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Molecular dynamics (MD) is an important tool that can offer significant benefits to
structure-based drug design. This review addresses the theoretical background and various

applications of MD that can transform the current drug discovery efforts.

Molecular dynamics-driven drug
discovery: leaping forward with
confidence
Aravindhan Ganesan1, Michelle L. Coote2 and
Khaled Barakat1

1 Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB, Canada
2ARC Centre of Excellence for Electromaterials Science, Research School of Chemistry, Australian National

University, Canberra, ACT 2601, Australia

Given the significant time and financial costs of developing a commercial

drug, it remains important to constantly reform the drug discovery

pipeline with novel technologies that can narrow the candidates down to

the most promising lead compounds for clinical testing. The past decade

has witnessed tremendous growth in computational capabilities that

enable in silico approaches to expedite drug discovery processes. Molecular

dynamics (MD) has become a particularly important tool in drug design

and discovery. From classical MD methods to more sophisticated hybrid

classical/quantum mechanical (QM) approaches, MD simulations are now

able to offer extraordinary insights into ligand–receptor interactions. In

this review, we discuss how the applications of MD approaches are

significantly transforming current drug discovery and development

efforts.

Introduction
The quest for new drugs has always remained crucial throughout human history. From the

influenza epidemics of the 1800s and 1900s [1] to the recent Ebola virus outbreaks [2], the

population of the world has constantly faced epidemics, in addition to life-threatening diseases,

such as cancer. Thus, drug discovery continues to be the most significant challenge for the

scientific community. The overall drug discovery process, from the identification of potential

lead compounds to the US Food and Drug Administration (FDA) approval of a drug, is not only

complex, but also expensive and time consuming. A recent report1 published by the Tufts Center

for the Study of Drug Development (CSDD) estimated the overall cost of developing an approved

drug to be a staggering US$2.6 billion, with an average of approximately 14 years to complete the

entire development cycle of a single drug (from the research lab to market) [3].

Drug design and development have matured over the past two decades by exploiting the

advantages of new experimental techniques and complementary technologies. The early 1990s
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GLOSSARY

Free energy of binding within the context of ligand–protein
complexes in drug design, the free energy of binding is
defined as the free energy difference between the ligand-
bound state (complex) and the free unbound states (free
protein and free ligand)
Induced-fit effect conformational changes in an enzyme
triggered by the interactions with (or binding of) small
molecules or other proteins
Molecular docking a method to predict the favoured
binding orientations between two molecules to form a stable
complex
Periodic boundary condition (PBC) a method used in MD
simulations to eliminate the issues concerning boundary
effects, arising from finite size, by treating the system as
infinite with the help of a unit cell
Scoring function mathematical method to quantify the
interactions between two molecules when they are docked
together
Shape matching a sampling method that uses receptor
complementarity as a criterion for identifying the ligand-
binding conformations
Stochastic algorithms a sampling method that incorporates
random changes to the ligand in transitional, rotational, and
conformational space to identify the most suitable ligand-
binding conformation
Systematic search a sampling method that utilises all
degrees of freedom to sample the ligand-binding
conformations
Virtual screening a computational approach used in
structure-based drug design to screen a library (or libraries) of
small molecules against the desired protein target to rank
them based on their affinities to the concerned binding site
of the target; also known as ‘in silico screening’
saw rapid advancements in combinatorial chemistry and high-

throughput gene-sequencing technology. These enabled the syn-

thesis of huge compound libraries within a short span of time and

their screening for various targets, thereby accelerating the dis-

covery processes. This raised the hope of transforming the drug

discovery field, making natural products obsolete. However, over

time, the field of combinatorial chemistry began to face many

technical challenges. In particular, the combinatorial libraries did

not cover many structurally diverse compounds [4]. Furthermore,

the compounds in these libraries were not as stereochemically rich

as natural products. Therefore, the exploitation of these com-

pound libraries did not result in expected fruitful outcomes; in

fact, they escalated the costs of testing [5] and resulted in reduced

success rates. For example, until recently, only two compounds

generated de novo had reached the clinic [6]. One was sorafenib

from Bayer, which was first approved by FDA in 2005 as a drug for

cancer. The second was ataluren, which was approved in the

European Union in 2014 as a drug for the treatment of genetic

disorders [6]. Nevertheless, there have been some significant

efforts towards improving the combinatorial chemistry field. For

instance, schemes were developed to address the lack of diversity,

and included diversity-oriented synthesis [7], which uses a ‘build/

couple/pair strategy’ [8]. In addition, strategies, such as ‘split and

pool solid phase synthesis’, were developed as a more powerful

approach for synthesising huge combinatorial chemistry libraries.
250 www.drugdiscoverytoday.com
Despite many efforts, the field of combinatorial chemistry has still

not reached full capacity. Kodadek [9] discussed various recent

advances in combinatorial chemistry, which led to a focus on

computational methods as low-cost tools for driving the early

search process for compounds with desired biological activity

and pharmacological profiles, before initiating experiments.

Structure-based drug design (SBDD) is one of various vital

computational approaches that have been found to be effective

in the identification of hits for in vitro testing. As its name indi-

cates, in principle, knowledge of the 3D structures of proteins and

ligands is required to perform SBDD. Recently, there has been a

dramatic accumulation of biological data, from gene sequences to

3D structures of proteins and compound databases, which offers

excellent support to SBDD research. As of June 2016, the Protein

Data Bank (PDB) (www.pdb.org) contained more than 100 000

experimentally determined (e.g., via X-ray, NMR, and electron

microscopy) protein structures, of which almost 26% correspond

to human proteins. The UniProtKB/Swiss-Prot genome database

(www.uniprot.org) contains �540 000 amino acid sequences.

These huge databases offer a gamut of potential targets for several

human diseases. Moreover, when the experimentally determined

3D structures of any proteins (or enzymes) are not available in

PDB, computational models of the unknown proteins for subse-

quent in silico studies can be constructed using SBDD-based meth-

ods, such as homology modelling, threading, and de novo

designing [10]. The success of virtual screening (see Glossary)

and SBDD is also dependent on the availability of different com-

pound libraries that comprise chemical compounds from diverse

structural classes, to increase the probability of obtaining novel

hits. There are several freely available compound databases, such

as ZINC15 [11,12] (�120 million compounds), Chemspider [13]

(35 million compounds), ChEMBL [14] (�2 million compounds),

DrugBank [15] (�14 000 compounds), PubChem [16] (64 million

compounds), among others.

When a specific target and compound libraries are selected,

molecular docking-based virtual high-throughput screening is used

to identify only those compounds (from the libraries) with higher

affinities to the active site of the protein [17]. The proteins are

dynamic biological molecules and their flexibilities have vital roles

in the process of ligand recognition and, thus, in SBDD. In addition,

ligand binding also tends to induce measurable levels of conforma-

tional changes in the proteins to adapt a biophysical state that is

suitable to form a strongly bound complex (known as ‘induced-fit’

effects). Nevertheless, accounting for receptor flexibilities remains a

major challenge and regular molecular-docking methods are most-

ly unable to capture such conformational changes in proteins.

MD is a computational method that can take on this challenge

and predict the time-dependent behaviour of a molecular system,

thus becoming an invaluable tool in SBDD. It has been particularly

valuable in exploring the energy landscapes of proteins and iden-

tifying their physiological conformations, which are, in many

cases, not even accessible through high-resolution experimental

techniques. MD is also useful in the structural refinements of

postdocking complexes, such that the complementarity between

the ligand and the receptor is enhanced in the complex state,

allowing better rescoring of complexes.

In this review, we discuss in detail the various applications of

MD approaches in modern drug discovery efforts. Although, there

http://www.pdb.org/
http://www.uniprot.org/
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have been several recent Rev. [18–26] focussing on the usefulness

of MD in drug design, they mostly focussed on the theoretical

background, applications of MD for accounting protein flexibility

and a few binding free energy methods. However, here we com-

plement these existing Rev. by addressing various aspects of SBDD,

for which MD methods and QM/molecular mechanics (MM)

approaches can offer some valuable solutions. The review begins

by briefly introducing molecular docking and virtual screening in

SBDD. We discuss the recent developments in docking methods

and how they struggle to account protein flexibility in SBDD.

Subsequently, we discuss in detail how MD is helping to fill this

gap and various applications of MD in SBDD, including postdock-

ing structural refinements and accurate binding free energy esti-

mations. Various binding free energy methods and their recent

developments are presented, along with several examples. In

addition, we also discuss an emerging trend of using solvent

information more explicitly from MD simulations, which provide

significant information regarding the effects of water molecules in

drug design. Furthermore, we also highlight the various limita-

tions to MD methods and, subsequently, we discuss the applica-

tions of advanced hybrid QM/MM MD in drug design. Finally, we

present a simple and practical workflow for integrating the various

computational methods discussed in this review for SBDD.

Molecular docking and flexibility challenges
Molecular docking protocols predict the optimal placement of

each compound within a predefined active site of a protein target.

They generate a comprehensive set of conformations of the li-

gand–receptor complex (predominantly based on the ligand

poses). These poses are subsequently ranked based on their stabili-

ty using different scoring functions [27]. There are several pro-

grams for ligand–protein docking, including DOCK [28],

AutoDock [29], Gold [30], and GLIDE [31]. These docking-based

methods have been of great use in modern drug discovery cam-

paigns, mainly because of their speed and simple set-ups.

Early docking methods assumed that the ligand–protein bind-

ing phenomenon could be modelled as a simple ‘lock-and-key’

scheme. That is, the aim was to identify a ligand (i.e., a key) with

the exact shape complementarity to fit within a stiff active site

cavity (as a keyhole) of the protein. In this way, most early docking

algorithms treated the ligand and the receptor as two rigid coun-

terparts. However, this assumption holds well only for rare cases,

such as the trypsin–BPTI complex, in which the interfaces of the

bound and unbound states are almost identical in their conforma-

tions [32]. However, it does not reflect the reality in most cases,

where both ligands and receptors undergo mutual changes to

accommodate each other in the complex state. Thus, the li-

gand–protein binding mechanism is now described as a ‘hand-

and-glove’ scheme (Fig. 1), indicating that the best fit is still an

essential factor but in a flexible environment [33]. Most of the

current docking software programs have adopted ligand sampling

as one of the basic elements in their docking protocols. Several

sampling algorithms, such as shape matching, systematic search,

and stochastic algorithms, are currently used in docking to gener-

ate several ligand conformers (often referred as ‘poses’) around the

given receptor environment [34]. For example, software programs

such as GLIDE [31] and LUDI [35] implement systematic search

methods in docking, whereas AutoDock incorporates stochastic
methods to account for ligand flexibility in docking. Thus, there

have been significant advancements in the methods to allow

exhaustive ligand flexibility in docking-based virtual screening

[34].

By contrast, protein flexibility has been almost ignored in dock-

ing calculations. Few techniques, such as soft-docking and rotamer

libraries [34,36], have been developed to tackle this problem. In

soft-docking, the protein flexibility is implicitly included during

the calculation, by softening the interatomic van der Waals terms

in the scoring function such that it allows small levels of overlap

between the receptor and ligand [34,36]. Software programs such

as GOLD and AutoDock implement soft-docking. Some programs

attempt to implement protein conformational changes into dock-

ing calculations by treating the side chains as flexible, while

retaining the rigidity of backbone atoms [34,36]. These methods

use rotamer libraries, which comprise a list of side-chain confor-

mations determined by experiments and statistical analyses.

GLIDE [31], for example, adapts an induced-fit docking method,

where selected side chains are mutated into alanine residues to

avert steric clashes during docking [31]. Later on, the conforma-

tions of these side-chains are adjusted to generate possible con-

figurations that can adapt to the new environment, followed by

energy minimisation of the binding site.

Nevertheless, such attempts only allow local movements of

some selected residues in the active site, but are not able to capture

the overall effects of ligand binding on the conformation of

proteins. To overcome this issue, an ensemble of protein structures

can be used to account for the full receptor flexibility during

docking. This method has become one of the most widely accepted

techniques in SBDD. In this approach, all protein structures are

combined to form a single representation [18,36] that includes

conformational changes that occur during the ligand-binding

process. This is usually achieved by averaging the grids of the

different protein conformations (in the ensemble) into a single

global receptor grid that is then used in molecular docking.

Knegtel et al. [37] were one of the first to use an averaged grid

generated from different experimentally determined structures for

ligand docking. The authors used this approach for different test

cases, including HIV protease, ras p21 protein, uteroglobins, and

retinol-binding protein. They found that the averaged grids ap-

proach exhibited better accuracies compared with those of a single

structure. The issue of protein flexibility in docking was also

addressed by using a united description scheme [38]. In this

way, multiple experimentally derived protein structures are super-

imposed, where the similar segments in the ensemble structures

are aligned and fused together, while the variable regions are used

as an ensemble. The ensemble of varied segments of proteins is

combinatorially explored to produce possible new conformations

of proteins for docking calculations [18,34]. However, this ap-

proach relied heavily on the quality of the ligand conformational

sampling. In addition, such approaches account only for the

ligand–protein interaction energy where the internal energy of

the protein is mostly neglected [18] (Fig. 2).

An alternate ensemble-based strategy to model protein flexibili-

ty in molecular docking is to explicitly consider multiple individ-

ual receptor conformations [39] and perform rigid docking of

ligands against all those target structures. An ensemble of protein

configurations is usually generated from an NMR structure of the
www.drugdiscoverytoday.com 251
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FIGURE 1

A schematic representation of induced effects of ligand binding to its receptor.
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chosen receptor or a set of X-ray crystal structures for the same

receptor but with different ligands. Nevertheless, the main pitfall

with using an ensemble of X-ray crystal structures is that the

subsequent docking (or virtual screening) could be biased towards

the structures available. This could be even more troublesome if all

the available structures are co-crystallised with analogous ligands.

By contrast, in the absence of those experimental structures,

modelling and MD simulations can be carried out to collect
252 www.drugdiscoverytoday.com
statistically significant protein conformations from the resulting

(MD) trajectories. More discussions about this strategy are provid-

ed in the following sections. In fact, this combination-approach

(i.e., mixing MD and molecular docking) is becoming more com-

mon [40–43], irrespective of the availability of experimental struc-

tures. For example, in a recent study, Campell et al. [44] presented

an approach that uses a biased-MD simulation on the known X-ray

crystal structure(s) of ligand–protein complex(es), followed by
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FIGURE 2

Different categories of method used for accounting ligand and receptor

flexibilities in molecular docking.
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rigid ligand docking to identify the best ranking pose for the

complex(es). To demonstrate this scheme, the authors selected

two test systems, cyclin-dependent kinase 2 (CDK2) and factor Xa

(FXa) [44]. The authors collected the available crystal structures of

these systems and performed MD simulations by introducing an

external bias potential to retain the initial ligand conformation,

thereby also maintaining the binding state that had been known

to exist. Later, the authors collected a cluster of protein conforma-

tions from the MD trajectory and used them for the ensemble-

based docking of a new set of ligands in the known pocket. This

work [44] demonstrated that, despite the availability of crystal

structures, MD simulations can be useful to account for protein

flexibility in docking-based virtual screening. A recent study [45]

showed that enrichment performances of virtual screening against

three different targets (neuraminidase, HIV protease, and peroxi-

some proliferator-activated alpha receptors) displayed excellent

improvements when using MD-based screening. Therefore, MD

methods are now recognised as a valuable tool in SBDD.

Classical molecular dynamics
MD is the most widely used computational technique to study the

equilibration structures and dynamic interactions of biological

systems [20,24,40–43]. It provides additional insights into time-

dependent variations and configurational changes in the struc-

tures of the biological systems, which can be related to their

functionalities [46]. Classical MD regards atoms as solid spheres
and the bonds connecting them as springs. This allows the atoms

in the system to only oscillate within a specified distance. Classical

MD is based on Newton’s equations of motion (Eqn 1):

mi
drri

dt2
¼ Fi: (1)

Here, Fi is the component of the net force acting on the ith atom

with a mass, mi. ri denotes the position of the atom at time t. The

force can then be computed as (Eqn 2):

Fi ¼ � dUðr1; r2; . . .; rnÞ
dri

; (2)

where, U(ri, r2, . . ., rn) is the potential energy function of the specific

conformation and can be described by using the concept of a force

field with predefined parameters [47]. A force field is a mathemati-

cal expression comprising the functional form of the potential

energy, which includes the possible bonded (bonds, angles, and

dihedrals) and nonbonded interaction (van der Waals potentials

and Coulomb potentials) terms between the different atoms in the

system. The bond stretching and angle terms are commonly

modelled using a harmonic potential function, whereas the dihe-

drals are expressed as a cosine function. The nonbonded terms are

modelled using Lennard-Jones potentials [48] and Coulomb’s law.

The particle-mesh Ewald (PME) method [49] under periodic

boundary conditions is normally used in classical MD simulations

to treat long-range electrostatic interactions in the system. Several

force fields have been developed for MD simulations of biological

systems, such as CHARMM [50], AMBER [51], and GROMOS [52].

Most of these methods have different functional forms to treat MD

simulations, which makes it difficult to transfer parameters from

one force field to another.

It is generally problematic to compare the performance of

different force fields, because the outputs significantly depend

on the type of system and properties studied [53]. However, there

have been some efforts to compare different force fields and most

of them find that the results concerning the structure and dynam-

ics of systems vary depending on the force field. For example,

Todorova et al. [54] compared five popular force fields

(CHARMM27, OPLS, AMBER03, and the united-atom GROMOS

43A1 and GROMOS 53A6) for simulating insulin. The study

addressed the effects of each force field on the conformational

evolution and structural properties of the peptides and compared

them against the established experimental data. The results found

that different structural trends emerged depending on the force

field used; however, CHARMM27 and GROMOS 43A1 delivered

the best representation of the experimental behaviour [54]. Similar

conclusions were drawn from several other studies, whereas other

studies concluded that no major differences (in properties and

performance) were detected when comparing different force fields.

Therefore, it is important to make a careful selection of a force field

before using it in MD simulations. ‘Learning from experience’ is

one of the practical approaches for choosing a force field for MD

simulations. Before choosing a force field, the users need to be clear

about the system they are working on and what the key question

(or property) is that they are trying to address through MD

simulations. Subsequently, the users need to do a literature search

to find out whether MD simulations of similar systems or proper-

ties have been previously reported and, if yes, what types of force

field were applied to those simulations. If more than one force field
www.drugdiscoverytoday.com 253
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BOX 1

Important quantities in MD analyses

Root mean square deviation
RMSD is a measure of the average deviation or distance between
the atoms when 3D structures are superimposed on each other.
When analysing an MD trajectory, this value (or RMSD) could be an
important quantity that is useful to trace how much the structure
that underwent MD simulations has deviated from its starting
structure.
Interaction energy
The interaction energy is the amount of energy that is caused by
the interaction(s) between two residues (or objects) and its
contribution towards the total energy of the system. Interaction
energies between different amino acid residues from the target
and the bound ligand could have a significant impact on the
binding affinity of the complex. Thus, identifying the key residues
that have high interaction energies against the ligand is important
in binding mode analyses.
Interaction distance
The interaction distance is a minimum distance between two
nonbonded residues of proteins or between residues and ligand
that could affect each other, thereby impacting the total energy of
the system.
Correlation functions
Correlation functions are mathematical descriptors that connect
the properties of protein structures with that of their significance.
Thus, correlation function remains an important tool for protein
structure analyses from the MD trajectories.
Radial distribution function
The radial distribution function is a quantity that describes the
average radial packaging of atoms in a system. It can be calculated
by constructing normalised histograms of atom pair distances with
respect to an ideal gas (Eqn I).

gðrÞ ¼ nðrÞ
4pr2rDr

(I)

where, n(r) is the number of atoms in a shell of width Dr at distance
r and r is the mean atom density. This quantity can be useful, for
instance, to identify how many waters are coordinating with a metal
ion in the active site of the protein during the course of MD
simulation.
Hydrogen bond
A hydrogen bond (H-bond) reflects the electrostatic force that
attracts the H attached to one electronegative atom to another
electronegative atom holding a lone pair of electrons. Thus,
identifying the number of H-bonds between the bound ligand and
its surrounding amino acid residues of the protein is one of the key
steps while analysing MD trajectories.
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has been applied, then the one among them that was able to

provide more accurate results needs to be identified. It is also

important to benchmark the selected set of atomic force fields to

test against reliable metrics. Sometimes, the choice of force field

might also depend on the type of water models involved in the

simulations, because force fields have been developed for certain

water models (e.g., TIP3P, TIP4, and SPC) [54,55]. For instance, it

has been suggested that the combinations of TIP3P-AMBER, TIP3P-

CHARMM, TIP4P-OPLS, and SPC-GROMOS are more relevant to

the experiments [54,55], although there are some exceptions (e.g.,

[55]). Becker et al. [56] listed several considerations for choosing an

appropriate force field in material science and engineering, and

these suggestions also hold for biomolecular simulations.

Solving Newton’s equations of motion analytically is unpracti-

cal for the thousands of degrees of freedom typically involved in

many MD problems. As a result, numerical integration algorithms,

such as Verlet integrator [57], velocity Verlet integrator [58], and

leapfrog integrator [59], are usually used to solve these equations

and predict the next move for all atoms during MD simulations.

Given that the dynamics of the covalent bonds involving hydro-

gen atoms are not crucial in biological problems, they are usually

constrained using integration algorithms, such as SHAKE [60],

RATTLE [61], and LINCS [62]. Hence, a time-step value in the

range of 1.5–2 fs is possible and has been shown to be suitable for

MD simulations of many biological systems [46].

The main advantage of the MD approach is its ability to mimic

the experimental conditions in which a typical biological question

is addressed. For instance, experiments are carried out by control-

ling different factors, such as temperature, pressure, number of

atoms, ionic concentration, and the type of solvent used to solvate

the interacting molecules. All these factors can be readily adjusted

and controlled in MD simulations within the context of statistical

mechanics ensembles [63]. These ensembles include the micro-

canonical ensemble (constant total energy), canonical ensemble

(constant temperature), and isothermal-isobaric ensemble (con-

stant temperature and pressure). The microcanonical ensemble is

the most basic approach and involves a constant number of

particles (N), a constant volume (V), and constant energy (E).

However, because the condition of maintaining a constant total

energy is not realistic [64], the canonical ensemble (NVT) [65] and

isothermal-isobaric ensemble (NPT) [66] are commonly used. Sev-

eral thermostats and barostats, such as Langevin [67], Berendsen

[68], and Nose-Hoover [69,70], have been developed to fix the

temperature and pressure in MD simulations. In fact, the isother-

mal-isobaric (NPT) ensemble is the most widely used ensemble in

MD simulations, because it reflects the actual experimental con-

ditions. There are several classical MD programs, including but not

limited to, AMBER (www.ambermd.org), CHARMM (www.

charmm.org), NAMD (www.ks.uiuc.edu/Research/namd/), GRO-

MACS (www.gromacs.org), Desmond (www.deshawresearch.

com), and Hyperchem (www.hyper.com). Some important quan-

tities that are frequently used when analysing MD trajectories are

provided in Box 1.

MD simulations and protein flexibility
The dynamic nature of proteins is a well-established phenomenon

[71]. Proteins are flexible biological molecules that can adopt

multiple conformational states in solution [18]. Few of these
254 www.drugdiscoverytoday.com
conformations are able to bind efficiently to the ligands and/or

other systems in the environment. For example, certain config-

urations of proteins can adapt an open state that keeps the

channels accessible for water molecules and ligands to bind/un-

bind freely [72,73]. By contrast, in some other conformations of

the same proteins, the highly malleable loops can block the

channel partially or completely, thereby restricting ligand access.

In addition, binding of the ligand can also lead to conformational

changes in proteins, from local reorganisation of side chains to

hinge dynamics of domains [40–42]. As a result, proteins often

shift between different conformational states separated by low-

and high-energy barriers in the free-energy landscapes during

chemical reactions. Histone deacetylase 8 (HDAC8) is one of the

best examples of dynamic mobility in proteins. These unusual

http://www.ambermd.org/
http://www.charmm.org/
http://www.charmm.org/
http://www.ks.uiuc.edu/Research/namd/
http://www.gromacs.org/
http://www.deshawresearch.com/
http://www.deshawresearch.com/
http://www.hyper.com/
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dynamics of HDAC8 have been captured by at least 21 different

experimentally determined structures [Protein Data Bank (PDB)

IDs: 1T64, 1T67, 1T69, 1VKG, 2W22, 2V5W, 2V5X, 3EW8, 3EWF,

3EZF, 3EZT, 3F06, 3F07, 3F0R, 3SFF, 3SFH, 3MZ3, 3MZ4, 3MZ6,

3MZ7, and 3RQD] [46,71,74]. By comparison of all the reported

experimental structures, it was found that an 11 Å-deep active-site

pocket of the enzyme changes between a broadly open conforma-

tion to a partially open state and a fully closed structure [71,74].

Some experimental structures of HDAC8 also display an extra

pocket that lies parallel to the main pocket (Fig. 3). All these

structures are proposed to exist in equilibrium and are involved

in ligand binding/unbinding, product release, or water transfers

[46,71]. Furthermore, some proteins could have additional drug-

gable binding sites, which are cryptic in nature and have the

potency to modulate the functionalities of the concerned recep-

tors allosterically. Such cryptic or allosteric binding sites are usu-

ally not easily detectable in the ligand-free structures, as in TEM1

b-lactamase [75] and p38 MAP kinase [76] for instance, and require

significant conformational changes in the receptors to become

visible. Hence, these sites are usually not detectable from a single

representative structure and require large conformational sam-

pling to reveal them. A well-known success story of MD in such

applications is with regards to the discovery of a novel-ligand
FIGURE 3

Different X-ray crystal structures of histone deacetylase 8 (HDAC 8) showing the diffe

also shown as a ribbon structure.
binding trench in the HIV-integrase enzyme. In 2004, Schames

et al. [77] performed MD simulations of the HIV-integrase enzyme

along with the docked ligand and discovered a novel ligand-

binding region, the trench. The existence of this cryptic site was

later also confirmed by X-crystallography. Subsequently, scientists

from Merck along with their collaborators performed intense

experimental research [78] on this novel binding site, which

eventually led to the development of novel anti-HIV inhibitors,

such as raltegravir [19].

Therefore, it is logical to use an ensemble of protein conforma-

tions in SBDD instead of a single representation. Nevertheless,

because of high costs and technical complexities, experimentally

determined structures for different conformations are only avail-

able for few proteins. As discussed in earlier sections, MD simula-

tions are now being used to collect ensembles of protein structures

for SBDD to close this gap. Under this MD scheme, the target

structure (obtained from PDB or computational modelling) is

initially subjected to large-scale MD simulations followed by root

mean squared deviation (RMSD) conformational clustering to

accumulate all possible conformations of a typical protein struc-

ture. Subsequently, statistical analysis methods, such as principal

component analysis (PCA), are then used to transform the original

space of correlated variables into a reduced set of independent
Drug Discovery Today 

rent conformations of the binding-site pockets. An overlap of the structures is
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variables comprising the most vital dynamics of the system [40–

42,79]. This results in an ensemble of protein structures that can

be used in docking-based virtual screening. This MD scheme to

account for receptor flexibility is popularly known as the ‘relaxed

complex scheme’ (RCS) [42]. RCS has been successfully used in

several studies [40–43], for instance, to conduct an ensemble-

based virtual screening against the MDM2 protein [41], a main

regulator for p53. Over 50-ns MD simulations of the structure of

MDM2 were performed using the AMBER99SB force field and

NAMD program and 28 distinct conformations of MDM2 were

sampled for further virtual screening of several ligand databases

[41]. The 28 structures included 22 structures that comprised

�75% of the apo trajectory, five structures representing �80% of

the bound trajectory, and a single MDM2 conformation from the

MDM2-p53 crystal structure [41]. The study revealed that MDM2

is a highly flexible protein that adopts distinct conformational

changes [41], which were effectively captured using MD simula-

tions, as shown in Fig. 4a. In another study, Bowman et al. [80]
(a)

(b)

FIGURE 4

Ensembles of structures sampled from long molecular dynamics (MD) trajectories. 

trajectory (a) and 45 structures of the hERG ion channel captured from a 500 ns-lon
chain dynamics (c). In (a), the structures of holo-, and apo-trajectories of MDM2 p

indicate the flexibility of the relevant segments in the dominant conformations. T

conformations in the clusters are provided in colours ranging from red to blue.

Reproduced, with permission, from [41] (a) and [204] (b,c).

256 www.drugdiscoverytoday.com
performed MD simulations of the p53-MDM2 complex and gen-

erated multiple structures of the system, so as to account for

protein flexibility in their subsequent docking-based virtual

screening. This led to the discovery of five small-molecule inhi-

bitors of the human MDM2–p53 interaction, with one com-

pound exhibiting a Ki of 110 � 30 nM [80]. These small

molecules have scaffolds that distinct from nutlin, a known

inhibitor of the MDM2–p53 interaction [80]. Thus, by incorpo-

rating the RSC approach, it is possible to discover novel thera-

peutically attractive small molecules. In another study, a MD-

based RSC approach was used to develop a computational atom-

istic model of a human ether-á-go-go-related (hERG) ion channel

[40]. Conformational sampling of the MD trajectory of hERG

resulted in 45 different clusters that made a comprehensive

description of backbone (Fig. 4b) and side-chain dynamics

(Fig. 4c) of the inner cavity of the ion channel [40]. This model

serves as a powerful tool to predict hERG blocking and can be

useful in developing safer and more efficient drugs [40].
(c)

Drug Discovery Today 

Twenty-eight structures of the MDM2 protein sampled from a 50 ns-long MD

g MD simulation showing the flexibilities of the backbone region (b) and side-
rotein are shown in green and blue, respectively. In (b) and (c), the colours

he representative conformation of the target is shown in red and the other
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In combination with other computational approaches, MD

simulations can help in characterising protein–protein interac-

tions. These types of interactions have important roles in several

biological processes, including signal transduction, cell metabo-

lism, and/or transport. Understanding these interactions can ac-

cess a new era of drug discovery, expanding the target space for

new and more effective drugs [81]. Although the protein–protein

interfaces are generally large, only selected subsets of residues are

responsible for the strong binding at these sites. Such residues,

along with the surrounding domains, are known as ‘hotspots’.

Protein–protein interactions are also known to have transient

binding pockets that are not captured in experimentally deter-

mined structures. MD simulation has become routine in

approaches for identifying these hotspots and predicting binding

sites for their regulation. For instance, MD simulations have

provided a detailed understanding of the dimer interface in the

HIV 1 protease enzyme, which is characterised by solvent accessi-

ble surface areas and interdimeric hydrogen bonds [82]. In a recent

study [83], MD simulations were used to model and characterise

the human programmed death-1 (PD-1) bound to its two human

ligands, PDL-1 and PDL-2. Table 1 lists some of the studies that

have used MD simulations for various applications (such as ac-

counting protein flexibility and dynamics, postdocking structural

refinements, and free energy of binding calculations) on different

target enzymes (or proteins) over the past 5 years.

MD simulations and postdocking structural
refinements
Although docking can predict the optimal placement of a ligand

within the active site of a receptor, not all of the key interactions

between the ligand and receptor are usually depicted accurately.
TABLE 1

Examples of recent studies that used MD simulations for various ap
structure refinement, and binding free energy calculations

Protein flexibility and conformational analysis Structure and post-d

Enzyme/target protein Refs Enzyme/target prote

Nucleoprotein of Influenza A virus [171] CASP8 and 9 targets 

AcrB transporter [173] CASP10 targets 

M3 muscarinic acetylcholine receptor 3 [175] CASP11 targets 

Isomerase [176] CASP8 and 9 targets 

GPCR [178] M3 muscarinic acetylc

MDM2-p53 [41,80] MurD Ligase 

a-Spectrin SH3 protein [181] NS5A 

Nalp domain [183] Acetylcholinesterase 

hERG [40] Galectin 8C domain 

Melanocortin 4 receptor [188] Multiple targets 

Histone deacetylases [46,73,191] b-Lactamase 

Glycoprotein [194] Neurotoxin serotype A

Lysozyme [196] Phosphorylase kinase 

Mad2 [199] Tubulin 

MurD ligase [167] Monoamine oxidase B

Giardia duodenalis 14-3-3 [202] Aldolase reductase 
Hence, it is generally recommended to perform MD simulations

on the complexes obtained from docking because this can help in

optimising their interactions. For instance, in a previous study

[84], molecular docking predicted that sulfonamide derivatives

bind effectively into the active site of aldose reductase, which was

contrary to the lower activity found for these compounds in

experiments. In silico refinements of these structures using MD

revealed that a water molecule from the exterior migrated to the

binding site and interrupted the key interactions between sulpho-

namide ligands and the receptor. This was identified to be a reason

for the reduced activity of the tested compounds in experiments

[84]. In another study, MD simulations were used to discern the

different docked complexes of propidium and human acetylcho-

linesterase based on their stability [85]. The most stable structures

identified with the help of MD simulations were in excellent

correlation with the binding modes proposed by experiments

[85]. Similarly, a combination of ensemble-based molecular dock-

ing and MD refinements of postdocking complexes helped reveal

for the first time a unique symmetrical binding mode of daclatasvir

(a drug in Phase 3 clinical trials) with the hepatitis C virus (HCV)

NS5A protein and for different HCV genotypes [43] (Fig. 5).

MD has made significant contributions to the understanding

the structure properties of G-protein-coupled receptors (GPCRs).

For instance, a previous study used postdocking MD simulations to

reveal significant dynamic changes in the human CC chemokine

receptor 3 (CCR3) and the human muscarinic acetylcholine re-

ceptor 3 (hM3R) that influence their ligand-binding modes [24]. In

particular, MD simulations found a strong H-bond between the

docked ligand and N508 residue of hM3R that is key to holding the

complex. This was again confirmed by performing MD simulations

of N508A mutant hM3R and the ligand complex, in which the
plications, such as accounting protein flexibility, postdocking

ocking refinement Binding free energy calculations

in Refs Enzyme/target protein Refs

[172] Cytidine deaminase [103]

[174] hERG [40,104]

[174] Mur ligase [86,168]

[177] Enoyl-ACP reductase [107]

holine receptor 3 [24] HIV protease [109]

[170] Multiple targets [110,179,180]

[43] NS5B [182]

[184] Cytochrome P450 [185]

[186] MDM2-p53 [187]

[189] NS2B/NS3 Dengue virus [190]

[192] HIV-1 RT RNase [193]

 [195] ERCC1-XPF [114]

[197] STAT3 and STAT5 [198]

[200] Phosphorylase kinase [201]

 [87] Human biliverdin-IXa reductase [88]

[89] AF9 protein [203]
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FIGURE 5

Binding mode of daclatasvir with the NS5A protein [43]. The bound drug is shown as a green-coloured stick representation and the protein residues are displayed
as white sticks (a). The binding sites within the NS5A receptor are also provided as a surface representation (b).
Reprinted, with permission, from [205].
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ligand was found to be pushed to the exit [24]. In another study by

Perdih et al. [86], the authors used molecular docking and MD

simulations, along with a range of experiments, to identify furan-

based benzene mono- and dicarboxylic acid derivatives as poten-

tial inhibitors of all four bacterial Mur ligases. The authors initially

performed in vitro testing of seven furan-based benzene-1,3-dicar-

boxylate derivatives, based on their previous studies, and found
258 www.drugdiscoverytoday.com
out that one of the compounds was able to inhibit all Mur ligases in

the micromolar range [86]. Subsequently, this compound was

docked into the active site of the MurD enzyme and two different

ligand-binding modes were identified. Subsequently, the authors

performed �20 ns-long MD simulations and interaction energy

calculations to further refine the postdocking complex and also

identify the best binding mode of the ligand. Finally, based on the
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results obtained, four novel furan-based benzene-monocarboxylic

acids were discovered to inhibit multiple Mur ligases in the low

micromolar range [86]. Moreover, one of the newly discovery

compounds also exhibited promising antibacterial activity against

Staphylococcus aureus [86].

Previous studies [87–89] have also shown that integrating an

induced-fit docking (IFD) method along with MD and/or QM/MM

simulations can be useful for the efficient description of induced

molecular flexibilities within the protein–ligand complexes and

also for accurate binding-mode analysis of ligands. For example, in

a recent study, Distinto et al. [87] used IFD and MD simulations to

unravel the putative binding modes and activities of 1-aryliden-2-

[4-(4-chlorophenyl)thiazol-2-yl]hydrazines against the mono-

amine oxidase B (MAO-B) enzyme, an attractive target for treating

neurodegenerative diseases. By structural alignment of several X-

ray structures of MAO-B co-crystallised with different inhibitors, it

was understood that the enzyme adopted induced-fit changes with

respect to the bound ligands. Hence, the authors initially per-

formed IFD using the Schrodinger drug discovery suite, during

which the side chains near the inhibitor were kept flexible. The

results from the IFD explained how ligand binding tended to

induce structural changed in the protein. However, many of the

compounds showing two binding modes were ranked high in IFD.

To determine the best binding mode of the inhibitors, the authors

performed 3–5 ns-long MD simulations for both the binding

modes of two of the top-ranking compounds from IFD. The MD

results followed by the free energy calculations highlighted the

significance of the fluorine atom interacting with water near the

cofactor and the influence of the steric bulkiness of substituents in

the arylidene moiety. The authors proposed that the pharmaco-

phore features of these experimentally synthesised compounds,

developed using combined IFD, MD and free energy calculations,

should be useful for achieving novel high-affinity MAO-B inhibi-

tors for the treatment of neurodegenerative disorders [87].

In another study, Fu et al. [88] combined IFD with classical MD

simulations, free energy of binding calculations, and QM/MM

calculations to study substrate binding to human biliverdin-IXa

reductase (hBVR-A) of biliverdin-IXa and four analogues. hBVR-A

is a key enzyme regulating a range of cellular processes and is

involved in the conversion of biliverdin-IXa to bilirubin-IXa. In

this work [88], the authors initially used the structure of the hBVR-

A/NADPH/substrate I complex for the docking of analogues into

the binding pocket using the IFD procedure implemented in the

Schrodinger program. During the IFD, a tyrosine residue in the

active site was treated with flexibility. Subsequently, the best-

ranking ternary complex structures from IFD were subjected to

classical MD simulations [88]. Multiple snapshots obtained from

the MD simulations were used for performing free energy of

binding calculations. The predicted free energies of binding for

five analogues agreed well with the experimental binding affinities

and also helped to identify the best binding pose for the complexes

[88]. Finally, the authors investigated the catalytic mechanisms of

the ternary complex structure (in this study) by calculating the

reaction energy profiles using advanced QM/MM calculations.

These advanced calculations were useful to understand the reac-

tion mechanisms of the system studied, which in the long term,

should assist in the design of potent hBVR-A inhibitors [88].

Thus, MD serves as an important tool for not only refining the
postdocking complexes, but also revealing more appropriate bind-

ing modes of the ligands within the receptor structures.

MD simulations and predicting the free energy of
binding
Molecular recognition is critical in several biochemical and bio-

logical processes [90]. Many biological processes are initiated by

specific binding between two interacting entities in the cell.

Although docking combined with MD simulations can provide

a clear image of the shape complementarity between these entities

at their binding interface, whether these interactions are signifi-

cant or realistic requires an additional and essential piece of

information, namely the free energy of binding, which is the

driving force toward forming this complex. Calculation of the

binding free energy [DGbind; i.e., the free energy difference between

the ligand-bound state (complex) and the corresponding unbound

states of proteins and ligands) is used to quantify the affinity of a

ligand to its target. Assessing the DGbind of a series of ligands against

a particular target can discern those ligands with higher binding

affinities with the target. Thus, the DGbind calculations are impor-

tant in drug design, and normally follow the docking-based virtual

screening processes. Several computational methods, from com-

putationally rigorous thermodynamics pathways approaches to

less complex end-point methods, have been developed for DGbind

calculations. The former methods include thermodynamic inte-

gration (TI) and free energy perturbation (FEP) methods, whereas

liner interaction energy (LIE), MM-generalised Born surface area

(MM-GBSA), and MM-Poisson–Boltzmann surface area (MM-PBSA)

are end-point methods. Each of these methods has its own

strengths and limitations, and their computational requirements

and speed are inversely correlated with their accuracy.

TI and FEP methods are thermodynamic pathways approaches

that are commonly used for the calculation of relative binding free

energies [91,92]. These methods are mainly based on the applica-

tion of thermodynamic cycles and, thus, require the transforma-

tion of the system from the initial state to the final state through

alchemical changes of the system energy function [91]. These

methods involve the change of a ligand A into ligand B in two

states, such as a solvent-only unbound state (of the ligands) and a

bound state (i.e., ligand–protein complexes). This provides free

energy changes for the unbound states (DGunbound) and bound

states (DGbound) of the ligands [91]. It is also possible to mutate

ligand A to ‘nothing’, which in principle can provide absolute free

energies of binding. Understandably, these methods (TI and FEP)

demand multiple MD simulations and rigorous sampling of li-

gand, protein, and solvent degrees of freedom. As a result, the

thermodynamic pathways methods are in general able to provide

accurate estimates of the free energy of binding at a cost of high

computational time [93,94]. For instance, the TI method coupled

with MD simulations has been used to identify potential huper-

zine derivatives with higher binding affinity towards acetylcholi-

nesterases [95]. Similarly, the FEP approach has also shown to

predict more accurate binding free energies for several inhibitor–

enzyme complexes [93,96]. However, estimating the DGbind values

using these methods requires large numbers of conformational

samples, which in turn inflates the computational costs heavily

[93,94]. Given the need for enormous computational resources,

these methods have mostly been applied to only small sets of
www.drugdiscoverytoday.com 259
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ligand–protein complexes. Nevertheless, with increasing super-

computing capabilities and more improved methods, TI and

FEP are gradually being included in the SBDD pipeline, especially

in guiding lead optimisation [92,97–100]. For instance, a recent

study [100] by a large team of authors, from Schrödinger, Nimbus,

Columbia, Yale, and UC-Irvine, showed that FEP calculations are

able to make highly accurate affinity predictions across a range of

ligands and targets. This work included diverse sets of targets, such

as BACE, CDK2, JNK1, MCL1, p38, PTP1b, Tyk2, and thrombin.

The estimated binding free energies reported in this study were in

good agreement with the experiments. Indeed, most of the values

were within 1 kcal mol�1, with only nine out of 199 ligands

studied deviated from their experimental values by over 2 kcal -

mol–1 [100].

Less rigorous alternatives to thermodynamic pathways are the

end-point approaches, which include methods such as LIE, MM-

PBSA, and MM-GBSA. Unlike thermodynamic pathways

approaches, these end-point methods sample only structures in-

volved at either ends of the reaction pathways; that is, the free

receptors (proteins) and ligands and the final ligand–protein com-

plexes. The DGbind in this approach can be written as Eqn 3:

DGbind ¼ Gcomplex�ðGprotein þ GligandÞ (3)

The LIE method, developed by Aqvist et al. [101], considers the

process of a ligand (L) binding to a protein as a partition problem,

in which the free ligand (F) from the bulk solvent medium is

transferred to a solvated protein environment (P). Therefore, two

independent MD simulations, one for the complex and the other

for solvated ligand, needs to be performed to calculate DGbind using

the LIE method. Nonetheless, the reliance of the LIE on the end-

points of binding makes it an attractive (and affordable) approach

for lead optimisation in drug discovery. Several studies have used

the LIE method for the computational analyses of inhibitors

against a variety of targets. This includes benzamide-based throm-

bin inhibitors [102], inhibitors of Mycobacterium tuberculosis H37Rv

cytidine deaminase [103], sertindole analogues to block the hERG

potassium channel [104], and allophenylnorstatine molecules to

inhibit Plm4 enzyme, a target for Plasmodium malariae [105], for

instance. The LIE method has been shown to predict binding free

energies with a root mean square error (RMSE) <1 kcal mol�1

compared with the experimental values [106]. As indicated above,

the thermodynamic pathways methods are also able to make

predictions with a similar, if not better, accuracy range for differ-

ent targets.

MM-GBSA and MM-PBSA are two other well-established end-

point methods that are most popular in SBDD. The two methods

use an implicit solvent model to account for the solvent molecules

and use dielectric continuum models to obtain the electrostatic

components for the solvation energy. The MM-PB(GB)SA DGbind

can be estimated using Eqn 4:

DGbind ¼ DEMM þ DGSolv�TDS (4)

Here, DEMM refers to the molecular mechanical energy and it is

the sum of all energies from the bonded and nonbonded interac-

tions. The solvation energy, DGsolv, is the sum of the polar and

nonpolar contributions of solvation. The polar solvation terms

(DGPB/GB) are estimated using a generalised-Born model or a Pois-

son–Boltzmann solver. The nonpolar contributions are computed
260 www.drugdiscoverytoday.com
based on the size of the solvent-accessible surface area (DGSASA) in

the ligand and protein. The final component of the DGbind equa-

tion (Eqn 4) is TDS, which corresponds to the conformational

entropy changes in the reaction product (i.e., protein–ligand

complex) upon ligand binding.

The inclusion of conformational entropy (TDS) in the

MMPB(GB)SA calculations to obtain absolute DGbind remains chal-

lenging. The accurate calculation of (TDS) is computationally

expensive and, in many cases, its inclusion does not guarantee

better accuracies in the final energies [46,107,108]. Rather, previ-

ous studies have shown that accounting for conformational en-

tropy obtained from insufficient MD sampling has adversely

affected the calculations [107,109]. For instance, Su et al. [107]

showed that the accuracies of their MM-PBSA and MM-GBSA

calculations for 16 known benimidazole inhibitors against Franci-

sella tularensis enoyl-ACP reductase were significantly affected

because of using different number of frames for their enthalpy

and entropy calculations. The authors sampled 2400 frames from

the MD trajectory used for their enthalpy calculations; however,

because of limited computational resources, they only used 48

frames (evenly selected from the trajectory) for the entropy calcu-

lations. Therefore, it is important to have large numbers of MD

snapshots to derive a reliable estimate of absolute DGbind, which

can significantly increase the computational costs. As a result,

many studies tend to neglect TDS and use the ‘relative’ DGbind

instead. Relative DGbind energies can be predicted with a reasonable

accuracy, and are generally sufficient to rank a group of com-

pounds against the same target in SBDD [110].

Two strategies are commonly used in MM-GBSA and MM-PBSA

calculations: (i) the three-trajectory scheme; and (ii) the single

trajectory scheme [20,46,107,111]. In the former, three different

MD trajectories that pertain to the ‘apo’ protein, free ligand, and

the ligand–protein complex (i.e., the end-point structures) are

sampled for snapshots. In principle, this three-trajectory scheme

provides more accurate results than the single-trajectory ap-

proach; however, it has high computational costs [110,111]. By

contrast, the single trajectory scheme requires only a single MD

simulation for the ligand–protein complex, which significantly

reduces the required computational time [20,110–112]. Apart from

the choice of strategy, there are several factors that can affect

MMPB(GB)SA calculations, which includes length of simulations,

choice of the force field, solute dielectric constants, solvent model,

and the net charge of the systems. For instance, it has been argued

that using multiple short and independent MD simulations, in-

stead of one long MD trajectory, can provide better DGbind predic-

tions [107,108,111,113].

There have been several studies that compared and tested the

efficiencies of MM-GBSA and MM-PBSA in predicting accurate

DGbind energies for different ligand–protein complexes. Their gen-

eral conclusion is that the accuracy of these methods tends to be

system dependent. For example, Hou et al. [110] found MM-GBSA

to predict accurate relative DGbind for 59 ligands against six differ-

ent protein targets when compared with MM-PBSA that outper-

formed the former in making the absolute DGbind predictions. The

MM-PBSA method has been extensively applied for a range of

studies, including screening and ranking of ligands against the

ERCC–XPA complex [41], understanding the binding mode of

daclatasvir onto the NS5A viral protein [43], and binding of
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human programmed death-1 of T cells with its ligands [83]. By

contrast, Oeheme et al. [109] concluded that MM-GBSA performed

better than MM-PBSA in computing DGbind of their ligand–HIV

protease systems. Thus, it is clear that neither of these two meth-

ods is universally superior and the choice of the method should be

made on a case-by-case basis. For example, Jordheim et al. [114]

combined MD simulations, virtual screening, and MM-PBSA-based

binding free energy calculations, along with different experimen-

tal techniques, to identify potential inhibitors of ERCC1-XPF

protein–protein interactions. The authors performed 20 indepen-

dent virtual screening runs against the 20 XPF structures present in

an NMR ensemble after their MD equilibration. Top hits from each

screening were extracted and then ranked based on their binding

free energies. From these results, 73 compounds were subjected to

a range of experiments, including cytotoxicity assays, steady-state

fluorescence and synchronous fluorescence experiments, and

immunocytochemistry. The hits were evaluated on A549 and

HCT116 cancer cells. Finally, one compound was found to exhibit

promising activity in all the experiments and was also able to

interact with the domain of XPF that is responsible for interacting

with ERCC1, thus disrupting the protein–protein interactions.

Thus, MD-based binding free energy calculations are helpful in

guiding the hit identification stage. However, one of the signifi-

cant drawbacks of both methods is their inability to make accurate

predictions for ligands with formal charges [109,111,115]. Hence,

it is important to improve the existing methods or develop new

methods that can account for charged ligands (including tauto-

mers), which form a significant area of drug research.

MD simulation and solvent dynamics analyses
Computational analyses of the structure and thermodynamic

properties of water have recently become a useful tool in SBDD

[116–119]. The properties of surface water molecules have been

proposed to have important roles in molecular recognition and

ligand–protein (and/or protein–protein) interactions in solution

[116,120]. Although small in size, water molecules are involved in

a range of interactions, including H-bonds and van der Waals

contacts [120]. As a result of such interactions, it is often difficult

to displace water molecules to facilitate the binding of a drug.

Therefore, the energy involved in relocating water molecules

between surface layer and bulk water upon binding of a macro-

molecule (protein for instance) with another macromolecule and/

or ligands can significantly impact the overall free energy of

binding [116–120]. Hence, the hydration patterns of a binding

pocket can offer important insights into the properties of the

pocket and also quantify the hydrophobic forces involved in

the binding of small-molecule drugs with proteins. There are

several in silico tools that can help in extensive molecular descrip-

tor analyses of solvation from the MD trajectories. These algo-

rithms include WaterMap (from Schrodinger) [121], WaterFLAP

(from Molecular Discovery) [122], SZMAP (from OpenEye) [123],

GIST (in Amber) [120,124], WatMD (in-house tool of Novartis)

[116,125], SPAM (from GlaxoSmithKline) [126], STOW [127], and

WatClust [127]. Some of these methods, WaterMap [121], STOW

[127] and WatClust for instance, are based on inhomogeneous

fluid solvation theory (IST), where enthalpy is accounted directly

from nonbonded interactions and entropy is calculated from a

local expansion in terms of correlation functions [121].
For instance, the WaterMap program [121] initially clusters the

water molecules (in the MD trajectory) based on their spatial

distribution, such that they form individual hydration sites. Sub-

sequently, the hydration sites are analysed using IST to determine

the enthalpy and entropy properties of water molecules within

each site. This method has been successfully used to gain insights

into binding sites for various systems, including peptides binding

to PDZ domains [128], the FKBP12 protein [129], protease and

kinase binding affinity [130,131], and the A2A GPCR [132]. For

example, Beuming et al. [129] used the WaterMap tool to analyse

the hydration sites for a panel of 27 different protein targets across

a range of families. Initially, the authors [129] performed �2 ns-

long MD simulations for each of the targets and the resultant

trajectories were subjected to analyses with the WaterMap pro-

gram. The results [129] revealed �31 500 hydration sites in the

targets, for which the authors calculated their thermodynamic

information (such as free energy, entropy, and enthalpy). The

authors further demonstrated that such thermodynamic proper-

ties of the hydration sites could be used to identify potential

binding sites and evaluate their druggability [129]. It was found

that clusters of high-energy solvation sites were mostly related

with binding sites. However, Ramsey et al. [120] noted that the IST-

based methods are limited to the analyses of high-occupancy

hydration sites and do not describe significantly the hydration

structures in low-density regions. As an alternative to these meth-

ods, the authors developed a tool named grid IST (or GIST) [120]

and added it to the CPPTRAJ toolset of AmberTools. GIST discre-

tises the integrals of IST onto a 3D grid, which fills the binding

pocket region, thus covering both high-density and low-density

regions [120]. As a result, unlike IST methods, GIST is able to offer a

smoothed map of water structure and the corresponding thermo-

dynamic information for the complete region of interest. For

instance, GIST analyses of the molecular host cucurbit[7]uril

revealed significant information about the hydration structure

and thermodynamic properties of this receptor [124]. The results

revealed a toroidal region of high-density hydration sites at the

centre of the nonpolar cavity of the host. The results [124] also

showed that this specific hydration site, despite having a high

density of water molecules, is energetically and entropically unfa-

vourable. The authors related this to the known ability of this

receptor to bind external molecules with unusually high affinities

[124]. Henceforth, a combination of MD simulations and explicit

analyses of solvent dynamics are helpful to advance knowledge of

the effects of water molecules in structural biology and drug design

[124].

Constant pH molecular dynamics
Ligand–protein complex formation not only leads to conforma-

tional changes in the structures of the proteins and/or ligands, but

can also impact the pKa values of their charged side chains. The

most common practice in molecular docking and standard molec-

ular dynamics is to assign fixed protonation states for the protein

residues, substrates, and ligands, based on prior chemical knowl-

edge. However, it is a known fact that the protonation states of a

typical ionisable group involve dynamic processes that can alter

the chemical environment during binding. Previous studies

[133,134] noted that the pKa values of titratable residues can

change as a result of several factors. This includes the solvation
www.drugdiscoverytoday.com 261



REVIEWS Drug Discovery Today �Volume 22, Number 2 � February 2017

R
eview

s
�F
O
U
N
D
A
T
IO
N

R
E
V
IE
W

of the group upon ligand binding, electrostatic interactions be-

tween the ligand and protein, and structural reorganisations with-

in ligand–protein complexes after binding. Thus, the protonation

states of ionisable amino acid residues and nonprotein molecules

(ligands and substrates) can be subjected to a change during the

course of MD simulations. By preserving the protonation states,

the MD simulations ignore any binding-induced pKa changes

within the systems. This missing information can limit our com-

plete understanding of the underlying biological processes.

Constant pH molecular dynamics (CpHMD) has been devel-

oped for the computational prediction of pKa values [135] for

ionisable residues in the biological systems under study. The early

CpHMD approach used GB solvent as the continuum aqueous

environment and Langevin dynamics for the propagation through

the nonsolvent (or solute) trajectories [136]. However, this ap-

proach has been found to be less accurate for many systems,

particularly when water molecules have an active role. Alternately,

Donnini et al. [137] developed a fully atomistic CpHMD method

with a l-dynamics approach, which can be carried out in explicit

solvents. This method allows for the dynamic change of proton-

ation states of titratable groups, thus being able to predict the

possible average protonation states at a given pH. This method

samples the relevant configurations of the end states of titration

groups by considering the protonated states as l = 0 and depro-

tonated states as l = 1 [137]. Given the importance of the proton-

ation states of titratable groups in SBDD, it is suggested that a

constant pH MD simulation be performed for the ligand–protein

complexes before any production MD simulations are initiated.

This way, the protonation states of the ionisable groups in the

system can be accurately described.

More recently, there have been significant developments in

improving the CpHMD [138–141]. For instance, attempts have

been made to improve CpHMD using the replica exchange con-

cept (vide supra). The basic idea is to perform simulations of

different replicas at different pH values. After a set number of

steps, the pHs are exchanged between the replicas so as to sample a

wider range of protonation states [139]. This approach has been

shown to greatly improve the convergence rate and accuracy of

CpHMD simulations [140].

Limitations of MD
Classical MD simulations remain a valuable tool in drug design.

They are helpful in understanding key molecular motions, ener-

getics, ligand–protein interactions, receptor flexibilities, and con-

formational changes in the molecular systems, which facilitate the

identification of potential candidates with higher affinities to

targets. However, it is also important to acknowledge that MD

also has some potential limitations and pitfalls, most particularly

those concerning time limitations, force-field issues, and quantum

effects [53,142].

Time limits and the sampling problem
Currently, typical MD simulations are carried out on systems

containing hundreds to millions of atoms, and for several nano-

seconds to microseconds. Although these are impressive develop-

ments in the field (of MD), it is possible that such time limits might

not be sufficient to relax the systems to study certain quantities.

For instance, several physical properties of biological systems, such
262 www.drugdiscoverytoday.com
as protein folding, ligand binding, and unbinding processes,

mostly occur on long timescales that are normally inaccessible

using classical mechanics MD simulations. Furthermore, it is

known that biological systems can get trapped in deep energy

wells of their potential energy surfaces [143], which can result in

sampling insufficient and/or nonrelevant conformations even

from long MD trajectories [144]. Improper preparation of the

initial structure or insufficient equilibration of the initial struc-

ture(s) can impact the quality of the MD results. Therefore, sam-

pling (or) equilibration of an ensemble of structures remains a key

issue in MD simulations. Such challenges can be tackled by using

alternative strategies. One of the solutions is to apply an enhanced

sampling MD approach [46,145], in which an additional bias, such

as an external force, is applied to the system to explore the

different potential energy surfaces. Although this strategy intro-

duces some artefacts from external bias, it is useful to allow large-

scale conformational changes in the systems within the affordable

computational cost. Several enhanced sampling approaches have

been developed, including metadynamics, replica exchange mo-

lecular dynamics (REMD), random acceleration molecular dynam-

ics (RAMD), steered molecular dynamics (SMD), and adaptive bias

force steering (ABFS). There are several reviews (e.g., [145–147])

discussing the applications of these methods in SBDD. Alterna-

tively, coarse-grained MD (CG-MD) [148], which reduces the

degrees of freedom in large systems by clustering groups of atoms

into CG beads, has been developed to deal with large dynamic

changes in more complex macromolecules.

Force field issues and quantum effects
The MM force field used in the simulation has vital roles in

defining the structural model of the studied system. Force fields

are usually developed by combining available experimental data

and the results from high-level ab initio calculations on small

models that form larger systems and, hence, they are fundamen-

tally approximations [53,142]. Furthermore, force fields are para-

meterised such that they include several atom types describing

varied situations of the same atoms (or functional groups). As a

result, the transferability of force fields is restricted. Thus, results of

MD simulations are reliable only as long as the potential energy

functions (or force fields) mimic the forces experienced by the

atoms in the real system under study [142].

Classical MD, because of its capabilities to handle large-size

systems using affordable computational resources, has gained

extraordinary popularity in SBDD. Classical approximations are

mostly well suited for nonreactive molecular interactions in bio-

logical systems [149,150]. However, they are not able to effectively

describe the chemical reactions occurring in biological systems.

For example, classical MD might not be able to offer a solution for

understanding the reaction mechanisms of drug/substrate–pro-

tein complexes, chemical processes of proton transfer within

active site, and binding/cleaving processes of certain covalently

bonded ligands. In such cases, the use of QM, which explicitly

models the electrons in the system, becomes essential at the

expense of computational time. To overcome this challenge,

reactive force fields have been developed recently that allow

chemical reactivity to be treated to some extent [53,149,150]. In

reactive force fields, the interatomic potential defines chemical

reactions by implementing a bond-order formulation. Within this
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scheme, the bond orders in the system are empirically calculated

using interatomic distances between atoms during MD simulation,

whereas the electronic interactions driving chemical bonding are

treated implicitly facilitating the modelling of changes in atom

connectivity [149,150]. Recent reviews (e.g., [149,150]) discuss

various applications and challenges of such reactive force fields.

Another important challenge faced by classical MD is account-

ing for electronic polarisation, a significant quantum effect [142].

Within the classical MD framework, each atom in the system is

assigned with a pre-set partial charge and is maintained through-

out the simulation. Nevertheless, this is not always true, because

the biomolecules are in general polarisable, which means that the

electron clouds encircling the atoms constantly shift in response

to their chemical environment. Thus, it would be effective if the

partial changes could be represented as a dynamic parameter,

which is not the case with most of the current classical force fields.

In response to the importance of this challenge, there have been

significant ongoing efforts to develop robust polarisable force fields

for MD simulations [151]. Some of the current-generation polari-

sable force fields include AMOEBA [152,153], CHARMM Drude, and

AMBER ff02 [151]. Indeed, polarisable force fields also have their

own challenges and should be used with caution. For example,

these polarisable force fields are in general slower than nonpolari-

sable force fields and, as a result, they are more vulnerable to

sampling issues. Therefore, polarisable force fields might not be

suitable systems where large conformational sampling has impor-

tant roles. Although having some weaknesses, current polarisable

force fields are promising. Given the importance of electrostatic

interactions in biological systems, and with more developmental

efforts underway, polarisable force fields will soon become an

inevitable choice for future classical MD simulations. There are

some recent articles that discuss the current status and future

directions for polarisable forces and MD simulations [151–153].

Advanced hybrid QM/MM MD
Although there have been significant efforts to fix the issues

(concerning chemical reactivity and electronic polarisation)
MM

QM

FIGURE 6

A quantum mechanics/molecular mechanics (QM/MM) model of human acetylcho

and-sticks; the remaining systems shown as surface representations and cartoons
within the classical MD framework, using QM MD, which explic-

itly models the electrons in the system, has been an alternative

practical strategy in biomolecular simulations and SBDD. QM-MD

generates dynamical trajectories by using the forces obtained from

the electronic structure calculations that are performed at every

time step of simulation. Therefore, it able to accurately describe

any reactions involving significant electronic effects, such as

electron correlation and electron polarisation effects [154,155].

Nevertheless, QM-MD simulations are computationally intensive,

which limits the practicality of applying this approach only to

smaller sized systems (�102 atoms) and for limited time scales

(�10�12 s) [156]. Hence, it was important to find a mid-point that

offers both ‘the chemical accuracy’ of QM-MD and ‘feasibility’ of

MM-MD. To address this problem, Warshel and Levitt [157] intro-

duced a state-of-the-art hybrid MD scheme popularly known as

QM/MM. In this approach, a chemically reactive region in the

ligand–protein complex (mostly binding site residues and bound

ligand) are treated with more accurate QM methods, and the rest of

the system is described using MM force fields (Fig. 6). To date,

several QM/MM implementations have been developed [158–160]

and applied in many studies that focussed on large drug–protein

and/or protein–protein systems. For example, in their recent

study, Chen et al. [161] used QM/MM MD and QM/MM GBSA

methods for studying the interactions of benzamide inhibitors

with trypsin. In this study, the authors treated the active site

residues of the receptor and the inhibitors with QM methods

(B3LYP/6-31G(d), PM3, PM6, and RM1) and the rest of the system

with the classical ff99SB force field and AMBER program. The

authors found that binding free energies calculated with the snap-

shots obtained from QM/MM MD trajectories displayed excellent

agreements with experimental values [161]. In another study

[162], QM/MM MD simulations revealed that the fourth ligand

coordinating with the active site zinc ion in the Acutolysin A

enzyme is a water molecule, rather than a hydroxide anion,

correcting a misconception from the low-resolution X-ray crystal

structure. It was also revealed by a study that the QM/MM

FEP approach outperformed the conventional FEP scheme in
Drug Discovery Today 

linesterase, where residues that can be treated under QM are shown as ball-

 can be treated with a MM force field.
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predicting accurate binding free energies for a set of fructose 1,6-

bisphosphatase inhibitors [93]. Cui and coworkers [163] showed

that a hybrid QM/MM-FEP approach could be used to predict

accurate pKa values of biological systems. Thus, QM/MM MD

simulations have the ability to offer accurate dynamic information

that is significant in understanding the structure–function rela-

tions of proteins and their interactions with different classes of

ligand, the key in drug discovery research.

Nevertheless, it is also important to acknowledge the fact that

QM/MM MD simulations also have some clear pitfalls. One of the

most important problems in QM/MM simulations is the treatment

of the interface region that connects the QM part with that for

MM, particularly if they are covalently bonded, as in the case of

ligand–protein systems. When a complete system is explicitly cut

into QM and MM parts, then it will leave the former region with

incomplete valences, which can lead to failed QM treatment [164].

The most common strategy to overcome this issue is to cap the

bordering QM residues, which undergo partition, with hydrogen

atoms. However, such hydrogen capping introduces atoms into

the QM region that differ from those that were originally present

in the real system, which can lead to artefacts [164]. Furthermore,

QM/MM MD simulations of large protein–ligand systems are still

computationally expensive. Hence, they can only be applied to

select systems in drug design, such as for those top-ranking hits

filtered from thorough virtual screening and classical MD simula-

tions, where follow-up details about key ligand–protein interac-

tions for pharmacophore modelling are computationally justified.

Perspectives on integrating the computational
approaches
The past decade has seen tremendous developments in the field of

molecular modelling and drug design methods. As discussed

above, several modelling and MD-based approaches are available

to help modern drug design and discovery efforts. Nevertheless,

how we integrate these methods, along with other in silico

approaches and experiments, is important for increasing our

chances of identifying more promising hits from the chemical

pool of compounds. Although there are no specific set of rules on

how these methods should be combined, extensive knowledge

and experience gained over years have provided some logical

strategy of implementing them. In Fig. 7, we present a more

simplified and practical workflow that assembles classical MD,

binding free energy calculations, and QM/MM methods at various

stages leading from hit identification to lead optimisation. For

instance, the need for classical MD simulations could first arise

upon having one (or) more initial 3D structures either from the

PDB or through molecular modelling methods. Given that most of

these methods are single snapshots of the target, long classical MD

simulations (usually a timescale of a few hundred nanoseconds)

are required so that large conformational changes in the target can

be captured during the simulation. At this stage, the user needs to

make several cautious choices, such as the software program, the

empirical force field and simulation parameters that are suitable to

perform stable MD simulations.

Following this stage, different clustering algorithms, such as

RMSD-based clustering or PCA analyses, can be performed to

sample the dominant conformations of the target from the

MD trajectory. The target conformations obtained from the MD
264 www.drugdiscoverytoday.com
simulations will serve the purpose of addressing the protein flexi-

bility concerns during the subsequent virtual screening proce-

dures. Indeed, there are some computational methods to

identify possible cryptic binding sites from these ensembles of

target structures and target them during screening. Following the

docking and scoring, MD simulations can again be performed on

the ligand–protein complexes to refine the complexes and calcu-

late their binding affinities. At this point, the user must make

several careful selections, including the length of MD simulations,

force field for simulation, and methods for binding-free estima-

tions. Usually, it is suggested that short MD trajectories (�1–2 ns

long) are collected for each ligand–target complexes and use them

for free energy of binding calculations. The end-point methods,

MM-PBSA or MM-GBSA, are mostly popular for these calculations,

although other methods, such as FEP, are gaining popularity in the

field. Once the high-ranking compounds are identified, they can

be experimentally tested using different kinds of assay. Currently,

it is hoped that a 5–10% of hit rate (during experimental testing)

can be achieved by incorporating rigorous computational model-

ling and prescreening protocols, although this might not be the

case always.

Regardless of whether the results from the experiments are

positive or negative, they can be back-fed to the computational

protocol to improve it for subsequent phases of screening. For

example, if the results are negative (meaning no significant hits

were identified), then (i) the lengths of initial MD simulations can

be increased to enlarge the sample size for target conformations;

(ii) the chemical search space can be increased by expanding the

numbers of compounds in the libraries; (iii) the parameters in the

docking protocols can be refined; (iv) the length of MD simula-

tions for binding free energy calculations can be increased; and (v)

change the method used for free energy estimations. In the event

of obtaining good hits from the experiments, then the user might

wish to perform extended MD simulations (now for hundreds of

ns) to understand the key dynamic interactions between the hits

and the targets. Binding free energy methods (or) other enhanced

sampling MD methods can also be applied at this stage to gain in-

depth knowledge about binding mode(s) of the hits. Based on this

information, an effective pharmacophore model or quantitative

structure–activity relation (QSAR) model (and/or experimental

SAR) can be developed and implemented in subsequent screening

protocols. When one or more promising hits, those showing

attractive inhibition potentials, promising immunological activity

and also nontoxic profiles, are identified, then complexes of such

hits can be taken forward for more advanced and computationally

expensive QM/MM simulations. At this stage, the user must be

cautious in defining the QM and MM segments in the system and

also choose a cost-effective (but also accurate) QM model and a

suitable MM force field for treating classical segment. The choice of

software program is also a key, because using the one that scales

well could be helpful to run the QM/MM simulations for large

timescales. Such rigorous hybrid simulations can offer extraordi-

nary insights into the reaction mechanisms involved between the

selected hit(s) and the target(s). Understanding the reaction mech-

anisms can be useful towards achieving a better lead compound(s).

Those leads showing promising in vitro and in vivo activities can be

taken to further lead optimisation and lengthy and expensive

clinical trial stages. Indeed, off-target interactions of drug are
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2.

3.

4.

5.

6.

7.

8.

Prepared initial structure from PDB or molecular modelling approach(es)

Molecular docking-based virtual screening of compound libraries.

MD simulation and binding-free energy calculations.

MD simulation of target complexes with promising hits identified from experimental assays.

Employ sophisticated binding free energy methods to identify the best binding mode of the hit(s).

Advanced QM/MM MD simulations to gain deeper insights into the reaction mechanisms involved between the selected hit(s) and the target.

Pharmacophore modelling, QSAR and experimental SAR Experimental testing and hit identification

Lead optimisation and clinical trials

Clustering and selection of dominant conformations to account protein flexibility and preparation of ensemble of target strucutes.

MD simulation to gain insights into the target structure and to identify possible druggable pocket(s)

• If the experimental structures of one or more conformations of the target is available in the PDB
• If not, make a careful choice of modelling approaches and software program(s) to model the 3D structure of the target.
  It is important to have a fairly good quality template structures for performing homology-based modelling of the target.

• Has the ligand-binding site been identified and characterised sufficiently?
• Make a careful choice of software program, type of scoring function, size of docking grid box, and the numbers of resultant poses of ligand–target complexes to be
  produced after screening.

• Make a careful choice of software program, force-field parameters, length of MD simulations and the binding-free energy method.

• Make a careful choice of software program, force-field parameters and length(s) of MD simulations to refine the postdocking complexes and also to capture
  significant dynamic interactions between the target and the bound ligand.

• Choose a suitable (and affordable) binding free energy method.
• Can the predicted binding mode(s) of the ligand be related to the range of activity seen in experiments?

• Choose the best ligand–target complexes before initiating expensive QM/MM MD simulations.
• Choose the segments of the protein-ligand complexes to be treated using high-level QM methods.
• Choice of QM/MM protocol and the software program and the lengths of the MD Simulations.

• Make a careful choice of software program, force-field, parameters (such as cell dimension and temperature) and water model.
• Verify if the system has been well-equilibrated before initiating production simulations
• Verify if the production simulation has been run sufficiently long so as to sample various conformations of the target and capture significant dynamics related to
  ligand-binding effects.

• Which clustering algorithm need to be used?
• Has the MD trajectory sampled various dominant conformations, which are required to account protein flexibility during further drug design efforts?

Drug Discovery Today 

FIGURE 7

A simplified and practical workflow for molecular modelling and drug design. This workflow lists a sequence of steps that provides an overview of how molecular

dynamics (MD) approaches can be stacked along with other modelling and experimental procedures during drug design and discovery efforts. In addition, several

key decisions that need to be taken during each of the modelling and MD stages are listed. This workflow does not underestimate the role of experiments in drug
discovery; rather it highlights the roles of computational approaches, given that an in-depth discussion of the experimental techniques is not within the scope of

present review.

R
ev
ie
w
s
�
F
O
U
N
D
A
T
IO
N

R
E
V
IE
W

yet another important challenge facing the community; and

computational methods are also helpful to address this challenge,

although this is not discussed here.

The potentials of combining all the computational methods

discussed in this review can be best demonstrated, for instance,

by a series of studies [86,165–169] carried out on a bacterial enzyme,

namely bacterial MurD ligase. A team of scientists from the Na-

tional Institute of Chemistry, Slovenia, along with their collabora-

tors, carried out several studies on this enzyme, including studying

the domain flexibility using MD simulations followed by drug

design efforts [165–167], postdocking refinements of the complexes

using MD approaches [167,170], understanding the reaction mech-

anism(s) of the identified hit–enzyme complexes using QM/MM

methods [169], and free energy calculations to understand the

binding of inhibitors to the MurD ligase and further drive the

design processes [86,168]. In one of the preliminary studies

[165], the authors performed extensive targeted MD (TMD) simula-

tions to gain some insights into the substrate-binding process and
also the structural changes in the enzyme during the transition(s)

between the experimentally determined closed and open states

[165]. In another study [166], the authors used this information to

perform off-path simulation to obtain a relative energy comparison

pathway of the two TMD-generated closing pathways. This study

also discerned the pathway that had high-energy demands when

performing the biochemical processes [166]. The authors claimed

that the results from their studies agreed well with experimental

findings [166]. Subsequently, the authors selected three MurD

ligase conformations from their MD simulations and used them

for a two-stage docking-based virtual screening study [167]. The

screening identified a panel of promising hits, out of which one (an

aminothiazole class inhibitor) was confirmed experimentally to act

against dual targets, MurD and MurC. The authors redocked this

inhibitor against all the target structures and performed extended

classical MD simulations to gain atomistic insights into the ligand–

target interactions [167]. The authors also identified another in-

hibitor class of benzene-1,3-dicarboxylic acid 2,5-dimethylpyrrole
www.drugdiscoverytoday.com 265
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derivatives that showed dual MurD/MurE inhibition properties

[170]. In the follow-up study, the authors performed extended

MD simulations of this inhibitor–MurD complex to explore their

geometrical behaviours. Later, they also performed binding free

energy calculations using a linear interaction energy (LIE) method

that described the energetic behaviour and binding affinity of the

compound [170]. Using the information gathered from these stud-

ies, the authors again developed new pharmacophore models and

performed a new phase of virtual screening to discover a novel set of

compounds that showed promising effects in the experiments

[170]. A similar combination of MD and LIE-based binding free

energy calculations were also carried out for Furan-based benzene

mono- and dicarboxylic acid derivatives against the bacterial Mur

ligases [86]. In their ongoing computational and experimental

efforts to design drugs for Mur ligases, the authors also performed

advanced QM/MM simulations [169], using a B3LYP level of QM

theory and CHARMM MM force fields, of the experimental struc-

ture of MurD in the PDB (code: 2UAG). This QM/MM study [169]

was useful to understand the intermediate tetrahedral formation in

the enzyme complex, which was not previously known [169].

Hence, the set of studies by these authors demonstrates how a

series of computational studies (along with experiments) can be set

up to advance our knowledge about the structural properties of a

specific target and make progress towards achieving the goal(s) of

drug discovery.

Concluding remarks
It has been 38 years since the first MD simulations of bovine

pancreatic trypsin inhibitor were carried out for 9.2 ps. Since then,
266 www.drugdiscoverytoday.com
there has been tremendous growth in supercomputing power and

significant developments in the accuracy and efficiency of MD-

based computational methods. In addition, MD is now well estab-

lished as an important contributor to drug design and develop-

ment. With current capacities, MD simulations can be used for

larger biological systems and for microsecond timescales. Such

longer classical MD simulations help in effective treatments of the

induced-fit effects of the drug binding onto receptors, and can be

used to realise optimal drug–receptor binding modes and collect

larger conformational samples of the complexes that allow more

accurate binding free energy estimations. Alternate versions of

classical MD methods, such as CpHMD and enhanced sampling

MD approaches, allow chemical changes and other intricate bio-

logical events to be traced, which normally occur within ligand–

protein complexes but are not observed within the practical limits

of classical MD simulations. By contrast, advanced hybrid QM/

MM MD methods are useful in revealing the actual reaction

mechanisms occurring at the ligand-binding site of the receptor,

which are important when designing potent ligands that could

trigger effective inhibition of the disease targets. Thus, MD

approaches offer range of opportunities and capabilities. Assem-

bling them appropriately with other in silico approaches and

experiments can enhance the possibilities of identifying more

credible hits that can eventually become effective next-generation

drugs to serve the human population.

Appendix A. Supplementary data
Supplementary material related to this article can be found, in the

online version, at http://dx.doi.org/10.1016/j.drudis.2016.11.001.
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