heemstra, PhD thesis,

University of Utrecht, 2009). This means that orphan drugs are not

an immediately attractive market for the pharmaceutical industry

because the limited number of potential patients is unlikely to

yield revenues sufficient to cover the huge costs of modern-day

drug discovery programs [2,3]. For this reason, regulatory authori-

ties have brought forward legislation to encourage pharmaceutical

companies and research groups to develop orphan drugs by pro-

viding a range of incentives: the Orphan Drug Act of the USA was

introduced in 1983, followed by Regulation (EC) No 141/2000 of

the EU in 2000. These offer a similar range of incentives, with those

in the EU including grants, market exclusivity, the possibility of an

accelerated review, financial incentives provided by some member

states and European programs, fee reductions, free protocol scien-

tific advice, and regulatory support [1,4]. These measures have

been highly successful, to the point that orphan drugs comprised
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over half of the new molecular entities (NMEs) approved by the US

Food and Drug Administration (FDA) in 2015 [5].

Market exclusivity is arguably the most important of these

incentives: under the EU legislation, a pharmaceutical company

that develops an orphan drug for a specific, rare therapeutic

indication is given a 10-year period of market exclusivity, during

which no products that are considered to be similar to that orphan

drug can be accepted or authorised by any European regulatory

competent authority. Thus, the first orphan drug approved for a

certain rare disease has less competition than does a conventional

medicinal product, which should encourage pharmaceutical com-

panies to invest in research aimed at identifying novel medicines

for such diseases.

How then should the similarity, or nonsimilarity, of two mole-

cules be judged? According to article 3 (3) of the Commission

Regulation (EC) No 847/2000, a similar medicinal product is

defined as a medicinal product containing a similar active sub-

stance to that included in an orphan drug already authorised in the

EU for the same therapeutic indication [6]. The assessment of

similarity between two medicinal products [article 8 of Regulation

(EC) No 141/2000] takes three criteria into account: the molecular

structure; the mechanism of action; and the therapeutic indica-

tion. Two medicinal products will not be considered similar if

there are significant differences under one or more of these three

criteria [7]. Thus far, the European Medicines Agency (EMA), the
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1 It is not possible to include the CHMP molecules on grounds of commercial

confidentiality, but the DrugBank data set is available as supplementary

information for the paper by Franco et al. at https://jcheminf.springeropen.
com/articles/10.1186/1758-2946-6-5.
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regulatory authority that is responsible for evaluation of medicines

throughout the EU, has used human judgements of similarity

when assessing new medicines for rare diseases. In a previous

paper, we described the first stage of a research project to provide

computational support for these judgements [9]; here, we extend

this work by testing further types of 2D fingerprint and describe a

web application for this purpose that is based on open-source

chemoinformatics software.

The European Commission recently undertook a public consul-

tation on the concept of ‘similar medicinal product’ in the context

of orphan drug legislation, given that it is now over 15 years since

the implementation of Commission Regulation (EC) No 847/2000.

The Commission aims to collect views, relevant evidence, and

information from stakeholders to help it develop its thinking in

this area [8]. The definition of similarity in the consultation

document is still vague and leaves considerable room for subjec-

tive interpretation; thus, we believe that the quantitative meth-

odology described here provides an important contribution to the

ongoing debate.

The next section describes the methods that were used by

Franco et al. [9] and that form the basis for the experiments

reported herein. We continue with the results that were obtained

when these methods were used with open-source fingerprint

software, and this is followed by a description of a software

application that we have developed using these results. Further

details of this work are reported by Franco (P. Franco, PhD thesis,

University of Sheffield, 2015).

Methods
The judgement as to whether a new medicine should be authorised

as an orphan drug status in the EU is taken by a panel of human

experts, the EMA’s Committee for Medicinal Products for Human

Use (CHMP). To mimic this process, Franco et al. [9] selected a set

of 100 pairs of bioactive substances from the Drug Bank 3.0

database [10], and each of 143 quality experts from the EU, Japan,

and the USA was asked to consider each such pair and to decide

whether they were, or were not, similar to each other. These binary

assessments (i.e., ‘similar’ or ‘not similar’) were then compared

with similarity values obtained by calculating the similarity be-

tween the 2D fingerprints describing the two molecules using the

Tanimoto similarity coefficient [11]. The proportion of the expert

assessors deciding that each pair was similar was then correlated

with the computed similarity values using logistic regression.

Specifically, regression models were developed to predict the

probability (p) that the human assessors would decide that a pair

of molecules was indeed similar, given the value (x) of the Tani-

moto similarity coefficient for that pair. Thus, the models were of

the form:

logitðpÞ ¼ ln
p

1�p

� �
¼ a þ bx

where a and b are the regression coefficients. The models, which

had been trained using the DrugBank data, were then shown to

have considerable predictive power when they were applied to real

data that had been previously evaluated by the CHMP. Specifically,

the test set contained 100 molecule pairs in which one molecule

was an existing orphan drug for some specific rare disease and the

other was a molecule that had been submitted to the CHMP for
378 www.drugdiscoverytoday.com
consideration for orphan drug status for that disease.1 Given the

success of this study, it was concluded that measures of similarity

based on 2D fingerprints might provide a useful source of infor-

mation to the CHMP during the evaluation of a new application

for orphan-drug status.

The study evaluated six different types of 2D fingerprint

[Barnard Chemical Information (BCI), Daylight, ECFC4, ECFP4,

MDL, and Unity), but all of them were proprietary in nature and,

thus, not necessarily available to any organisation or individual

wishing to use our methods. The work described here was under-

taken to overcome this limitation of our previous study, and

involved using fingerprints available in the open-source CDK

and RDKIT systems (at https://sourceforge.net/projects/cdk/and

www.rdkit.org/RDKit_Docs.current.pdf, respectively). Specifical-

ly, the following 12 types of fingerprint were generated, as imple-

mented in the KNIME pipelined data analysis system (www.knime.

org): CDK Extended, CDK Standard, Estate, PubChem, MACCS,

Morgan, Feat Morgan, Atom Pair, Torsion, RDKit, Avalon, and

Layers. These fingerprints cover all of the many types used in

current chemoinformatics systems (circular, hashed, fragment

dictionary, and topological patterns) [12]. Logistic regression mod-

els were developed for each type of fingerprint, correlating the

Tanimoto similarity for a pair of molecules with the probability of

the human experts deciding that that pair was similar; the training

data set was the 100 pairs of molecules in the DrugBank data set;

and the resulting models were then validated using the 100 pairs of

molecules in the CHMP test data set.

Results and discussion
The results obtained with the DrugBank training set are illustrated

using the CDK Extended fingerprint, a hashed fingerprint that is

similar in concept to Daylight fingerprints and that encodes all

linear paths up to eight atoms in length; in addition, the finger-

print contains bits detailing the numbers of fused and unfused

rings. Fig. 1 plots the proportion of the expert assessors who judged

a molecule pair as being similar (Y-axis) against the computed

fingerprint similarity score for that molecule pair (X-axis). There is

a well-marked separation of the similar pairs (marked in green) and

the nonsimilar pairs (marked in blue), with the smaller Tanimoto

values dominating the lower left portion of the curve (i.e., only a

small proportion of the experts judged that a pair should be

considered similar) and the larger Tanimoto values the upper right

portion (i.e., most of the experts judged that a pair should be

considered similar). The solid line in Fig. 1 represents the estimat-

ed probability of being similar as predicted by the logistic regres-

sion model, together with the 95% confidence limits for this

prediction (the dotted lines). The values of a and b in the regression

model for this fingerprint were –16.761 and 2.881, respectively,

with these values being statistically significant (P = 0.0012) and

with the Nagelkerke R2 value of 0.917 indicating a good fit of the

model to the data. The CDK Extended fingerprint gave the highest

Nagelkerke value for all of the 12 fingerprints tested here; the

https://sourceforge.net/projects/cdk/and
http://www.rdkit.org/RDKit_Docs.current.pdf
http://www.knime.org/
http://www.knime.org/
https://jcheminf.springeropen.com/articles/10.1186/1758-2946-6-5
https://jcheminf.springeropen.com/articles/10.1186/1758-2946-6-5


Drug Discovery Today � Volume 22, Number 2 � February 2017 REVIEWS

Fingerprint: Extended
0.

0
0.

2
0.

4
0.

6
0.

8
1.

0

0.2 0.4 0.6

Score

P
ro

po
rt

io
n

0.8 1.0

Non-similar
Similar

Drug Discovery Today 

FIGURE 1

Correlation between the probability of a pair of molecules being similar

based on human judgement and the Tanimoto coefficient using the CDK

Extended fingerprint.
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lowest value of 0.690 was obtained with the EState fingerprint

(which encodes structural keys but is, at 79 bits, by far the shortest

of all the fingerprints).

If a logistic regression model is to be used predictively then one

must be able to identify an appropriate threshold similarity for

deciding that two molecules should indeed be considered as

similar. Let t denote the threshold similarity, such that a pair of

molecules are predicted to be similar if their computed similarity is

�t and predicted not to be similar if <t. The predictions resulting

from use of a particular value for t can then be compared with the

judgements of the 143 experts, thus allowing the calculation of the

numbers of true positives (TP), true negatives (TN), false positives
TABLE 1

Logistic regression models for different 2D fingerprints.

Fingerprint a b R2

CDK Extended –16.761 2.881 0.

CDK Standard –13.971 2.446 0.

EState –9.642 1.334 0.

PubChem –12.847 1.717 0.

MACCS –9.071 1.398 0.

Morgan –8.204 2.238 0.

Feat Morgan –9.041 1.822 0.

Atom pair –11.790 2.492 0.

Torsion –6.533 1.877 0.

RDKit –8.249 1.333 0.

Avalon –8.447 1.536 0.

Layers –22.314 3.031 0.

BCI –12.758 2.128 0.
(FP), and false negatives (FN) where, for example, TP is the number

of cases where the majority of the experts judged two molecules to

form a similar molecule pair and where those two molecules had a

computed similarity �t. Knowledge of these four values then

allows the plotting of a receiver operating characteristic (ROC)

curve, which demonstrates the relation between the specificity

[TN/(TN+FP)] and the sensitivity [TP/(TP+FN)] as the threshold, t,

is systematically varied. The resulting area under the ROC curve, or

AUC, was 0.992; this very high value indicated the ability of the

CDK Extended fingerprint to discriminate between similar and

nonsimilar pairs of molecules. This was the largest AUC value

obtained across the 12 fingerprints, with the EState fingerprint, as

with the Nagelkerke statistic, giving the lowest value (0.929).

Several other measures based on these four variables (i.e., TP,

TN, FP, and FN) are available in the literature to measure the

effectiveness of a predictive system. Those computed here were

the precision, accuracy, F index, Youden index, and Matthew’s

correlation coefficient, as described by Franco et al. [9]. These five

statistics were computed as t was varied, thus enabling us to

identify that threshold similarity value that gave the best pre-

dictions, where this optimal value was taken to be that which

gave the largest values for the precision, accuracy, F index,

Youden index and Matthews coefficient, while at the same time

providing acceptable values for the sensitivity and specificity.

For the CDK Extended fingerprint, a value of 0.610 for t was

found to be the best, and this was then used for the analysis of

the CHMP test data set. An entirely comparable process was used

to determine the optimal similarity threshold for each of the

other 11 types of fingerprint. In five cases (MACCS, Morgan, Feat

Morgan, Torsion, and Layers), two different values of t were

found to yield comparable results on the training data set; thus,

only a single value (specifically, those obtained with the larger of

the two t values) is quoted in the results in Table 1 which are

discussed below.

The regression models developed on the DrugBank training data

set were then applied to the CHMP test data set, as detailed in

Table 1. Each row of the table is associated with one type of
AUC t Predictions

917 0.992 0.610 96

905 0.989 0.587 96

690 0.929 0.714 91

772 0.957 0.776 95

811 0.974 0.750 95

871 0.982 0.400 99

876 0.987 0.519 96

879 0.984 0.459 80

882 0.986 0.370 98

788 0.964 0.671 73

881 0.987 0.625 95

877 0.985 0.761 95

906 0.990 0.606 97
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fingerprint and lists the a and b coefficients from the regression

model, the Nagelkerke R2 and AUC values for that model, the

threshold similarity t as derived above, and, finally, the number of

test cases that were predicted correctly, where a correct prediction

is a pair of molecules for which the prediction from the model,

(i.e., similar or not similar) mirrors that arrived at by experts

comprising the CHMP panel. For comparison, the bottom row

of Table 1 contains the corresponding data for the BCI fingerprint,

which was found to give the best overall level of performance in

our previous comparison of six different types of proprietary

fingerprint. Inspection of Table 1 shows that all but three of the

fingerprints (Estate, Atom Pair, and RDDKit) were able to predict

successfully the similarity or nonsimilarity of 95 or more of the

pairs of molecules in the test data set, with the Morgan fingerprint

resulting in only a single incorrect prediction (despite it achieving

only moderate R2 and AUC values in the training stage). The

incorrect prediction was for a pair of active substances that both

had complex structures and molecular weights in excess of 500. It

was not only the Morgan fingerprint that failed here, given that all

of the models that were developed failed to make a correct predic-

tion for this particular case.

Data fusion, or consensus scoring, has been found to be of

considerable value for similarity-based virtual screening [13]

and we have adopted this approach to the present context. Spe-

cifically, assume that each of several different fingerprints is used

to make a prediction for a pair of molecules: then the final

prediction is that given by the majority of the fingerprints. It

was found that 99 correct predictions were obtained using both all

of the CDK fingerprints (i.e., four or more of them giving the same

prediction) or all 12 fingerprints (i.e., seven or more of them giving

the same prediction). The incorrect predictions were again for the

pair of molecules discussed in the previous paragraph. Given that

different fingerprints capture different characteristics of molecular

structure and that the open-source nature of CDK and RDKit

provides a range of such fingerprints, a consensus approach such

as this would appear to be appropriate for future applications of

our approach.

One such application that has been developed is a KNIME-based

system that is now being used to support assessors throughout the

EU who assist CHMP in coming to a decision as to whether a

medicine for a rare disease should be approved. The assessors do

this by producing an evaluation report on similarity in which they

comment on the extent to which the new active substance is

indeed sufficiently distinct from existing orphan drugs for that

indication. The application takes as input the SMILES linear nota-

tions of the two (or more) molecules that are to be compared;

generates the required fingerprints (initially CDK Extended, CDK

Standard, Avalon, and Layers, because these were those where the

computed similarity values correlated most strongly with the BCI

fingerprint that performed best in our previous study); computes

the Tanimoto similarity coefficient using each of these finger-

prints; and outputs an Excel spreadsheet containing the coefficient

values and the corresponding probabilities of being judged similar

as calculated using the appropriate regression models from Table 1.

The assessor can then use this spreadsheet when coming to a

conclusion as to the novelty or otherwise of the submitted mole-

cule, the report that is submitted to the EMA being based on not

only the fingerprint-based structural similarity, but also the
380 www.drugdiscoverytoday.com
reported therapeutic indication and mode of action. The sets of

assessor reports provide an important input to the CHMP’s final

decision as to whether to assign the orphan drug status to a

molecule that has been submitted for consideration. In addition,

of course, pharmaceutical companies can use the data in Table 1 to

assist them before submission of a new molecule to the EMA for

consideration for marketing authorisation.

In addition to the 2D fingerprints discussed here, comparable

experiments were also conducted using two other types of molec-

ular representation (P. Franco, PhD thesis, University of Sheffield,

2015). In the first of these, molecules were characterised by 23

computed molecular properties (such as molecular weight, logP,

molar refractivity, numbers of rotatable bonds, etc.); and, in the

second, by four further proprietary fingerprints produced by the

Chemical Computing Group as part of their Molecular Operating

Environment system (www.chemcomp.com/): two of these

(Typed Graph Distances and Typed Graph Triangles) described

the 2D shape of a molecule, whereas the other two (Typed Atom

Distances and Typed Atom Triangles) described the 3D shape of a

molecule. None of these alternative types of molecular represen-

tation were found to perform as well as the 2D fingerprints used

here. There are, of course, many other ways in which structural

similarity can be computed [14,15]. A fingerprint is a simple,

indeed crude, description of the 2D structure of a molecule and,

thus, more complex similarity measures have been described that

are based on the maximum common subgraph (or MCS), that is,

the largest subgraph common to the graphs describing two 2D

molecular structures [16,17]. The MCS provides an intuitive mea-

sure of similarity, but does have three limitations. First, an MCS

can be defined in multiple ways: it can be based upon the numbers

of matching atoms and/or bonds; and it can be connected, dis-

connected, or disconnected subject to the individual components

being of at least some threshold size. Next, a similarity measure can

be based upon just the MCS (or MCSs if there is more than one) or

upon a weighted combination of the MCS and of the smaller

maximal common subgraphs. Finally, MCS detection is computa-

tionally demanding, and many of the MCS algorithms that have

been published are nondeterministic or approximate in nature. In

view of the high level of performance achieved in our experiments,

we believe that 2D fingerprints provide the most appropriate way

of investigating the similarity relations pertinent to the registra-

tion of orphan drugs.

Concluding remarks
Measures of structural similarity based on 2D chemical fingerprints

are widely used in medicinal chemistry (and in chemoinformatics

more generally) for applications such as database clustering, di-

versity analysis, and ligand-based virtual screening.

In our research, we have shown how this common type of

structural representation can also be applied to the licensing of

medicines for rare diseases by regulatory authorities. Experiments

with a range of fingerprints that can be generated using widely

available, open-source software show that they provide measures

of Tanimoto-based similarity that correlate well with expert assess-

ments of structural similarity; and that logistic regression models

based on these similarities and human assessments mirror closely

the final pronouncements of the EMA, the EU’s regulatory author-

ity for the licensing of orphan drugs. A software application based

http://www.chemcomp.com/
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on our findings provides a simple tool to support the work of EU

experts who contribute to the final recommendations made to the

EMA by CHMP.
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