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Teaser Today, by improving administration, stability and intracellular delivery, the interest
in peptides as potential drugs is resurgent, especially for targeting the thousands of

intracellular protein–protein interactions implicated in cellular homeostasis and patholo-
gical conditions
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Protein–protein interactions (PPIs) are well recognized as promising

therapeutic targets. Consequently, interfering peptides (IPs) – natural or

synthetic peptides capable of interfering with PPIs – are receiving

increasing attention. Given their physicochemical characteristics, IPs

seem better suited than small molecules to interfere with the large surfaces

implicated in PPIs. Progress on peptide administration, stability,

biodelivery and safety are also encouraging the interest in peptide drug

development. The concept of IPs has been validated for several PPIs,

generating great expectations for their therapeutic potential. Here, we

describe approaches and methods useful for IPs identification and in silico,

physicochemical and biological-based strategies for their design and

optimization. Selected promising in-vivo-validated examples are described

and advantages, limitations and potential of IPs as therapeutic tools are

discussed.

Introduction
Cell homeostasis depends on a fine-tuned network of protein–protein interactions (PPIs). It has

been estimated that the human interactome involves between 130 000 and 600 000 PPIs [1–3].

Because the deregulation of these interactions is often associated with pathology, each of them

could be seen as a potential target opportunity, covering a very large range of illnesses [4]. Drugs
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that can specifically modulate these interactions, and thus the

downstream signaling pathways they regulate, have become the

object of intensive efforts during the past decade [5–7]. Although

important therapy successes have been obtained early using pep-

tides [8] and monoclonal antibodies [9] to target membrane or

extracellular PPIs, the development of peptides targeting intracel-

lular proteins has been limited by the intrinsic biochemical prop-

erties of the peptides [10–12]. In particular, the means of

administration, stability and bioavailability of therapeutic pep-

tides have long been of concern. Small-molecule inhibitors were

then considered to target intracellular PPIs [7,13–17]; however, the

use of small compounds could be limited for target PPIs owing

to the specific features of PPI interfaces. In this context, natural

or synthetic peptides capable of interfering with PPIs, called

interfering peptides (IPs), are receiving increasing attention

(Fig. 1) [18–21]. The large contact surfaces involved in PPIs

(1500–3000 Å) [3], often missing clear features (such as pockets,

grooves or clefts), have been repeatedly noted as an obstacle for

their targeting with small molecules and to serve for modeling and

design of new small therapeutic molecules [7]. By contrast, peptide

molecules designed to interact with large and flat protein surfaces

seem to be better adapted. There is increasing evidence for the

capacity of IPs to modify several cellular processes and support the

notion that they would have a significant potential to become

quickly valuable therapeutic tools [22–28]. With a long history of

use in therapeutics, peptides are now recognized as being safe and

well tolerated [9,12]. The differences in the physicochemical prop-

erties between the small molecules and peptides � molecular

weight, flexibility and toxicological profiles � raise new challenges

for further development. Improvements in the ADME proprieties

of the peptides have led to a resurgence of interest in the develop-

ment of IPs as drugs. For instance, recent reports showed the

feasibility of oral and intranasal administration of peptides as well

as ways to improve their stability [29–34]. Moreover, the use of

cell-penetrating peptides (CPPs) with the capacity of transporting

chemically different cargos emerges as a promising option to

improve intracellular peptide delivery [35] � another long-term

weakness. This opens new perspectives to specifically address

target cells and intracellular compartments [36]. For these

reasons, we believe that IPs represent a new and exciting class

of drug candidates for inhibition of intracellular PPIs. Today, the
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FIGURE 1

Schematic representation of the effect of an interfering peptide (IP) targeting a prot
normal interaction between two proteins. In most of cases the use of an IP resu
identification of candidate IPs can be addressed through various

means [36]: (i) the characterization of natural occurring peptides;

(ii) brute-force strategies relying on the generation of large libraries

of peptides that are then screened to identify active candidates;

and (iii) the use of peptides corresponding to short fragments

located at the protein–protein interface, which are natural candi-

dates to interfere with PPIs. Here, we describe strategies to identify

IPs when protein–protein-interacting structures are known (ratio-

nal design) or when they are not known (empirical approach).

Then, we describe methods useful to optimize identified IPs and

we describe some promising examples that have been validated in

in vitro and/or in vivo models.

Strategies for IP identification
Fig. 2 summarizes current strategies involved in IP discovery.

Structure-based approaches
Knowledge of the structure of the complex of the interacting

proteins is the most useful information. Among biophysical

approaches, X-ray crystallography, NMR and cryo-electron mi-

croscopy (cryo-EM) remain the techniques that are most widely

used to determine the 3D structure of macromolecular complexes

and to provide direct access to the identification of the PPIs

[37,38]. In addition to X-ray crystallography to determine, in

isolation or in interaction, globular domain structures, NMR

can also investigate transient and weak PPIs that are essential in

cell signaling transduction. Protein interfaces become better un-

derstood through the crystal or solution structure of protein

complexes. At the time of writing (June 2017), 8096 structures

of protein–protein complexes involving 12 936 proteins have been

reported in the Protein Data Bank (proteins of at least 30 amino

acids, removing protein chain with sequence similarity >90%). In

addition, the combination of cryo-EM and small-angle X-ray

scattering (SAXS) as low resolution structural techniques with

other methods such as X-ray crystallography, NMR, Förster reso-

nance energy transfer (FRET), mass spectroscopy techniques and in

silico approaches also provides near atomic resolution information

to characterize protein interfaces [39,40].

When the structure of the complex can be solved, IPs can be

rationally designed based on the direct observation of the natural

sequences that mediate PPIs in the proteins. It has been observed
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FIGURE 2

Current strategies for IP discovery. Strategies to identify candidate interfering peptides (IPs) vary depending on the availability of knowledge on the 3D structure
of the targeted complex. These approaches range from the rational identification of sequences located at the protein–protein interface in the structure of the
complex, to the identification of active IP sequences using random or systematic strategies.
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that only a few hot segments involving residues located at the PPI

seem responsible for the interaction between the partners [41], and

the analyses of the 3D structures in interaction using structural

bioinformatics methods can help to identify peptides from one

partner that could bind to the other partner and thus interfere

with the PPI. LoopFinder [42], PeptiDerive [43] or searching for

helix interfaces in protein–protein interactions (HIPPs) [44] are

examples of in silico approaches exploiting this observation. Pep-

tiDerive systematically splits the chains in the interaction as series

of fragments of 10 amino acids and identifies those corresponding

to hot segments. It has been used successfully to design agonists of

the MD2–TLR4 interaction [45]. It is interesting to note that the

linear peptide identified originally was not active but inserting a

disulfide bond stabilized its variant. Consequently, PeptiDerive

now specializes in the identification of hot segments compatible

with the use of peptides that can be closed by a disulfide bridge.

The HIPP approach specializes in the identification of helical

segments that can undergo further modifications such as stapling,

whereas LoopFinder focuses on loops that can be cyclized. Sub-

micromolar inhibitors of stonin2 and Eps15, designed using Loop-

Finder, have recently been reported [46].

When the structures of the partners are available but not that of

the complex, in silico approaches can to some extent still prove to

be useful. First, modeling techniques, exploiting either brute-

force, co-evolutionary or homology information, can provide

low- or medium-resolution models of protein–protein complexes

that could be used to locate the interface and beyond, and assist

the identification of candidate peptides. Several such approaches

have been reported recently [47,48]. Whether the structural

approximations of the models are compatible or not with the

identification of hot segments with an accuracy similar to that

reached from experimentally resolved structures is still a matter for

investigation.

Finally, not attempting to build the complex structure, infor-

mation about the interface region on the structure, either pre-

dicted or using in vitro techniques such as mutation analysis, can
274 www.drugdiscoverytoday.com
also be valuable. It has been observed that, for a significant

number of protein–peptide complexes, the binding pose adopts

structural patterns similar to those found in a single-chain fold

[49]. Mining the increasing collection of protein structures can

help to obtain information about protein segments likely to

interact with a protein patch. PepComposer [50] is an example

of such an approach. Although it was shown able to identify

segments mimicking those of protein–peptide complexes, this

approach has not yet led to the effective discovery of new

interactive peptides.

Off-structure approaches: phenotype- and target-oriented
approaches
When no structural information of the partners is available,

several in vitro approaches have been used with success to identify

bioactive peptides. Among the phenotype-oriented approaches,

screening of natural peptides [51] and of artificial libraries contain-

ing peptides synthesized on a solid support [52] have often been

employed. Libraries enable simultaneous testing of a high number

of variants in a single screen. Libraries can be designed using mixed

codons at protein interface positions [53]. Randomization can be

tailored by the mixture of nucleotides as well as their ratio. This

has been applied with success to study the NOX-CFTR-CK2 inter-

actions during lung development [54].

Other approaches include phage display, where filamentous

bacteriophages expressing peptides and exposing them on their

surface are analyzed, and the production of IPs by recombinant

adeno-associated virus [54]. Phage display was described by Smith

in 1985 [55] and has been one of the most used techniques for in

vitro screening of small peptides targeting proteins [56–61]. With

these strategies, the peptides produced can be tested for their

affinity to bind a selected target and for their capacity to modify

a cellular process (development, proliferation, differentiation ap-

optosis, senescence, etc.). For example, phage display has been

used to identify IPs targeting the vascular endothelial growth

factor (VEGF)–neuropilin (NRP)-1 interaction [62].
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FIGURE 3

Schematic representation of the PEPscan approach. Overlapping dodecapeptides (with a shift of two amino acids) spanning the complete sequence of one of
the proteins of the complex are prepared and spotted in a solid support. The membrane is hybridized with the other purified interacting protein of the complex.
The presence of a complex is detected using an antibody against the purified protein, followed by a labeled secondary antibody.
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The most powerful target-oriented approach to identify IPs is

PEPscan technology. The principle of PEPscan is to scan the

sequence of one of the partners split as a series of overlapping

peptides, systematically testing the ability of each peptide to

compete with the formation of PPIs (Fig. 3). The overlap between

consecutive segments offers the possibility of precise identification

of the binding site(s) between two proteins of interest and

improves confidence in the results by introducing some redun-

dancy in the tests. The sizes of peptides as well as the step of the

sliding window along the sequence are of course crucial. Common

values are 12 and two, respectively [63,64]. Complex formation is

usually monitored by western blot. To deal with the large number

of experiments required, PEPscan technology is based on the

synthesis of peptide arrays bound to a solid support such as

cellulose. Peptide arrays provide a rapid approach to screen PPIs.

They were used for the identification of T and B epitopes [65,66].

Peptide arrays offer almost an unlimited choice of size and format.

The peptide lengths usually range from 5 to 30 amino acids. SPOT

synthesis is the technique used to generate this type of peptide

array [63,67], based on solid-phase fluorenylmethyloxycarbonyl

(Fmoc)-based chemistry [64].

SPOT synthesis is particularly flexible with respect to the num-

bers and scales that can be accomplished: the arrays can be adapted

in terms of length of the peptide, spot size, number of spots per

membrane and spotted volume [63,67]. Any reported system can

be used that results in a signal that is trapped at the peptide site (e.

g., ELISA, western blot, etc.). Rebollo and co-workers adapted

peptide microarrays and generated overlapping dodecapeptides

scanning the complete sequence of several proteins involved in
tumoral transformation and apoptosis. The peptide arrays were

prepared by automated spot synthesis (Abimed) into an amino-

derived cellulose membrane as described [64,67]. Using this ap-

proach, the binding sites of several PPIs have been identified: the

oncoprotein Ras and the kinase Raf [68]; the cysteine protease

caspase 9 and the serine/threonine phosphatase PP2A [69]; the

serine/threonine phosphatase PP2A and its physiological inhibitor

the oncoprotein SET [70]; the cysteine protease caspase 9 and the

oncoprotein SET [71]; the interaction between the transcription

factors of the hippo signaling pathway TEAD, Yap and TAZ [72];

and the interaction Ras–Raf [73]. This approach was also used to

identify the binding sites between proteins from the Plasmodium

falciparum parasite [74].

Candidate peptide optimization
As illustrated in Fig. 4, candidate peptide optimization benefits

from contributions from different fields.

Structural characterization of the target–IP interaction
Knowledge of the mode-of-interaction between the peptide and

the target is crucial for optimization. On the experimental side, a

combination of biophysical methods is needed to fully describe

PPIs and optimize the design of a IPs. Thermodynamic and kinetic

description of complexes can be achieved using calorimetry and

surface plasmon resonance (SPR) methods. Microcalorimetry

enables the thermodynamic characterization of molecular inter-

actions in solution. Isothermal titration calorimetry (ITC) enables

the direct determination of binding stoichiometry, equilibrium

constant and variation of enthalpy (DH) and entropy (DS). SPR
www.drugdiscoverytoday.com 275
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FIGURE 4

Flowchart of peptide optimization: biophysical, chemical and in silico contributions are iteratively required. The characterization of peptide–protein interaction
at the molecular level, using biophysical and in silico approaches, guides the choice of chemical modifications likely to improve peptide activity as well as ADME
properties.
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instruments enable the analysis of molecular interactions in real

time. This technique is notably suited for the determination of the

rates of association (kon) and dissociation (koff) between biological

macromolecules. Fluorescence spectroscopy, associated with

stopped-flow-equipment, can also be applied to study the molec-

ular interactions in real time to determine the properties of fast

reactions with a time resolution of milliseconds. Altogether, these

biophysical properties of peptide–protein complexes could be used

to decrease the entropic cost upon binding for peptides that

explore multi-conformational states in the free-form in solution.

Peptides have a tendency to lose their stable conformation out of

the 3D protein context. Thus, minimizing the entropic cost and

increasing the enthalpic energy of binding and the residence time

could be achieved by constraining the backbone in hairpins,

stapled peptides, scaffolds mimicking the structural and/or func-

tional properties of natural peptides (see below) [75]. Such ther-

modynamics and kinetics approaches have been recently used to

optimize affined and stable peptides inhibiting the Keap1–Nrf2

PPI. Nrf2 is a key transcriptional factor and, along with Keaps, its

primary regulator, is a member of a signaling pathway involved in

oxidative stress and inflammation [76].

On the in silico side, enormous progress has been recently

achieved to fill the gap resulting from decades of protocol opti-

mization to assist small-compound design compared with that of

peptide-specific protocols. Indeed, in contrast to small com-

pounds, computer-assisted peptide design usually starts from only

a few peptide sequences and key issues specific to peptide design

are first in terms of conformational sampling owing to the larger

number of degrees of freedom, and second in terms of scoring.

Specific approaches addressing the de novo prediction of peptide

structure [77–79], peptide-binding site [80–83], peptide–protein
276 www.drugdiscoverytoday.com
complex conformation [84–87], among others, are now accumu-

lating.

Given the target structure and the peptide sequence, in silico

approaches start providing useful information on candidate

patches of interaction on the protein surface, with a sensitivity

and specificity close to 37% [83], meaning that the approximate

location of the interaction region can usually be identified. Fig. 5

illustrates how the pepATTRACT server [83] can mimic a PEPscan

experiment applied to the identification of peptides interfering

with the PP2A–caspase 9 and Ras–Raf complexes. One clearly sees

that the interactions of the experimentally identified IPs target the

interface region, whereas the peptides corresponding to other

parts of the sequence tend, for this PPI, to target a different patch.

Moving one step further, the search for the exact binding mode of

interaction between the protein and the peptide – predicting the

complex structure – turns out to be more challenging. Whereas it

has been demonstrated that starting from an approximate com-

plex (RMSD 5 A) [84] can result in the generation of high-quality

poses, the general question of the blind docking (i.e., complex

conformation generation for the complete exploration of protein

surface) or local docking (specifying a candidate binding site) is

still open. Briefly, most current approaches can generate high-

quality poses, but often fail to identify them among the large

number of decoys that are usually generated. Whereas most

approaches consider full peptide flexibility, the accounting for

the small protein conformation adaptation upon peptide binding

would be necessary to make it possible to discriminate between

correct and incorrect poses. As a consequence, the estimation of

binding affinities given the peptide sequence and protein structure

remains approximate [88]. In addition, conformational heteroge-

neity in protein–peptide interactions might be more frequent than
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FIGURE 5

In vitro and in silico analysis of protein–protein (PPI) interaction. The example of phosphatase PP2A and caspase 9 interaction is shown. (a) PP2A catalytic chain is
shown in gray and in yellow is the identified patch using in vitro PEPscan screening. (b) The interaction patch (red) predicted in silico using the caspase
9 interfering peptide identified in vitro. (c) The cumulated propensities of interaction for the PEPscan-negative caspase 9 peptides target a different surface
area of PP2A.
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initially thought, increasing the complexity of affinity and speci-

ficity estimation [89].

Turning to the more difficult question of proposing sequence

variants, some stochastic approaches to infer knowledge about the

sequence preferences likely to have some affinity with a specified

protein have been reported [90,91]. Considering the even more

difficult question of how specific are interactions among a collec-

tion of protein partners, some interesting results have been

obtained for the PDZ family. The results by Ollikainen [92] high-

light the importance of backbone flexibility and sequence toler-

ance to this respect, and Zheng et al. [93] have been able to design

peptides with differential binding affinities for N2P2 compared

with M3P6. Among the recent advances, it is noteworthy that the

latest developments are beginning to result in fully integrated

pipelines. When the structure of a PPI complex is available,

PinaColada [94] provides an evolutionary approach designed for

the blind design of a peptide binding to a specified patch, which

will first identify candidate hot segments and then iteratively

modify the peptide sequence to identify the best candidates to

interact with the protein.

Chemical optimization of IPs
Issues in peptide chemistry to address poor resistance to protease

degradation or problems of cell permeability have recently

resulted in a diversification of the approaches to optimize peptides

[95,96]. For instance, peptide-scanning approaches have diversi-

fied and can now not only contribute to structure–activity analyses

but also to the optimization of peptide pharmacological properties

using, among others, N-substitution, lactam cyclization or aza-

amino scanning procedures [97]. Retro-inverso sequences [98]

have for instance been very successful when applied to restore

the tissue homeostasis of senescent cells in response to chemo-

toxicity and aging using a retro-inverso peptide of FOXO4 to

perturb its interaction with p53 [27]. Chemical modifications

are also useful to establish covalent links between the peptide

and its target: for instance Michael acceptors have been success-

fully introduced in IPs (see below) [99]. Some diproline mimetics,

locking the PPI conformation, have been synthesized and peptides

containing them showed no loss of affinity for the protein [100].

Peptides with modulation of conformation have also been de-

scribed: introduction of a photoswitchable group led to cis–trans
isomerization of a double bond and thus modification of PPI

inhibition [101]. Another recent approach lies in peptidomimetic

foldamers [102]. Grison et al. described a⁄b⁄g-hexapeptides mim-

icking the primary sequence of p5319-26, and possessing three key

substituents at the same position [103]. Their resulting peptides

adopt a well-defined helical conformation (mimicking the a-he-
lix) and the three side-chains were appropriately oriented. Owing

to the unnatural character of these foldamers, they showed in-

creased proteolytic stability and one efficiently inhibited the p53–

hDM2 interaction. There are however as yet no data on potential

toxicity of these species.

For IPs, excluding coupling with CPPs [104], current cyclization

techniques seem to emerge as the most promising approach.

Indeed, cyclization is primarily a mean to fix peptide structure

closer to the bioactive conformation, hence to reduce the entropic

cost upon binding, thereby increasing its binding efficiency and

biological activity. Having fixed the conformation, a better basis

for rational design is provided. Second, cyclization is also a way to

improve resistance to degradation and improve cell penetrability

[105]. Clearly, most techniques for the chemical optimization of

peptides are not specific to IPs but some recent advances seem to fit

their development well.

a-Helical peptide stapling
Stapling (i.e., the introduction of cross-linking between two side-

chains) is probably one of today’s most attractive strategies to

stabilize an a-helix conformation [106]. To perform stapling, the

ring-closing metathesis (RCM) reaction is the most widely used. It

implies the design of a peptide containing two non-natural qua-

ternary a-amino acids, with a terminal alkene on the side-chain.

The metathesis reaction on the peptide induces cyclization and

consequently blocks its a-helix conformation. Applying this strat-

egy, Rezaei Araghi et al. improved the affinity and selectivity of a

potent lead peptide (selected from a library using yeast-surface

display) for myeloid cell leukemia 1 (Mcl-1) � an antiapoptotic

protein [107]. The resulting stapled peptide, also containing non-

natural a-amino acids, is highly helical and possesses enhanced

protease resistance. Starting from a RCM monostapled peptide,

Cromm et al. introduced a second stapling, increasing further its

proteolytic stability, cellular uptake and binding affinity for Rab8a

GTPase [108].
www.drugdiscoverytoday.com 277
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Click chemistry, which is compatible with biological conditions

[109], is another powerful approach to form stapled peptides. Non-

natural a-amino acids are necessary, with side-chains bearing for

example azides. Lau et al. performed the in situ stapling by double-

strain-promoted azide–alkyne cycloaddition (SPPAC) simulta-

neously with screening processes to select an optimal candidate

with high binding affinity for MDM2 (targeting thus the onco-

genic p53–MDM2 interaction) [110]. The crystal structure of the

MDM2-stapled peptide complex showed that the bis(triazolyl)

staple forms hydrophobic interactions with the protein. Targeting

the same PPI, Serrano et al. recently used both chemical reactions

[RCM and copper-catalyzed azide–alkyne cycloaddition (CuAAC)]

with a chiral linker to improve helicity, proteolytic stability and

binding of the resulting peptide [111].

Finally, stapling can also result from using natural amino acids.

For instance, Diderich et al. built phage display libraries of peptides

with cysteine residues in position i and i + 4 [112]. Chemical

cyclization occurred easily on the phage, increasing the helicity

of the peptides. These cyclized peptides were then selected accord-

ing to their affinity to b-catenin and ultimately two compounds

showed better affinity than the parent peptides. In general, it has

become accepted that building a cyclic dimer of an active peptide

through two disulfide bonds connecting two pairs of cysteines can

improve its cell-penetration ability and therefore its inhibitor

activity, knowing that the disulfide bonds are cleaved under

reductive cytosolic conditions (applications of disulfide bonds

for therapeutic peptides have been recently reviewed [113]). This

strategy has been successfully validated against HIV-1 transcrip-

tion [114]. In another direction, Sanchez-Murcia et al. demonstrat-

ed a better capacity of lactam-bridging involving the side-chains of

a glutamic acid and a lysine as opposed to hydrocarbon-bridged

cyclic peptides to inhibit the dimerization of a trypanothione

reductase involved in Leishmaniasis [115].

Macrocyclization of irregular peptides
Nature offers many examples of macrocycles as therapeutic agents

such as erythromycin (antibiotic), cyclosporin (immunosuppres-

sant) and somatostatin (hormone). Typically, they are 500–

2000 Da in size, have 12-membered, or more, ring architecture

and they do not obey Lipinski’s rules [116]. Stabilizing an irregular

peptide structure by macrocyclization [117] without disrupting

the biological properties of the peptide turns out of be more

challenging but some promising results are emerging. Interesting-

ly, Glas et al. synthesized a peptide involved in the binding

interaction between the virulence factor exoenzyme S and human

adaptor protein 14-3-3 [118]. By crystallization of the protein 14-3-

3z in a complex with the peptide, they found that using a carbon

chain increases the hydrophobic interactions. Thus, they synthe-

sized, by RCM and subsequent hydrogenation, a stapled peptide

that significantly enhanced the binding affinities for 14-3-3z (by

stabilization of the irregular peptide and enhancement of the

target binding). This approach offers an interesting access to

irregular peptide-derived PPI inhibitors. The same group later

demonstrated that similar results can be obtained if the irregular

peptide secondary structure is constrained through ring-closing

alkyne metathesis [119].

Other ways of cyclization under investigation for IPs are known

to increase cell permeability [120]. For instance, using head-to-tail
278 www.drugdiscoverytoday.com
cyclization, Upadhyaya et al. reported cell-permeable cyclic pep-

tides that are selective and potent inhibitors of Ras-GTP, prevent-

ing its interaction with effector proteins [121]. These peptides have

been identified using a library screening approach. Inspired by a

previously described long linear peptide inhibiting the Hsp90–

Cyp40 interaction, Buckton et al. generated small cyclic peptides

that can inhibit the same interaction as well as the Hsp90-mediat-

ed protein folding [122].

Qian and co-workers have proposed another kind of macrocycle

[123]. A bicyclic peptide associates a cyclic CPP and part of a

known inhibitor of PPIs between NEMO and IKK. The CPP is

cyclized through a disulfide bridge and the cargo which is also

cyclic, linked to the CPP by the same disulfide link. It induced

better cellular uptake and proteolytic stability. After entering the

cell, the disulfide bonds are both cleaved by the intracellular

glutathione, leading to high activity of the cargo.

Finally, cyclic peptoid libraries have been designed. For in-

stance, an inhibitor of the Skp2–p300 interaction, inducing

p53-mediated apoptosis and cell growth inhibition on cancer cells,

has been identified from a library of triazine-bridged cyclic pep-

toids [124]. In another study, a novel cyclized peptoid–peptide

chimera was selected for its capacity to inhibit the b-catenin–
a-catenin interaction [125]. It should be noted that, in some cases,

where the chemical modifications are most important, the prop-

erties of the macrocycles obtained could become closer to those of

the small compounds.

b-turn mimetics
Although the appearance frequency of b-strands at heterodimeric

interfaces is similar to that of a-helices [126], the use of peptides

mimicking b-strands is much less frequently documented be-

cause b-stranded peptides are ideal substrates of peptidases. Two

major directions have been investigated: the use of nonpeptidic

amino acid analogs to stabilize individual strands and the intro-

duction of chemical modifications to promote b-sheet formation

[127]. For the former approach, an imidazole-based minimalist

peptidomimetic has been described disrupting the PCSK9/LDLR

PPI with a micromolar IC50 [128]. For the latter, a b-sheet-
inducing (D)-pro-pro sequence or a dibenzofuran (DBF) turn

mimetic has been used to build a CD2-based modulator of PPIs

between CD2 and CD58 [129]. In general, a peptide backbone

rigidifying into the bioactive conformations provides an entropic

advantage, thereby improving bioactivity. However, a molecular

flexibility in certain circumstances was shown to be important for

the bioactivity of the modified peptides, as shown recently for the

cyclic b-hairpin-based MDM2 inhibitors targeting MDM2–p53

PPIs [130].

Some promising examples of IPs
At present, some tens of validated IPs are under investigation, as

described in Table 1. Most of the targeted interactions are impli-

cated in cell death, proliferation and angiogenesis, with diverse

fields from developmental studies to cardiovascular, neurological

or infectious diseases.

IPs in cancer
Several IPs have been validated in vitro and in vivo (preclinical

validation) and some are already in clinical development. For the
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TABLE 1

Some interesting examples of interacting peptides (IPs).

Targeted interaction Process concerned Peptide sequence Derived from Development Route
of admin Stability/
solubility

Refs

FOXO4–p53 Senescence HITLRKEPASEIAQSIL-
EAYSQNGWAN
RRSGGKRPPPRRRQRRKKRGOH

FOXO4 sequence
Dretro inverso
(DRI) isoform

Preclinical in vivo
IP
4 h/high

[27]

NOX-CFTR-CK2 Lung development Sequences <20 aa of length Recombinant adeno-
associated virus (rAAV)

Preclinical in vivo
IA

[54]

CaMKIIa–MUPP1 Human fertilization SIAPNV and SIVMNV MUPP1 sequence Preclinical in vitro [158]
D1–D2 dopamine

receptors
Antidepressant effect D2IL329 GNCTHPEDMKL-

CTVIMKSNGSF
PVNRRRV
D2LIL3292IMKSNGSFPVNRRRV

D2 sequence
D2 sequence

Preclinical in vivo
IN

[142]

EphB2–ADDLs Alzheimer’s disease Pep21 VQYAPRQLGL
Pep25 PRIYISDLLA
Pep32 NGVTDQSPFS
Pep63 VFQVRARTVA

Peptide array assay Preclinical in vivo
ICe

[24]

GluA2–GAPDH Neuron and cortical
dendrite development

YYQWDKFAYLYDSDRGLSTLQ-
QVLDSAAEK

GluA2 sequence Preclinical in vitro [141]

GluN2A–Rph3A Stabilization at post-synaptic
membranes

EDSKRSKSLLPDHASDNPFLHT-
YQDDQRLVIGRCDSDPYKH

Rph3A sequence Preclinical in vivo IV/IP [159]

JNK–c-Jun Cerebral ischemia, neuronal
degeneration, inflammatory
diseases

D-JNKI-1 (syn. XG-102) Jun N-ter sequence (DRI) Clinical Phase III
SCo/IV/IT/SCu

[160,161]

p53–GAPDH Prevention ischemic stroke
damage

IPELNGKLTGMAFRVPTANV GAPDH sequence Preclinical in vivo ICV [23]

dPKC–PDK Cardiac injury ALSTE (cyclizated)
ALSTD (cyclizated)

dPKC sequence
PDK sequence

Preclinical in vivo SCu [162]

BAX–HN Antioxidative, antiapoptosis,
neuroprotective and
cardioprotective effects

Humanin (HN):
MAPRGFSCLLLLTSEIDLPVKRRA

Mammalian
mitochondrially derived
peptide

Preclinical in vivo
IV

[163]

Casp9–PP2A Cell death/proliferation YVETLDDIFEQWAHSEDL CASP9 sequence Preclinical in vivo
IP
2 h/high

[69]

Ras–Raf Cell death/proliferation KMSKDGKKKKKKSRTRCTVM KRas sequence Preclinical in vivo
IP

[68]

ACC11 oligomerization Cell death/migration/
invasion

AKLNAEKLKDFKIRLQYFAR-
GLQVYIRQLRLALQGKT

ACC11 sequence Preclinical in vivo
IP–SCu
24 h/high

[134]

Mic–Max Cell death/proliferation MRRKNHYHQQDIDDLK-
RQNALLEQQVRAL

MAX sequence and
genetic library

Preclinical in vitro [164]

PML–RARa or
PLZF–RARa

Cell death/proliferation
(leukemia)

Oligomerization regions
of PML (aa 221–361) and
PLZF (aa 1–125)

Genetic library Preclinical in vitro [135]

p53–p73 Cell death/proliferation Pool of 13 peptides DNA binding domain of
human p73 (131–310 aa)

Preclinical in vitro [165]

eIF4E–Angel1 Cell death RRKYGRDFLLRF Angel1 sequence Preclinical in vitro [166]
FZD7–DVL Cell death GKTLQSWRRFYH FZD7 sequence Preclinical in vivo

IV
[167]

p53–HDM2 Cell death/proliferation AcLTFXEYWAQLXSNH2 In situ stapling Preclinical in vitro [110]
CXCR4–CXCL12 Cell death/proliferation

(chemotherapy in acute
myeloid)

E5: GGRSFFLLRRIQGC-
RFRNTVDD

CXCR4 sequence Preclinical in vivo
SCu

[168]

MTP–NRP1 Angiogenesis/
proliferation/migration

ILITIIAMSALGVLLGAV-
CGVVLYRKR

The TM sequence
of NRP1

Preclinical in vivo
IP

[169]

Siah–SIP Siah–PHYL Cell death/cell proliferation BI-107G3: Ac-RQIKIWFQ-
NRRMKWKK
PPPPPPPPPP KLRPVA-
MVRPbVR-NH2
(covalent binding)

Consensus binding
sequence SIP and
PHYL108–130

Preclinical in vitro [99]

uPA–uPAR Angiogenesis/migration/
invasion

AcetylKPSSPPEENH2 uPA sequence Preclinical in vivo
IP

[170]

CXCL12–CXCR4 Angiogenesis/mitosis KGVSLSYRK KGVSLSYR
(CTCE-9908)

CXCL12 sequence Clinical Phase I/II–IV [171]

a5b1integrin–
fibronectin

Angiogenesis/migration/
invasion

AcPHSCNNH2 Fibronectin sequence Preclinical in vitro [172]
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TABLE 1 (Continued )

Targeted interaction Process concerned Peptide sequence Derived from Development Route
of admin Stability/
solubility

Refs

avb3 and avb5 integrins
with RGD motif of ECM
components

Angiogenesis/cell death/
migration

Cilengitide:
cyclo(RGNDFNMV)

RGD binding site Clinical Phase I–IV [173]

VEGFR1–VEGF, VEGFR1–PlGF
and VEGF–PlGF

Angiogenesis/migration GNQWFI Synthetic peptide library Preclinical in vivo
SCu

[174]

VEGF–NRP1 Angiogenesis/proliferation ATWLPPR Phage library Preclinical in vivo
IP

[62]

p53–HDM2 p53 ubiquitination p28 (NSC745104)
(aa 5077 of Zurin)

Cupredoxin azurin
sequence (DRI) iso I

Clinical Phase I–IV [154]

TLR4–MD2 Inflammation/tumor
immunity

DDDYSFCRAL
CAA-DDDYSFCRAL-AAC

MD2299-108 sequence
+ linkers to
macrocyclization

Preclinical in vitro [45]

NEMO–IKK Inflammation/cell death/
proliferation/immunity/

TALDWSWLQTE
BMBRRRRFFCALDWSWLQC
l lS Sl l
lS Sl

IKKb sequence Preclinical in vitro [123]

Keap1–Nrf2 Inflammation Acc[CLDPETGEYLC]OH Nrf2 sequence Preclinical in vitro [75]
TLR4–SPA Inflammation GDFRYSDGTPVNYTNWYRGE The SPA sequence Preclinical in vivo

IP
[175]

TLR4MyD88 Cytokine production RDFIPGV
RDVLPGT

TLR4 sequence
MyD88 sequence

Preclinical in vivo
IP

[176]

Hsp90–nuc Inhibition ATPase of Hsp90 RELWDD ATP binding site of the
N-terminal domain of
Hsp90

Preclinical in vitro [177]

3A–3A (FMD) FMD virus replication FFEGMVHDS
FFEGMVHDSIKEELRPLIQQ

A3 sequence Preclinical in vitro [149]

PB1–PB2 Influenza virus replication PB1c676–757
PB1731–757

PB1 sequence (aa
676–757)
PB1 sequence
(aa 731–757)

Preclinical in vitro [150]

ZIKV E Zika other flavivirus
replication

Z2: MAVLGDTAWDFGSV-
GGALNSLG
KGIHQIFGAAF

ZIKV E protein (residues
421–453)

Preclinical in vivo
IV/IP

[151]

Abbreviations: Route of Admin, route of administration; DRI, D-retro-inverso isoform; IA, intraamniotic injection; Ice, intracerebral injection; ICV, intracerebroventricular injection; IN,
intranasal administration; i.p., intraperitoneal injection; IT, intratympanic injection; IV, intravenous injection; IVit, intravitreal injection; SCo, subconjunctival injection; SCu, subcutaneous
injection.
Names of genes are designed following their official symbol as is the common usage (https://www.ncbi.nlm.nih.gov/gene).
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preclinical validation of antitumor peptides, patient-derived xe-

nograft models (PDX) are normally used. In PDX models, a piece of

original tumor is implanted (in most cases subcutaneously) in an

animal. The tumor growth is in an environment that, although

non-human, mimics the native environment. Such models prom-

ise to capture the genetic complexity of human cancers better that

cell line culture or genetically engineered mice. However, PDXs

have shortcomings because they are developed in mice lacking a

normal immune response (to prevent human tumors from being

rejected). Efforts are underway to engineer mice that mimic

aspects of the human immune system [131,132].

Caspase 9–PP2A

Taking advantage of the PDX models, Rebollo and co-workers

validated two different cell-penetrating IPs. The first, DPT C9 h,

blocks the interaction between the cysteine protease caspase 9 and

the serine/threonine phosphatase PP2A. The antiproliferative ef-

fect of this peptide on a triple-negative breast cancer PDX and on a

luminal B model was well established [69]. This peptide was also

active on primary B cells from chronic lymphocytic leukemia

(CLL) patients but not on B cells of healthy donors [133]. They

have also validated a cell-penetrating IP blocking the interaction
280 www.drugdiscoverytoday.com
between the oncogene Ras and the kinase Raf, Mut3DPT Ras, on

two CLL and two lymphoma xenograft models [68]. The first

peptide will be soon tested in a clinical trial.

AAC-11 oligomerization

ACC-11 (antiapoptotic clone 11 or API5) activity is mediated

through several PPIs, mediated by its binding domain (BD). In-

creased expression of AAC-11 confers a survival advantage to

cancer cells and contributes to tumor invasion and metastases,

whereas its deregulation reduces resistance to chemotherapeutic

drugs. Thus, inactivation of AAC-11 might constitute an attractive

approach for cancer therapy. IPs derived from the AAC-11 BD

prevent its oligomerization and inhibit its interaction with part-

ners, blocking its antiapoptotic properties. This IP selectively kills

cancer cells while sparing normal cells. It can also inhibit the

growth of BRAF wild-type and V600E mutant melanoma xenograft

tumors, through induction of apoptosis and necrosis, without

evidence of toxicity in mice [134].

PML–RARa oligomerization

The PML protein present in nuclear bodies is involved in multiple

genome maintenance pathways including the DNA damage re-

sponse, DNA repair, telomere homeostasis and p53-associated

https://www.ncbi.nlm.nih.gov/gene
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apoptosis. The dominant-negative PML–RARa fusion protein

expressed in acute promyelocytic leukemia (APL) disrupts PML

function by blocking hematopoietic differentiation. An interfer-

ing peptide targeting the oligomerization domain of PML–RARa
or PLZF–RARa represents a promising tool to further elucidate the

biology of this leukemia and its treatment [135].

FOXO4–p53

A peptide derived from FOXO4, which perturbs its interaction

with p53, has been recently described [27]. In senescent cells, the

selective interaction between FOXO4 and p53 causes p53 nuclear

exclusion and cell-intrinsic apoptosis. FOXO4 IP was well-tolerat-

ed in vivo and neutralized doxorubicin-induced chemotoxicity.

Moreover, this IP restored fitness, fur density and renal function in

fast-aging XpdTTD/TTD and naturally aged mice. This shows that

therapeutic targeting of senescent cells is feasible under conditions

where loss of health has already occurred and in doing so tissue

homeostasis can effectively be restored.

SIAH–SIP, SIAH–PHYL

Subsequent to several successful cases of effective therapeutics,

drugs that bind their target by means of covalent attachment have

recently come back into favor following initial fears by the phar-

maceutical industry about possible off-target effects [136]. Conse-

quently, the irreversible inhibition of the PPIs by covalent binding

of IPs has also been tried. This approach, first designed to improve

the binding affinity of small-molecule drugs for their receptor, was

originally proposed by Shokat and colleagues to obtain selective

inhibitors of protein kinases [137]. It involves the introduction of a

mildly reactive group (usually a Michael acceptor such as an

acrylamide) designed to react selectively with a cysteine thiol

group present in the target-binding site. This approach was applied

to obtain more-potent and �selective SIAH-IPs. Through its inter-

actions, the E3 ligase SIAH1 is involved in different cellular pro-

cesses such as cell death and mitosis [23,138,139]. Starting from a

peptide derived from the Siah-interacting protein Phyllopod,

which was modified with a suitably reactive ‘warhead’, several

modified peptides were obtained that can form a covalent bond

with a cysteine residue present in the P1 pocket of SIAH [99]. This

work shows the feasibility of use of covalent inhibition of PPI with

IPs that are potentially orders of magnitude more effective than

the parent peptides.

IPs in neurobiology
p53–GAPDH. A recent study showed that disruption of the nucle-

ar p53–GAPDH complex by an IP derived from the GADPH

sequence protects against ischemia-induced neuronal damage

(cell death in rats subjected to glutamate) [23]. GADPH is a

cytosolic metabolic enzyme that, under different stimuli (for

example glutamate treatment), translocates to the nucleus

through its interaction with the E3 ligase SIAH1 [138,140]. In

the nucleus, GADPH binds p53, upregulating its expression and

phosphorylation, inducing cell death. In vitro disruption of the

p53–GAPDH complex prevents cell death upon glutamate stim-

ulation. GAPDH nuclear translocation plays a crucial part in cell

death. Disruption of the nuclear p53–GAPDH complex in vivo

protected from ischemia-induced cell death in rats subjected to

temporary middle cerebral artery occlusion [23]. These observa-

tions open the way to consider this IP as a potential therapeutic

option for ischemic stroke treatment.
GluA–GAPDH

Targeting other interactions of GAPDH was also shown to have a

therapeutic interest. Using an IP derived from GluA2 protein and

targeting the GluA2–GAPDH interaction, it was shown that this

PPI is necessary for neuron and cortical development. This result

demonstrates the interest of the IPs in studies of physiological

tissue development and differentiation [141].

EphB2–ADDL

Shi et al. used a peptide to disrupt the interaction between EphB2

and ADDL proteins [24] and showed that blocking this PPI rescues

impaired synaptic plasticity and memory deficits in a mouse

model of Alzheimer’s disease. This result suggests that inhibition

of the EphB2–ADDL interaction with the IP Pep63 could be a

promising strategy for the treatment of Alzheimer’s disease.

D1–D2

Interestingly, it was shown that an IP designed to disrupt the

interaction between the D1 and D2 dopamine receptors has an

antidepressant effect. It was tested using the forced swimming test

(FST) and the learned helplessness (LH) task, two preclinical tests

for antidepressant efficacy [142]. Moreover, it was shown that this

IP can be efficiently delivered to relevant brain areas using a

pressurized intranasal device [30].

Concluding remarks and future perspectives
IPs seem today to be a credible source of novel drugs for a large

number of pathologies. Based in their long-term of utilization,

peptides have confirmed their good profile of tolerability and

safety with few off-target effects [9]. Biologically active peptides

are expressed in virtually all the living species and they have

constituted the first source of potential druggable peptides. Pep-

tides binding physiological membrane receptors (like oxytocin

and insulin) were the first to be used as medicines [143] and are

still being improved today [144]. At present, peptides used as

antigens represent the majority of those tested in clinical trials

[145]. There are >7000 naturally occurring peptides that have been

identified, some with a proven (and others with a promising)

potential as therapeutic tools. For instance, they are a rich source

of antimicrobial agents [12,146,147]. In a similar way, animal

venoms are also an important source of bioactive peptides with

miscellaneous activities [148]. Moreover, thousands of synthetic

peptides derived from synthetic libraries or techniques of genetic

expression in viruses have been biologically characterized. At the

same time, peptides interfering with protein–protein viral assem-

bly have also been identified [149–151].

The design of synthetic IPs implies a rational approach for drug

development, where the choice of the PPI to be targeted, to obtain

a desirable biological effect, is the crucial step. Small molecules

have already been used to target intracellular PPIs [13–17]. A priori,

IPs directly derived from PPI sequences and with their capacity to

target large surfaces are better placed than small molecules to

target a PPI. A strengths, weaknesses, opportunities and threats

(SWOT) analysis of IPs is shown in Table 2.

Owing to their biological importance, p53 and MDM2 proteins

and their interactions are two of the best studied. Different classes

of small inhibitors of this interaction have been designed and

developed, and currently seven such compounds are being evalu-

ated in clinical trials as anticancer drugs (among them nutlin,

spirooxindole, isoquilinone and piperidinone) [152]. Similarly,
www.drugdiscoverytoday.com 281
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TABLE 2

A strengths, opportunities, weaknesses, threats (SOWT) analysis
of interfering peptides (IPs) as potential drugs.

Strengths

� Combined selective and specific targeting
� Good efficacy and potency for intracellular targeting
� Better adapted than small molecules to target large surface of PPI
� Intracellular concentration not dependent of flow pumps as for small
molecules

� Less prone to generate mechanisms of drugs resistance
� Predictable metabolism and low toxicitya

� Less immunogenic than recombinant proteins or monoclonal antibodiesa

� Costs have been steadily declininga

Weaknesses

� Most IPs need to add a CPP sequence to improve membrane permeability
� Prone to aggregationa

� Short half-life and fast elimination of most IPs if not stabilizeda

� Less experience in clinical development than for small molecules

Opportunities

� The potential number of IPs is almost unlimited
� Good specific intracellular penetration when fused with CPP
� New alternative delivery routes of administrationa

� Specific chemical modification to improve ADMEa

� Increased number of PPIs known to be used for rational structure-based
design

� Possibility of design multifunctional IPs
� Availability of natural peptides evolutionarily selected for specificity and
stability

� Present penury in the discovery of new effective drugs
� Present resurged interest in peptides as drugs

Threats

� Present lower investment of pharmaceutical industry than for small
compounds

� Competition with of small molecules targeting PPIs
� No approved IPs as drugs yet
a Not specific for IPs.
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this p53 interaction (and others) has been targeted by IPs [153,154]

sometimes associated with improvements such as peptide stability

[155]. Because most IPs do not have an intrinsic ability to enter

cells, major advances in their delivery have been made possible

through their modification [120] or their fusion with CPP

sequences [35]. These fused CPP–IPs can cross biological mem-

branes and, adding specific sequences, they can be addressed to

specific intracellular compartments [36]. Associated to others

improvements in administration and stability, IPs are now well

positioned for development as drugs [3,8,12,31,156]. The concept
282 www.drugdiscoverytoday.com
of IPs has been validated for �40 PPIs and it is very likely that this

number will increase rapidly.

Considering the number of existing PPIs and their implications

in pathology, this approach could be used eventually to treat any

disease where responsible PPIs are identified and targetable, and

models to test the biological effects of IPs are available. Although

in theory PPIs targeted by peptides can be obtained in two ways: (i)

direct binding to the PPI surfaces (orthosteric modulation); (ii)

binding other regions of the interacting proteins (allosteric regu-

lation), the former strategy has been to date the most investigated,

but progress in understanding allostery could open promising

perspectives. The direct targeting of sequences on the interaction

surface has almost always yielded peptides disrupting the interac-

tion. It is expected that stabilization of PPIs (when desirable) or a

more specific disruption of the PPIs can also be obtained through

finer allosteric modulation.

We can summarize a general strategy to be used to design IPs,

consisting of a succession of alternate steps of rational and experi-

mental approaches. The first step, based on the available biological

knowledge, is the choice of PPI to be targeted. The second is the

identification of sequence to be mimicked by the IP based on

structural, in silico and off-structure approaches. Finally, the bio-

logical effects of these candidate IPs are to be tested using in vitro

and in vivo models. This step is normally followed by a rational IP

optimization, including the modeling of the interacting peptide

protein for the design of new IPs as well as the use of chemically

modified sequences for improving stability, solubility and cell

permeability. Again, a candidate peptide must be biologically

validated. This strategy relies on exploiting various complemen-

tary disciplines: chemistry, biology, biophysics and modeling.

Given the increasing number of reported IPs and their biological

potential, some are likely to advance to clinical testing in the near

future. Faced with the present penury in the discovery of new

effective small-molecule drugs [157], it will be highly desirable that

the renewed interest in peptides as drugs could be consolidated by

using IPs targeting intracellular PPIs. Such an evolution could have

beneficial consequences in the treatment of different pathologies

ranging from degenerative diseases to cancer.
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