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Covalent allosteric modulators possess the pharmacological advantages (high potency, extended

duration of action and low drug resistance) of covalent ligands and the additional benefit of the higher

specificity and lower toxicity of allosteric modulators. This approach is gaining increasing recognition as

a valuable tool in drug discovery. Here, we review the recent advances in the design of covalent allosteric

modulators with an emphasis on successful examples. A broad spectrum of protein targets capable of

being modulated by them reflects the prevalence of this strategy. We also discuss the challenges and

future directions in the development of covalent allosteric modulators.
Introduction
Drugs on the market can be categorized in two classes: covalent

and noncovalent, according to their ligand–host-protein interac-

tions. Covalent drugs are compounds bearing a reactive, electro-

philic warhead, following binding at the active site of a target and

then reacting with a specific nucleophilic residue (usually cyste-

ine) at the target site by formation of a stable covalent adduct [1].

Noncovalent drugs refer to compounds that do not form a cova-

lent bond with a host protein. Compared with noncovalent drugs,

covalent drugs have potential pharmacological advantages, in-

cluding enhanced potency, selectivity and prolonged duration

of drug action [2–6]. These effects favor administration of lower

doses of the covalent drugs to the patient. Owing to continuous

target suppression, covalent drugs are resistant to the emergence of

drug-resistance mutations [7]. For instance, AZD9292 and CO-

1686 enable the effective inhibition of the erlotinib/gefitinib-

resistant epidermal growth factor receptor (EGFR) T790M mutant

by formation of a covalent bond with Cys797 [7]. In addition,

‘undruggable’ oncogenic proteins with shallow binding sites are

often amenable to covalent inhibition such as the K-Ras4B G12C

mutant [8,9]. Despite successful therapies for a myriad of indica-

tions such as cancer and hepatitis C by covalent drugs [10], they

frequently suffer disadvantages from safety concerns such as
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off-target effects [11–13]. By contrast, the metabolism of covalent

drugs generates chemically reactive drug metabolites that indis-

criminately react with other cellular macromolecules, DNA bases

and/or the endogenous antioxidant glutathione and eventually

lead to immune-mediated toxicity. These rare adverse events are

referred to as idiosyncratic adverse drug reactions (IADRs) [14].

A global and in-depth analysis of proteins targeted by covalent

kinase inhibitors in human cancer cells using activity-based pro-

tein profiling in tandem with quantitative mass spectrometry (MS)

have recently pinpointed that the off-target effects of covalent

kinase inhibitors tend to be confined to proteins that harbor

conserved functional cysteines at the active site [15]. To surmount

such major obstacles, huge enthusiasm has been directed at the

design of covalent ligands bound to the nonconserved allosteric

sites – distinct sites that are topographically and spatially distinct

from the highly conserved active (orthosteric) site [16–18]. Allo-

steric regulation, the ‘second secret of life’ [19], fine-tunes virtually

most biological processes, including signal transduction, enzyme

activity, metabolism and transport [20–22]. The propagation of

allosteric signals from allosteric sites induced by effectors binding

to different, often distant, orthosteric sites enables exquisite con-

trol of protein activity [23–26]. Protein kinases and G-protein-

coupled receptors (GPCRs) have highly conserved orthosteric sites

in protein families. An orthosteric ligand binds to the orthosteric

site of one protein, which can also bind to the same sites of
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homologous family members. However, an allosteric modulator

binds to the nonconserved allosteric site of one protein, which is

more specific and selective compared with an orthosteric ligand

[27]. In addition, orthosteric ligands need to compete with the

endogenous ligands bound to the orthosteric sites, thereby shut-

ting off the normal protein functions. By contrast, allosteric

modulators do not compete with the endogenous ligands. Indeed,

allosteric modulators function when the endogenous ligands are

bound to the orthosteric sites, which allow processing of the

natural cellular functions in the presence of allosteric modulators

and endogenous ligands [22,28]. This effect endows allosteric

modulators with fewer side-effects and lower toxicity [17,18,21].

Despite the distinctive advantages conferred by allosteric modu-

lators, they tend to bind to their targets with a slightly lower

potency compared with orthosteric ligands [29], as demonstrated

by a comprehensive analysis of a large set of allosteric and non-

allosteric ligands from the ChEMBL database. An alternative ap-

proach to improve binding potency of allosteric modulators is the

design of covalent allosteric modulators that target the specific

nucleophilic residues in the vicinity of allosteric modulators with-

in allosteric sites. As such, covalent allosteric modulators not only

possess the pharmacological merits of covalent ligands but also

have the additional benefit of the higher specificity and lower

toxicity of allosteric modulators. Thus, covalent allosteric mod-

ulators have emerged as a novel direction to follow in therapeutic

drug development [30]. In this review, we survey the recent

advances in the design of covalent allosteric modulators with a

focus on successful examples. First, a widespread interest in the

development of covalent allosteric modulators is exemplified

across a broad range of bona fide targets, including GTPases,

protein kinases, GPCRs, molecular chaperones and ribonucleases.

Finally, current challenges facing the design of covalent allosteric

modulators and future perspectives are discussed.

Design of covalent allosteric modulators: some typical
examples
K-Ras4B GTPase
The quintessential example for design of covalent allosteric mod-

ulators as therapeutic agents is the small GTPase K-Ras4B, the most

frequently mutated oncogene in human cancer [31]. Owing to the

extremely high affinity of K-Ras4B protein for its GDP and GTP

substrates and the lack of any evident suitable pockets on the K-

Ras4B surface where a molecule might bind tightly, pharmacolog-

ical inhibition of K-Ras4B has thus remained intractable for the

treatment of K-Ras4B-driven cancers, rendering Ras oncoprotein

still undruggable for over three decades [32–35]. The G12C muta-

tion, one of the three most-common Ras mutants in cancer,

introduces a non-native cysteine residue in the P-loop adjacent

to the switch I and switch II regions wrapped in the nucleotide-

binding site, which can be utilized to design covalent allosteric

inhibitors between a thiol warhead and the target cysteine

through disulfide trapping (or tethering) [36].

On the basis of an extensive battery of biochemical, SAR and

crystallographic studies, Ostrem et al. [8] recently identified a

disulfide-containing compound 1 (Fig. 1), which is capable of

significantly modifying K-Ras4B G12C but is resistant to label

wild-type K-Ras4B. The determination of co-crystal structure of

K-Ras4BG12C–GDP in complex with 1 (PDB ID 4LUC) (Fig. 1)
448 www.drugdiscoverytoday.com
displayed that this compound covalently modifies Cys12 and

binds in a pocket beneath the switch II region, which does not

overlap with the nucleotide-binding site. The allosteric binding

site of 1 is named the switch II pocket (S-IIP). To replace the

reversible thiol with irreversible warheads to improve potency

the authors further identified a vinylsulfonamide-containing com-

pound 2 and acrylamide-containing compounds 3 and 4 that

covalently modify Cys12 of K-Ras4BG12C. The determination of

co-crystal structures of K-Ras4BG12C–GDP–2 (PDB ID 4LYF) (Fig. 1)

and K-Ras4BG12C–GDP–3 (PDB ID 4M21) (Fig. 1) complexes

showed that each compound can bind to the allosteric S-IIP

and forms a disulfide bond with Cys12. Very recently, Patricelli

et al. [9] performed structural modification based on the scaffold of

4 and identified the most potent compound: ARS-853 (Fig. 1). The

determination of the co-crystal structure of K-Ras4BG12C–GDP in

complex with ARS-853 (PDB ID 5F2E) (Fig. 1) ascertained that it

concurrently binds to the previously characterized S-IIP through

covalent modification of Cys12. Furthermore, it showed improved

activity against cancer cell lines containing K-Ras4BG12C with IC50

values in the low micromolar range. Cellular effects of ARS-853 on

the Ras-mediated signaling in cells confirmed that ARS-853 can

inhibit downstream signaling of K-Ras4BG12C, including c-Raf,

ERK and Akt. Taken together, these results suggest that targeting

the allosteric S-IIP of K-Ras4BG12C provides a promising new

paradigm for generating anti-Ras therapeutics, supporting the

druggability of K-Ras4BG12C by attaching to S-IIP.

Antiapoptotic MCL-1
Myeloid cell leukemia 1 (MCL-1) is an antiapoptotic member of

the BCL-2 family of proteins and has emerged as a ubiquitous

resistance factor in human cancers [37]. Like BCL-2, the antiapop-

totic mechanism of MCL-1 in cancer cells is rooted in the burial of

the BH3 killer domains of proapoptotic BCL-2 family members by

attaching to a surface groove of MCL-1, referred to as the BH3-

binding groove [38]. Thus, pharmacological inhibition of MCL-1

via disengagement of BCL-2 BH3 domains with the BH3-binding

groove of MCL-1 is of fundamental importance for cancer drug

development [39], because antiapoptotic MCL-1 has currently

been recognized as a ‘top ten’ pathologic factor in a myriad of

human cancers.

Recently, Lee et al. [40] attempted an alternative mechanism for

MCL-1 inhibition by design of small-molecule covalent com-

pounds bound to a new allosteric site distant from the active site

– the BH3-binding groove. On the basis of a series of dilution and

fluorescence polarization binding assays as well as MS analyses, the

authors identified a small-molecule compound named MCL-1

allosteric inhibitor molecule 1 (MAIM1) (Fig. 2), which covalently

modifies Cys286 at a helix a6 regulatory site located on the

opposite face of the protein from the canonical BH3-binding

groove. The covalent adduct was formed between the cyclic enone

in the naphthoquinone moiety of MAIM1 and Cys286. C286S

mutagenesis abrogated the effect of MAIM1 on the inhibitory

activity of MCL-1DNDC in the presence of the proapoptotic BID

BH3 domain, highlighting the necessity of Cys286 for MAIM1

activity. However, an atomic resolution view of the association

between MCL-1DNDC and MAIM1 is unavailable. Further bio-

chemical and cellular data, together with molecular dynamics

(MD) simulations, uncovered that the allosteric mechanism for
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FIGURE 1

Chemical structures of compounds 1, 2, 3, 4 and ARS-853. Co-crystal structures of 1 (PDB ID 4LUC), 2 (PDB ID 4LYF), 3 (PDB ID 4M21) and ARS-853 (PDB ID 5F2E)

bound to an allosteric switch II pocket (S-IIP) through covalent modification of a mutated cysteine (G12C) of K-Ras4B.
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MAIM1 inhibition of MCL-1DNDC is involved in the impairment

of the ability of the canonical BH3 groove to interact with BH3

domains induced by covalent modification of Cys286 by MAIM1,

thereby leading to suppress the antiapoptotic activity of MCL-1

implicated in oncogenesis and chemoresistance. Collectively, this

result suggests that targeting of MCL-1 through covalent modula-

tion of Cys286 by small-molecule compounds offers a potentially

novel avenue for the allosteric inhibition of antiapoptotic activity

of MCL-1.

Akt1 kinase
As a serine/threonine kinase, Akt [also called protein kinase B

(PKB)] plays a key part in a broad spectrum of cellular functions,

including cellular growth and proliferation, metabolism, gene

expression and differentiation [41]. Akt is a key regulator involved

in the phosphoinositide 3-kinase (PI3K) signaling pathway – one

of the most frequently activated proliferation pathways in cancer
[42]. The architecture of Akt1 includes three domains; the N-

terminal pleckstrin homology (PH) domain acts as a phosphoino-

sitide-binding module and the hydrophobic motif is located at the

C terminus adjacent to the catalytic kinase domain in the central

region of the protein. In an autoinhibited ‘PH-in’ state, the intra-

molecular interaction between PH and kinase domains maintains

Akt1 in a closed, inactive conformation. By contrast, in a ‘PH-out’

state, the disassociation of PH domain with the kinase domain

exposes T308 in the activation loop capable of being phosphory-

lated by 3-phosphoinositide-dependent protein kinase 1 (PDK1)

[42], resulting in the activation of Akt1. Akt1 dysregulation is

frequently associated with cancer in humans, such as breast,

colorectal and ovarian cancers [41]. Because of the extremely

conserved ATP-binding site in kinases throughout the human

kinome, targeting allosteric sites of kinases, as a novel tactic, is

the preferred option to achieve enhanced selectivity or reduced

toxicity.
www.drugdiscoverytoday.com 449
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The co-crystal structure of Akt1 complexed with an allosteric

inhibitor VIII (Fig. 3) reveals that the inhibitor VIII is located in an

allosteric binding site formed at the interface of the PH domain

and the N- and C-lobes of the kinase domain [43]. This resulting

VIII binding results in Akt1 in its closed, inactive PH-in confor-

mation. Structural analysis of the Akt1–VIII complex unveils that

two nonreactive cysteines: Cys296 and Cys310 at the activation

loop, are located proximal to the inhibitor VIII and could be

covalently bound to VIII through attachment of suitable war-

heads. On the basis of this notion, Weisner et al. [44] recently

designed the most potent compound 5 bearing a Michael
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Chemical structures of compounds VIII, 5, Org27569, CP55940 and 6.
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acceptor to covalently modify Cys296 or Cys310 (Fig. 3), with a

significantly lower binding affinity of 5 (IC50 0.2 � 0.1 nM) to

Akt1 compared with previously reported allosteric and orthos-

teric Akt1 inhibitors, such as MK-2206 (IC50 6.5 � 0.8 nM) and

GSK690693 (IC50 2.3 � 0.3 nM). Replacement of the Michael ac-

ceptor on 5 with a nonreactive structurally similar moiety

resulted in loss of �40-fold binding affinity, bolstering the cova-

lent modification of Akt1 by 5 for its higher potency. ESI-MS/MS

analyses corroborated that 5 covalently binds to Akt1 at Cys296

and Cys310. Biochemical assays of 5 to Akt1 against a panel of

100 different protein kinases with similar features revealed a
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Co-crystal structure of novolactone bound to an allosteric site through

covalent modification of Glu444 of Hsp70 (PDB ID 4LUC). Chemical structure
of covalent allosteric modulator, unfolded protein response modulator 8

(UPRM8), bound to yeast Ire1 through covalent modification of Cys832.
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prominent selectivity profile of 5 to Akt1. Furthermore, cellular

studies exhibited that 5 impairs Akt1 phosphorylation in cancer

cells. Cumulatively, the allosteric covalent inhibitor 5 bearing

high potency and selectivity represents a novel opportunity in

taming Akt1 inhibition for therapeutic intervention.

CB1R GPCR
Cannabinoid 1 receptor (CB1R), as a class-A GPCR, is expressed

predominantly in the brain and is involved in a variety of physio-

logical processes, encompassing learning, memory, mood and

cardiovascular regulation [45]. Dysregulated CB1R activity has

been implicated in the etiology of many human diseases, such

as neurodegenerative diseases, multiple sclerosis and colorectal

tumors. As a result, design of small-molecule modulators as thera-

peutic potential is an appealing strategy to realize improved CB1R-

mediated signaling. Accumulating evidence indicates that orthos-

teric antagonists of CB1R are germane in many side-effects such as

depression and anxiety owing to the additional inverse agonist

activity of these compounds [46], thwarting their utility in the

clinic. As an alternative approach, design of CB1R allosteric mod-

ulators offers therapeutic advantages compared with orthosteric

ligands. Org27569 (Fig. 3) acts as a positive allosteric modulator of

the orthosteric ligand CP55940 binding affinity and a negative

allosteric modulator of CP55940 signaling efficacy and potency

[47]. Kulkarni et al. [48] recently replaced the chlorine atom at the

C5 position of Org27569 with an isothiocyanate reactive group,

yielding compound 6 (Fig. 3) which has the potential to engage in

covalent interaction with CB1R; this experimental paradigm is

also called ligand-assisted protein structure. Functional assays

revealed that 6 was more potent and efficacious than the parent

Org27569 in CB1R-dependent b-arrestin recruitment and cAMP

accumulation and had the highest functional selectivity (83-fold)

for b-arrestin against cAMP. More remarkably, compared with the

parent Org27569, 6 did not exhibit inverse agonism, which can

rule out psychotropic side-effects caused by CB1R orthosteric

antagonists/inverse agonists. Despite the functional importance

of the allosteric covalent compound 6 in CB1R-mediated signal-

ing, there is a pressing need for determination of the co-crystal

structure between human CB1R and 6 to characterize the CB1R

allosteric site and their detailed atomic-level interaction.

Hsp70 chaperone
Eukaryotic heat shock protein 70 (Hsp70), an ATP-dependent

molecular chaperone, is essential for the proper folding of a large

body of client proteins. Members of the Hsp70 family have been

associated with cell proliferation, cell survival and cell apoptosis.

Dysregulation of Hsp70 has thus been implicated in multiple

diseases such as cancer, neurodegenerative disease, autoimmunity

and infection [49]. The chaperone activity of Hsp70 is allosterically

modulated by intramolecular interactions between its two

domains: the substrate-binding domain (SBD) and nucleotide-

binding domain (NBD) [50]. In the ATP-bound state, the two

domains are tightly coupled to each other, which led to the a-

helical ‘lid’ domain of SBD (aSBD) to adopt an open conformation

and subsequently fast release substrates. By contrast, in the ADP-

bound state, the allosteric communication between the two

domains is disrupted, leading to the aSBD in the closed confor-

mation and enhancing affinity for substrates. From a therapeutic
perspective, design of potent inhibitors that compete with ATP or

bind to Hsp70 allosteric sites provides an avenue to decouple

allosteric communication between the two domains [51], thereby

leading to the inhibition of Hsp70 activity which contributes to an

effective cancer therapy. Recently, based on genome-wide yeast

assays, Hassan et al. [52] identified the Hsp70 protein family as a

potential molecular target for a fungal metabolite, novolactone

(Fig. 4). Biochemical characterization of novolactone and LC-MS

analysis of Hsp70 in the presence or absence of novolactone

elucidated that novolactone forms a covalent complex with

Glu444 of Hsp70. The solved co-crystal structure (PDB ID

4WV7) between the Hsp70 SBD and novolactone unequivocally

validated this prediction and further pinpointed that novolactone

binds to an allosteric site at the interface of the SBD and the NBD

(Fig. 4). Structural comparison between unbound and novolac-

tone-bound Hsp70 crystal structures suggests that the allosteric

communication between the SBD and the NBD is disrupted in

response to novolactone binding, thereby resulting in Hsp70 in a

catalytically incompetent conformation that impairs ATP-induced

substrate release and inhibits refolding activities. This result indi-

cates that allosteric capture of an inhibited Hsp70 conformation

through covalent modification of Glu444 by novolactone opens a

new horizon for the future of Hsp70 drug discovery.

Ire1 ribonuclease
Ire1, a transmembrane kinase/ribonuclease, is responsible for the

unfolded protein response (UPR) – a cellular stress response related

to the endoplasmic reticulum [53]. Overactivation of UPR is

involved in some cancers and inhibition of Ire1 has been proposed

as a promising strategy for the development of high-fidelity Ire1

inhibitors. On the basis of a specific Cys832 at the DFG + 2 position

in the activation loop of yeast Ire1, Waller et al. [54] performed a
www.drugdiscoverytoday.com 451
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high-throughput screen of a small-molecule combinatorial library

containing electrophilic compounds to covalently modify Cys832.

Three UPR modulators (UPRMs) – pyrimidinediones – were iden-

tified to prevent Ire1-dependent HAC1 mRNA splicing. Among

them, UPRM8 (Fig. 4) was selected for further mechanistic inves-

tigation. Biochemical characterization of UPRM8 revealed that it

inhibits yeast Ire1 ribonuclease activity and human Ire1 catalytic

activity through an allosteric mechanism. MS analysis and muta-

genesis unraveled that inhibition of yeast Ire1 activity by UPRM8

occurs by formation of a covalent complex between Cys832 in the

Ire1 activation loop and UPRM8. In fact, human Ire1 includes a

and b isoforms; human Ire1a and Ire1b contain the conserved

cysteine at the DFG + 2 position. On the basis of this observation,

UPRM8 could covalently modify human Ire1a and Ire1b, leading

to off-target polypharmacology. However, this hypothesis still

needs to be tested by in vitro kinase and ribonuclease activities

of human Ire1. Although URPM8 represents a potential covalent

allosteric modulator of Ire1, the exact binding paradigm for

URPM8 within the Ire1 allosteric site is still required to be

unearthed by X-ray crystallography for the development of

more-potent and -selective inhibitors of Ire1.

Concluding remarks: current challenges and future
directions
Despite the numerous examples of successful covalent ligands

advanced into the market, the repertoire of covalent allosteric

modulators is only emerging. Covalent allosteric modulators bear

dual pharmacological merits of covalent ligands and allosteric

modulators, including the increased biochemical efficiency and

higher specificity, the prolonged duration of action and the lower

toxicity, the mitigation of the emergence of therapy-induced drug

resistance, and the increased probability of targeting ‘shallow’

binding sites of intractable targets, but the design of covalent

allosteric modulators is highly challenging. First, a major stum-

bling block in designing covalent allosteric modulators is the

identification of allosteric sites in proteins, which is the first step

in covalent allosteric drug discovery. However, it is not trivial to

find allosteric sites via current experimental approaches; in fact,

the vast majority of known allosteric sites have fortuitously been
452 www.drugdiscoverytoday.com
discovered through biochemical experiments. To our delight, a

host of computational approaches based on sequence, structure and

dynamics has recently been developed aiming to analyze and single

out potential allosteric sites in proteins [55–58]. Nonconserved

nucleophilic residues such as cysteines in the vicinity of the lead

compounds within potential allosteric sites can be cherry-picked via

a complete bioinformatics analysis of a protein family and the

reactive, electrophilic warheads should be attached in the parent

small-molecule compounds wherein the two reactive centers (nu-

cleophile and electrophile), coupled with structure-based drug de-

sign, must be occupied in close contact and in the correct geometry

for the chemical transformation to occur. Second, hyperactive

warheads might lead to drug-induced toxicity such as hepatoxicity,

mutagenicity or carcinogenicity. To prevent unwanted off-target

covalent modifications and to attenuate the risks of IADRs, less

reactive and safer functional groups called soft electrophilic war-

heads such as an acrylamide group can be utilized to specifically and

moderately react with nucleophilic residues in the topology of an

enzyme or receptor binding site. Furthermore, advanced analytical

techniques such as LC-MS/MS methodology for proteomic applica-

tions and high-field NMR spectroscopy analysis of purified adducts

should be adopted to minimize the potential risks of reactive drug

metabolites at the initial discovery or lead optimization phase

[59,60]. In summary, we expect that comprehensive mechanistic

understanding of protein allosteric modulation in concert with

biochemical and clinical data from covalent drugs will provide

valuable avenues toward the design of covalent allosteric modula-

tors, which is an up-and-coming trend in drug discovery.
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