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Claudins (CLDNs) are a 27-member family of tetra-transmembrane proteins that have pivotal roles in

maintaining cellular polarity and sealing the spaces between adjacent cells. Deregulation of their

functions is often associated with pathological conditions, including carcinogenesis and inflammation.

Some CLDNs are co-receptors for hepatitis C virus. Because CLDN-driven regulation of intercellular seals

might be manipulated to enhance drug absorption, CLDNs are attractive targets for drug development.

Monoclonal antibodies recognizing the extracellular domain of CLDNs are the first choice for

therapeutics, but their development has been delayed. Here, we overview recent advances in the creation

of anti-CLDN antibodies and discuss CLDNs as drug development targets.
Introduction
During their evolution, multicellular organisms have developed a

series of machineries to separate the body and the outside envi-

ronment and to compartmentalize tissues such as the epithelium

and endothelium. These machineries function as gatekeepers,

selecting and regulating solute movement across the epithelium

and endothelium in a tissue-specific manner [1]. The spaces be-

tween adjacent cells are sealed by tight junctions (TJs), which in

the epithelium and endothelium have barrier and fence functions

[1–3]. For instance, TJs prevent free movement of solutes across the

epithelium and endothelium through the paracellular spaces.

Representative barriers involving TJs are the mucosal barrier,

epidermal barrier, blood–brain barrier and blood–testis barrier

[1,4]. Regulation of these barriers has been one strategy for drug

delivery [4,5]. TJs also maintain cellular polarity by preventing free

movement of membrane proteins and lipids between the apical

membrane and the basolateral membrane [6]. Disruption of the

cellular polarity of the epithelium is an early event in malignant

transformation [7]. Moreover, most pathological microorganisms

invade the body via the mucosal epithelium [8]. TJs are therefore

promising targets for developing drug delivery and cancer therapy

and for treating inflammatory diseases and infection.
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TJs have complex biochemical structures. They contain trans-

membrane proteins [occludin, claudins (CLDNs), tricellulin, junc-

tional adhesion molecules] and intracellular proteins (zonula

occludens) [9]. CLDNs are the major structural components of

TJs [1]. To date, 27 CLDN family members have been identified;

each CLDN has different tissue-expression patterns and functions

and has a pivotal role in therapeutic areas involving TJs [1,4,10,11]

(Table 1). CLDNs were initially described as �23 kDa tetra-trans-

membrane proteins with intracellular N and C termini and

two extracellular domains [2] (Fig. 1). The first extracellular do-

main is thought to comprise �50 amino acids and the second �22

(Table 2). Recent crystal structure analysis of murine CLDN-15 and

-19 revealed that CLDNs have a five-stranded extracellular anti-

parallel b-sheet domain (four strands of which are in the first

extracellular domain and one of which is in the second extracel-

lular domain), a typical left-handed four-helix bundle-type trans-

membrane domain and a short extracellular helix at the end of the

first extracellular domain [12,13] (Fig. 1).

Because CLDNs are transmembrane proteins, binders that in-

teract with their extracellular domains are the first choice as

pharmaceutical agents. The first CLDN binder examined was

Clostridium perfringens enterotoxin (CPE) [14]. CPE and its recep-

tor-binding domain, C-CPE, have been widely used to prove that

CLDNs are potent targets for enhancing mucosal absorption of

drugs, mucosal vaccination, cancer therapy and stem cell therapy
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TABLE 1

Therapeutic potentials of claudin (CLDN) binders.

Potential therapeutic area CLDN involved Background Refs

HCV entry inhibitor 1 This CLDN is involved in HCV entry into hepatocytes [38,39]

Drug delivery 1 and 5 CLDN-1 knockout mice showed impairment of the epidermal

barrier, and CLDN-5 knockout mice showed partial impairment of the

blood–brain barrier.

[3,52]

IBD therapy 2 CLDN-2 is overexpressed in IBD [59]

Cancer therapy 3, 4, 6 and 18.2 These CLDNs are frequently overexpressed in many tumors [7,10,50]

Antigen delivery for mucosal vaccination 4 Mucosa-associated lymphoid tissues are covered by highly

CLDN-4-expressing epithelium

[60]

Regenerative medicine 6 CLDN-6 is a marker of undifferentiated stem cells [18]

Abbreviations: HCV, hepatitis C virus; IBD, inflammatory bowel disease.
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[5,15–18] (Table 1). However, because of immunogenicity of CPE,

the clinical applications of CPE and C-CPE are naturally limited

[16]. To overcome the problems associated with the use of CPE and

C-CPE, attention has been paid to technologies for developing

monoclonal antibodies for CLDNs, and several research groups

have had success in this area. In this review, we describe the

technologies used to create monoclonal antibodies for the extra-

cellular domains of CLDNs and their application to pharmaceuti-

cal therapy (Fig. 2).

Approaches to creating antibodies against CLDN family
members
Selection of antigens and screening systems is crucial in the

creation of anti-CLDN antibodies. Various methods have been

used for this purpose. The methods are classified into non-immu-

nization methods (naive phage display technology) and immuni-

zation methods (Table 3).

Peptide immunization
The first anti-CDLN antibodies were successfully created by im-

munizing chickens with a synthetic peptide corresponding to the

extracellular domain of CLDNs [19]. The antigens were peptides
Second
extracellular
domain

First extracellular domain

Intracellular side

β-sheet

COOH

NH2
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FIGURE 1

Schematic illustration of claudin structure. Cylinders and arrows indicate a-
helices and b-strands, respectively.
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corresponding to the following regions of the predicted extracel-

lular domains of human CLDN-1, -3 and -4: one-third of the first

domain, two-thirds of the first domain and the second domain. In

general, the animals immunized have been the mouse and rat.

However, the chicken was chosen as an immunization host be-

cause the homology between human and chicken CLDNs is less

than 80%–CLDNs have a high degree of homology among species,

and the homology between human and rodent CLDNs is more

than 90% [19] (Table 2). The resulting polyclonal antibodies

successfully reacted with CLDN-3- or CLDN-4-expressing cells.

The peptides derived from the extracellular domains of CLDNs

rarely reflect the native CLDN conformations. For example, the

peptide derived from the extracellular domain of CLDN-4 cannot

interact with a C-CPE fragment even though the extracellular

domain of CLDN-4 is the binding domain of C-CPE [20]. General-

ly, most antibodies raised from peptide immunization bind only to

the immunogen and do not bind to the native protein on the cell

surface, probably because of conformational differences between

the peptide and the native protein on the cell membrane [21].

Indeed, the study mentioned above is the only success in the

creation of anti-CLDN antibodies by immunization with a peptide

corresponding to the extracellular domain [19].

Antibody phage display
The second successful creation of anti-CLDN antibodies was

achieved by using phage display technology [22,23]. Phage display

technology is commonly used to obtain binders [24]. A single-

chain variable fragment (scFv) library (library size: <109) was

subjected to screening for CLDN-3 binding by using a 31-ami-

no-acid peptide corresponding to the second extracellular domain

of CLDN-3 [22]. The resulting human anti-CLDN-3 scFv bound to

the CLDN-3 peptide and to cell-expressed CLDN-3. However, the

affinity of the scFv for CLDN-3 on the cells was more than 20-fold

lower than that for the CLDN-3 peptide. In another study, a

synthetic fragment antigen-binding (Fab) phage display library

(library size: >109) was subjected to screening for CLDN-1 binding

by using CLDN-1 protein purified from CLDN-1-displaying bacu-

lovirus, resulting in the creation of CLDN-1-binding Fab [23].

Immunization with DNA and CLDN-expressing cells
To develop an antibody that binds to the native

extracellular domain of membrane proteins, immunization with
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antigen-encoding DNA vector and endogenous or exogenous

antigen-expressing cells in rodents has been used [21,25]. Im-

munization with DNA encoding CLDN-1, -6 and -9 has success-

fully led to the generation of anti-CDLN-1, -6 and -9 antibodies

[26,27]. Immunization with CLDN-3- and -4-expressing cells has

successfully created anti-CLDN-3 and -4 antibodies in rodents

[28,29]. Immunization with plasmid DNA encoding the first

extracellular domain of CLDN-18 splicing variant 2 (CLDN-

18.2) with secretory signal peptide has led to creation of anti-

CLDN-18.2 antibodies [30].
TABLE 2

Primary amino acid sequences of putative extracellular domains of 

CLDN (accession 

number)

First extracellular domain Se

Human CLDN-1 

(NP_066924) 

PQWRIYS YAGDNIVTAQ AMYEGLWMSCVS

QSTGQIQCKV FDSLL NLSST  

NR 

Rat CLDN-1 

(NP_113887) 

PQWKIYSYAGDNIVTAQ AIYEGLWMSC VS

QSTGQIQCKV FDSLL NLNST 

NR 

Mouse CLDN-1 

(NP_057883 ) 

PQWKIYSYAGDNIVTAQ AIYEGLWMSC VS

QSTGQIQCKV FDSLL NLNST    

NR 

Human CLDN-2 

(NP_001164566) 

PSWKTSSYVG ASIV TAVGFSKGLWMECA T

HSTGITQC DIYSTLLGLP AD 

HG

Rat CLDN-2 

(NP_001100316) 

PNWRTS SYVGAS IVTA VGF SKGLWMECAT

HSTGITQC DIYSTLLGLP AD 

HG

Mouse CLDN-2 

(NP_057884) 

PNWRTS SYVGAS IVTA VGF SKGLWMECAT

HSTGITQC DIYSTLLGLP AD 

HG

Human CLDN-3 

(NP_001297) 

PMWRV SAFIGSNIITSQNI WEGLWMNCV V

QSTGQMQCKVYDSLLALPQD 

NT

Rat CLDN-3 

(NP_113888) 

PMWRV SAFIGSSIITAQIT WEGLWMNCVV Q

STGQMQCKMYD SLLALP QD 

NT 

Mouse CLDN-3 

(NP_034032) 

PMWRV SAFIGSSIITAQIT WEGLWMNCVV Q

STGQMQCKMYD SLLALP QD 

NT 

Human CLDN-4 

(NP_001296) 

PMWRVTAFI GSNIVTSQTIWEGLWMNCVV

QSTGQMQCKVYDSLLALPQD 

HN

Rat CLDN-4 

(NP_001012022) 

PMWRVTAFI GSNIVTAQTSWEGLWMNC V

VQSTGQMQCKMYDSMLALPQD  

HN

Mouse CLDN-4 

(NP_034033) 

PMWRVTAFI GSNIVTAQTSWEGLWMNC V

VQSTGQMQCKMYDSMLALPQD  

HN

Human CLDN-5 

(NP_003268) 

PMWQV TAFLDH NIVTAQTTWKGLWMSCV

VQSTGHMQCKVYDSVLALSTE 

NI 

 PM WQV TAFLDH NIVTAQTTWKGLWMSCV NI Rat CLDN-5
Nanoparticle immunization
Nanoparticles, including liposomes, baculoviruses, virus-like par-

ticles (VLPs) and exosomes, have antigen present at high density

on their surfaces [31]. Generally, the presence of epitopes at high

density in antigens on the surfaces of nanoparticles can induce a

robust antibody response without the action of T cells and can

sometimes break B cell tolerance [32]. The CLDN family can be

categorized as poorly immunogenic proteins as a result of their

high homology (Table 2). For instance, a previous report showed

no success on generation of anti-CLDN-1 antibody [33]. Therefore,
claudin (CLDN)-1, -2, -3, -4, -5, -6, -18.1 and -18.2.

cond extracellular domain

IVQEFYDPMTPVNAR YEFGQ  

IVQEFYDPMTPINARY EFGQ   

IVQEFYDPLTPINARYEFGQ    

ILRDFYSPLVPDSMKFEIGE 

ILRDFYSPLVPDSMKFEIGE 

ILRDFYSPLVPDSMKFEIGE 

IIRDF YNPVVPEAQKREMGA

IIRDFYNPLVP EAQKR EMGT

IIRDFYNPLVP EAQKR EMGA

IIQDFYN PLVASGQKREMGA  

VIRDFYN PLVASGQKREMG A   

VIRDFYN PMVASG QKREMGA  

VVREFYDPSVPVSQKYE LGA 

VVREFYDPTVPVSQKYELGA  
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TABLE 2 (Continued )

VQSTGHMQCKVY(NP_113889)  ESV LALSAE   

Mouse CLDN-5 

(NP_038833) 

PMWQV TAFLDH NIVTAQTTWKGLWMSCV

VQSTGHMQCKVYESV LALSAE 

NIVVR EFYDPTVPVSQKYELGA  

Human CLDN-6  

(NP_067018) 

PMWKVT AFIGNS IVVAQVVWEGLWMSCV

VQSTGQMQCKVYD SLLALPQD 

HAIIRDFYNP LVAEAQKRELGA  

Rat CLDN-6  

(NP_001095834) 

PMWKVT AFIGNS IVVAQMVWEGLWMSC V

VQSTGQMQCKVYD SLLALPQD 

HAIIQDFYNPLV ADAQKRELGA  

Mouse CLDN-6  

(NP_061247) 

PMWKVT AFIGNS IVVAQMVWEGLWMSC V

VQSTGQMQCKVYD SLLALPQD 

HSIIQDF YNPLVADAQKRELGA 

Human 

CLDN-18.1 

(NP_057453) 

DMWSTQDLY DNP VTSVFQYEGL WRSC VR

QSSGFTE CRPYFTILGLPAMLQA   

NMLVTNFWMS TANM YTGMGG M

VQTVQTRYT   

Rat CLDN-18.1  

(NP_001014118) 

DMWSTQDLY DNP VTSVFQYEGL WRSC VQ

QSSGFTE CRPYFTILGLPAMLQA   

NMLVTNFWMS TANM YSGMG GM

VQTVQTRYT 

Mouse CLDN-18.1 

(NP_062789) 

DMWSTQDLY DNP VTAVFQYEGLWRSCVQ

QSSGFTE CRPYFTILGLPAMLQA   

NMLVTNFWMS TANM YSGMG GM

GGMVQTVQT 

Human 

CLDN-18.2 

(NP_001002026) 

DQWSTQDLYNNP VTAVFNYQ GLWRSCVR

ESS GFTECRGYFTLL GLPAMLQA          

NMLVTNFWMS TANM YTGMGG M

VQTVQTRYT   

Rat CLDN-18.2  

(XP_006243691) 

DQWSTQDLYNNP VTAVFNYQ GLWRSCVR

ESS GFTECRGYFTLL GLPAMLQA  

NMLVTNFWMS TANM YSGMG GM

VQTVQTRYT   

Mouse CLDN-18.2 

(NP_001181850) 

DQWSTQDLYNNP VTAVFNYQ GLWRSCVR

ESS GFTECRGYFTLL GLPAMLQA   

NMLVTNFWMS TANM YSGMG GM

GGMVQTVQT   

The accession numbers of these CLDNs in NCBI database are shown. The TMHMN program (http://www.cbs.dtu.dk/services/TMHMM/) was used to predict the extracellular domains. Red

letters indicate amino acids mismatched among human, rat and mouse CLDNs.

TABLE 3

Methods of generating anti-claudin (anti-CLDN) antibodies.

Method Target First screening Product Refs

Non-immunization methods
Phage display library CLDN-3 Peptide-based ELISA scFv [22]

Phage display library CLDN-1 Purified soluble CLDN conjugated beads Fab, mAb [23]

Immunization methods

Antigen Immunization host

Peptide Chicken CLDN-3 and -4 Peptide-based ELISA pAb [19]
Cell Immunocompetent rodents CLDN-3 and -4 Cell-based assay mAb [28]

Cell Lupus-prone mice CLDN-3 and -4 Cell-based assay mAb [29,46]

DNA Immunocompetent rodents CLDN-1, -4, -6, -9 and -18.2 Cell-based assay mAb [26,27,30,45]
DNA Lupus-prone mice CLDN-1 Cell-based assay mAb [40]

VLP Immunocompetent rodents CLDN-18.2 Cell-based assay pAb [34]

Abbreviations: Fab, fragment antigen-binding; mAb, monoclonal antibody; pAb, polyclonal antibody; scFv, single-chain variable fragment; VLP, virus-like particle.
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an active immune enhancer needs to be used to raise an antibody

response.

One pioneer study succeeded in inducing the production of

anti-CLDN-18.2 antibody by using VLPs based on chimeric hepa-

titis B core antigen (HBcAg) [34]. Antigen can be inserted into a
1714 www.drugdiscoverytoday.com
surface-exposed site on HBcAg. The authors inserted a peptide

corresponding to part of CLDN-18.2 by using a G4SG4 linker at the

N- and C-terminal ends of the peptide. The HBcAg-based VLPs that

they designed induced the production of human–mouse cross-

reactive anti-CLDN-18.2 antibodies upon immunization of mice.

http://www.cbs.dtu.dk/services/TMHMM/
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FIGURE 2

A representative cartoon showing the different approaches for creating antibodies against claudin (CLDN) family members and their therapeutic applications.

TABLE 4

Key features of anti-claudin (anti-CLDN) antibodies.

Antibody name Target Epitope Key feature Therapeutic indication Refs

OM-7D3-B3 CLDN-1 First ECD Cross-reacted with mouse CLDN-1 HCV entry inhibitor [41]

3A2 CLDN-1 Second ECD Commercially available HCV entry inhibitor [40]

7A5 CLDN-1 Second ECD Commercially available Epidermal barrier modulator [53]

KM3900 CLDN-4 Second ECD Human CLDN-4 specific Anticancer reagent [46]

KM3907 CLDN-3 and -4 First ECD Cross-reacted with mouse CLDN-4 but not mouse CLDN-3 Anticancer reagent [28]

5A5 CLDN-3 and -4 First ECD Human specific Anticancer reagent [45]

IMAB362 CLDN-18.2 First ECD Ongoing Phase IIb study Anticancer reagent [30]

IMAB027 CLDN-6 Unknown Ongoing Phase I/II study Anticancer reagent [50]

342927 CLDN-6 Unknown Commercially available Eliminator of residual undifferentiated cells [18]

Abbreviations: ECD, extracellular domain; HCV, hepatitis C virus.
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The authors of the study indicated that the flanking linker was

required for efficient production of antibodies that recognized the

native form of CLDN-18.2 on the cell surface.

Therapeutic applications of anti-CLDN antibodies
Finally, we summarize the possible therapeutic applications of

anti-CLDN antibodies. The key features of the anti-CLDN anti-

bodies described in this section are summarized in Table 4.
Anti-CLDN-1 antibody as an inhibitor of hepatitis C virus
infection
It has recently been estimated that between 64 and 103 million

individuals have chronic hepatitis C virus (HCV) infection [35].

Chronic HCV infection can lead to liver failure and hepatocellular

carcinoma, resulting in approximately 0.5 million deaths per year

[36]. Liver failure and hepatocellular carcinoma caused by chronic

HCV infection are the most common indications for liver
www.drugdiscoverytoday.com 1715
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transplantation. However, following liver transplantation, HCV

re-infection of fresh liver is inevitable, and allograft loss occurs in

30% of patients [37].

HCV entry into hepatocytes is a promising target for a thera-

peutic strategy; host receptors, in particular, are considered to be

HCV genetic barrier-free targets and useful targets of inhibitors of

HCV re-infection following liver transplantation [38]. HCV enters

hepatocytes through multiple processes involving heparan sulfate,

low-density lipoprotein receptor, CD81, the scavenger receptor B1,

epidermal growth factor receptor, CLDN-1 and occludin [39].

CLDN-1 is probably required for a HCV internalization step fol-

lowing a binding step involving CD81, because direct interaction

with CLDN-1 and virus proteins has not been observed, but

interaction between CLDN-1 and CD81 has been observed. The

CLDN-1 binding Fab prevented infection of HCV with human

hepatocytes [23]. Therefore, anti-CLDN-1 antibody could be a

novel host-targeting antiviral agent. Indeed, several groups using

human-liver chimeric mice have shown that anti-CLDN-1 anti-

body inhibits the entry of HCV pseudoparticles into, and their

infection of, hepatocytes without obvious toxicity [40,41]. Anti-

CLDN-1 antibody inhibited the cell entry of HCV pseudoparticles

harboring virus envelope genomes sequenced from patients with

chronic genotype 1b HCV infection (and thus mimicking highly

variable HCV quasispecies) [26]. Anti-CLDN-1 antibody disrupts

the interaction between CD81 and CLDN-1, and disruption of this

interaction can inhibit HCV entry [42]. The potential of anti-

CLDN-1 as a HCV inhibitor has been studied by other groups

using pseudoparticles comprising all HCV genotypes and in vivo

mouse studies, and anti-CLDN-1 antibody is now considered a

potent host-targeting antiviral agent.

Anti-CLDN antibodies as anticancer drugs
The majority of human cancers (�90%) are derived from epithelial

cells. In normal epithelial cells, the integrity and polarity of

epithelial cells are maintained by the TJ; however, the TJ is often

disrupted during carcinogenesis, resulting in uncontrolled tumor

growth and detachment [7]. The expression levels of members of

the CLDN family change dramatically in tumor tissues compared

with those in parental normal tissues [10]. Although the reason

why CLDNs are upregulated or downregulated during carcinogen-

esis is still not fully understood, the changes in the expression

profiles of CLDNs have been used to diagnose carcinoma stage.

From this perspective, in addition to being used as diagnostic

markers, CLDNs are considered to be therapeutic targets.

CLDN-3 and -4 were originally identified as CPE receptors and

are expressed in various types of cancers [14]. In particular, CLDN-

3 and -4 are expressed in nearly 80% and 70%, respectively, of

ovarian cancer tissues, and relationships between CLDN-3 or -4

expression levels (or both) and cancer progression have also been

observed in many cancers [7,43,44]. Antibody against CLDN-3 or -

4, or both, has also been shown to have antitumor effects in

preclinical rodent models [28,29,45,46]. However, CLDN-3 and -

4 are also expressed in normal tissues of the breast, ovaries,

prostate, bladder and gastrointestinal mucosa, indicating that

the safety profiles of anti-CLDN-3 and -4 need to be studied

thoroughly. C-CPE and anti-CLDN-4 antibody accumulate in

tumors rather than in healthy tissues [47,48]. Consistent with

these data, Romani et al. [22] speculated that TJ-incorporated
1716 www.drugdiscoverytoday.com
CLDNs in well-structured normal tissues might be less accessible

to large-molecule CLDN-binders, whereas the non-TJ-incorporat-

ed CLDNs, which are frequently observed on the surfaces of tumor

cells, could be more accessible to such binders. If this hypothesis is

true, anti-CLDN-3 or -4 antibodies should prove to be safe and

efficient antitumor reagents.

CLDN-18 has two splicing variants with only an eight-amino-

acid difference between their first extracellular domains (Table 2).

These variants show different tissue-expression patterns: CLDN-

18.1 is expressed in alveolar epithelial cells in the lung whereas

CLDN-18.2 is expressed in short-lived differentiated mucosal epi-

thelium of the stomach in a specific promoter-dependent manner

[30]. CLDN-18.2, but not CLDN-18.1, is frequently overexpressed

in several cancers, including gastric, esophageal, pancreatic, lung

and ovarian cancers [30,49]. In particular, it is overexpressed in up

to 80% of gastrointestinal adenocarcinomas (primary and metas-

tasized) and in 60% of pancreatic cancers. Therefore, CLDN-18.2 is

a suitable target for antibody-based cancer therapy. However,

cross-reactivity of the antibody between CLDN-18.2 and CLDN-

18.1 could easily lead to unintended side-effects. A CLDN-18.2-

specific antibody has been developed [30]; the chimeric antibody

IMAB362 is now in a Phase IIb clinical trial for gastroesophageal

cancer [50].

CLDN-6 is considered an immature-cell marker because it is not

expressed in healthy adult tissues and is expressed only in imma-

ture cells such as stem cells, and in undifferentiated cancer cells

[51]. These characteristics mean that, if anti-CLDN-6 antibody is

administered to humans, it can bind only to CLDN-6-expressing

undifferentiated cells and could have an antitumor effect without

toxicity. Recently, the anti-CLDN-6 antibody IMAB027 has en-

tered a Phase I/II clinical study for ovarian cancer [50].

Anti-CLDN antibodies for barrier modulation
Several CLDN knockout mice have shown loss of specific-site

barriers without the loss of TJ strands, and some have died shortly

after birth [3,52]. TJs are complicated barriers; their barrier func-

tions, such as ion permeability and size selectivity, vary markedly

in terms of tightness, depending on the composition and mixing

ratio of the CLDN molecules in each tissue [4,10]. These barriers

sometimes hamper drug delivery to target tissues, indicating that

the strategy of opening an ‘indispensable’ CLDN gate by modu-

lating CLDN in target tissues could be a novel drug delivery system.

The anti-CLDN-1-antibody clone 7A5 significantly inhibited

barrier formation and increased tracer permeability without cyto-

toxicity in normal human epithelial keratinocyte (NHEK) cells

cultured to form a multilayered highly differentiated model of the

human epidermal barrier [53]. Although the expression levels of

CLDN-1 were similar between NHEK and Caco-2 cells, this anti-

body failed to modulate the barrier integrity of Caco-2 cells, which

are representative of intestinal barrier models. These findings

indicate that functional CLDN-1 could be an epidermal absorption

enhancer.

Anti-CLDN-6 antibody in regenerative medicine
For successful regenerative medicine, contamination with undif-

ferentiated cells should be avoided, because there is a risk of

teratoma formation by residual undifferentiated cells remaining

among the differentiated products [54]. To remove teratomas
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before transplantation, recent approaches have focused on the

prospective removal of undifferentiated cells by using a specific

antibody, or the prospective killing of undifferentiated cells by

using a targeting toxin [18,55].

As described above, CLDN-6 is not expressed in healthy differ-

entiated cells but it is expressed in human pluripotent stem cells

(hPSCs) [18]. Notably, the level of CLDN-6 mRNA is extremely

high in these cells and is comparable to that of octamer-binding

transcription factor 4, which is a representative pluripotency gene.

Furthermore, knockdown of CLDN-6 does not affect the differen-

tiation or morphology of hPSCs and CLDN-6 knockout mice

appear phenotypically normal, indicating that CLDN-6 is dispens-

able for the survival and self-renewal of PSCs [56]. Anti-CLDN-6

antibody is therefore useful as a biomarker of undifferentiated

hPSCs. Alternatively, anti-CLDN-6 antibody could be used as an

immune toxin to eliminate undifferentiated cells from their dif-

ferentiated progeny. A pioneering study has shown that treatment

of a mixture of hPSCs and fibroblasts with CPE, which can bind to

CLDN-6, can completely prevent teratoma formation after the

transplantation of cells into immunodeficient mice, whereas all

mice transplanted with untreated cells developed teratomas [18].

CPE binds to other CLDNs on differentiated cells; therefore, if a

CLDN-6-specific and highly efficient immunotoxin can be devel-

oped it should be useful as a hPSC eliminator.

Concluding remarks
A series of studies over the 18 years since the discovery of CLDNs

has provided us with new insights into TJs as targets for drug

development in relation to drug absorption, cancer therapy and

the treatment of infectious and inflammatory diseases (Table 1).

Excluding the peptides derived from the extracellular domains of

CLDNs [57], CLDN binders can be classified into two types: toxin

and antibody. As mentioned in this review, a paradigm shift from

the first-generation CLDN binders (CPE derivatives) to the second-

generation CLDN binders (monoclonal antibodies) has contribut-

ed to progress in CLDN-targeted drug development. However,

there are two problems in the future application of CLDN binders
to pharmaceutical therapy. The first is in the need to further

develop the technology for creating human monoclonal antibo-

dies for CLDNs. The types of antibodies used pharmaceutically

have changed from human–murine chimeric monoclonal anti-

bodies to human monoclonal antibodies [58], and the technolo-

gies used to create human monoclonal antibodies, including the

phage display method, are still in the development stage. The

second is the technology for creating chemical CLDN binders. In

terms of medical economics, chemical-type CLDN binders are

promising. However, we need to establish high-throughput

screening systems for chemical CLDN binders and in silico drug

design methods. Takeda et al. [12] have already developed a high-

throughput system for screening for the interaction of CLDN and

anti-CLDN monoclonal antibody by using a liposome-based in-

teraction assay. This system will be a novel method of screening for

CLDN binders. Future determination of the complex structures of

CLDNs and of anti-CLDN antibodies with pharmaceutical activity

will lead us to theoretical drug design for CLDN-targeted drug

development. From now on, a second paradigm shift from second-

generation CLDN binders (monoclonal antibodies) to third-gen-

eration CLDN binders with high druggability (human monoclonal

antibodies or chemicals) is needed. This will probably occur in the

near future.
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