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Teaser WNT signalling is a relevant, yet underappreciated pathway in asthma. Recent
insights into the pathology of asthma have highlighted this pathway as a potential novel

therapeutic point of intervention. With this in mind, we attempt to answer the question: is
WNT signalling a valid target for asthma therapy?
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Asthma is a complex disease of the airways that develops as a

consequence of both genetic and environmental factors. This interaction

has highlighted genes important in early life, particularly those that

control lung development, such as the Wingless/Integrase-1 (WNT)

signalling pathway. Although aberrant WNT signalling is involved with

an array of human conditions, it has received little attention within the

context of asthma. Yet it is highly relevant, driving events involved with

inflammation, airway remodelling, and airway hyper-responsiveness

(AHR). In this review, we revisit asthma therapeutics by examining

whether WNT signalling is a valid therapeutic target for asthma.

Introduction
Asthma is a heterogeneous chronic inflammatory disease of the large and small airways. Over the

past couple of decades, we have come to consider asthma not as a single disease entity, but rather

as a collection of different conditions with overlapping symptomatology, but diverse aetiologies

[1]. In most parts of the world, asthma prevalence is continuing to increase or remains stable and

is considered one of the most common chronic disorders worldwide [2]. Asthma affects approxi-

mately 300 million people across the world and is a huge burden on healthcare expenditure [3,4].

A hallmark feature of asthma is AHR, defined as the exaggerated bronchoconstriction response to

specific and nonspecific stimuli. AHR results from a variable and persistent component, driven by

either chronic inflammation or the progressive development of structural changes, respectively

[5]. Structural changes, termed ‘airway remodelling’, encompass increased airway smooth muscle

(ASM) mass, mucous gland hypertrophy, bronchial microvascular remodelling, subepithelial

fibrosis, and epithelial changes, including cell detachment and goblet cell hyperplasia [6].

Although the mortality rate has reduced significantly over the years with the regular use of

inhaled glucocorticosteroids, 250 000 people still die from asthma annually and the global impact

of asthma remains high [7,8]. The prevalent mortality and morbidity is in part because of both

poor adherence [9] and response to corticosteroids in severe asthmatics and asthmatics who

smoke [10] and, in some cases, patients experience no clinical effect at all [11]. In addition, the

effects of corticosteroids on airway remodelling remain controversial, and are rarely clinically

Tim Koopmans is a
postdoctoral researcher at
the Comprehensive
Pneumology Center as
part of the Helmholtz
Zentrum Mfinchen,
Germany. While having
worked extensively on the
pathophysiology of asthma
during his graduate years, with a special interest in
WNT signalling, his current research efforts are
focused on the pathology of the surface mesothelium
in thoracic and trunk cavities, including the lungs. In
particular, he is interested in the stem cell capacity of
the mesothelium, within the context of homeostasis,
repair, and fibrosis.

Reinoud Gosens is
associate professor of
translational pharmacology
at the Faculty of Science
and Engineering at the
University of Groningen,
The Netherlands. Dr
Gosens’ current research
interests are focussed on
mechanisms that regulate the structural remodelling
and repair of the airways and parenchyma in asthma
and chronic obstructive pulmonary disease. In
particular, he is interested in the mechanisms and
therapeutic value of muscarinic receptor and
Wingless/Integrase-1 (WNT) signalling.
Corresponding author: Gosens, R. (r.gosens@rug.nl)

1359-6446/ã 2017 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
http://dx.doi.org/10.1016/j.drudis.2017.09.001 www.drugdiscoverytoday.com 49

http://crossmark.crossref.org/dialog/?doi=10.1016/j.drudis.2017.09.001&domain=pdf
mailto:r.gosens@rug.nl
http://creativecommons.org/licenses/by/4.0/
http://dx.doi.org/10.1016/j.drudis.2017.09.001


Review
s
�FO

U
N
D
A
TIO

N
R
EV

IEW
REVIEWS Drug Discovery Today �Volume 23, Number 1 � January 2018
significant for low doses [12–15]. Bronchial thermoplasty has

shown promise in decreasing smooth muscle mass in severe asth-

matics for up to at least 2 years [16], and is associated with

improved quality of life, and reduced symptoms and number of

exacerbations [17]. However, the procedure is invasive and not

without complications [18] and, in some cases, is without clinical

benefit [19]. Thus, there is a clear need for new therapies for

asthma that overcome the shortcomings of those that are current-

ly available. In this review, we discuss the evidence that supports

the involvement of WNT signalling in asthma and we evaluate the

WNT pathway as a potential therapeutic target.

WNT signalling
WNT signalling is an ancient pathway that dates back to the

earliest metazoans that started to develop a patterned body axis,

and expanded dramatically as animals evolved into more complex

organisms [20]. In mammals, there are 19 different WNT family

members. They are critically involved in regulating embryogenesis

and control diverse processes later in life, including cell prolifera-

tion, survival, migration, polarity, specification of cell fate, and

self-renewal in stem cells [21]. It is of no surprise that perturbation

of the levels of WNT ligands, or altered activity of its downstream

effectors, results in developmental defects and contributes to

disease aetiology. Given the large diversity of WNT signalling

components, researchers have attempted to group individual

WNT proteins into classes based on their intrinsic capabilities to

activate the transcriptional regulator b-catenin [22]. This resulted

in WNTs being categorised as either canonical (b-catenin depen-

dent), or noncanonical (b-catenin independent). However, the

intrinsic properties of WNT ligands only cover part of the story

and, in view of the increasing complexity of WNT signalling

networks, it seems incongruous to refer to individual WNTs using

this nomenclature. Throughout this review, we view WNTs within

the context of the pathway that they are part of and use the

terms ‘WNT/b-catenin’ and ‘b-catenin-independent’ signalling

accordingly.

WNT ligands are secreted proteins that are covalently modified

by glycosylation and palmitoylation before entering the extracel-

lular space. Palmitoylations render them hydrophobic and tether

them to cell membranes or their cognate receptors, known as

Frizzled (FZD) receptors. They signal in an auto- and paracrine

fashion, mostly through a cell-bound manner [23,24]. In the case

of b-catenin-dependent signalling, once secreted from their host

cell, WNT ligands engage their cognate FZD receptors and the

LRP5/6 transmembrane co-receptor, inducing complex formation

between the two (Fig. 1). This results in a conformational change

and enables phosphorylation of the cytoplasmic LRP tail, which

inhibits glycogen synthase kinase 3 (GSK-3) [25] and allows bind-

ing of the scaffold protein Axin. Conversely, when WNT ligands

are absent, Axin forms a complex together with adenomatous

polyposis coli (APC) and the constitutively active serine-threonine

kinases Casein kinase (CK)-Ia and GSK-3. This so-called

‘destruction complex’ captures b-catenin and subjects it to se-

quential phosphorylation at serine 45 by CK-Ia, followed by

phosphorylation at positions 41, 37, and 33 by GSK-3 at the N

terminus, leading to its proteosomal degradation [26,27]. WNT

pathway activation results in recruitment of Axin to the phos-

phorylated tail of LRP. As a result, the destruction complex, while
50 www.drugdiscoverytoday.com
remaining intact, becomes saturated with the phosphorylated

form of b-catenin. This results in newly synthesised b-catenin
accumulating and translocating to the nucleus independently of

transporter receptors [28] to facilitate gene transcription [29].

Nuclear b-catenin governs transcriptional programs through as-

sociation with an array of transcription factors, including the T cell

factor/Lymphoid enhancer-binding factor 1 (TCF/LEF1) family

[30].

The b-catenin-independent pathways are more diverse in their

intermediate effectors and final biological outcomes, including

orientation of cell division, planar cell polarity, and convergent

extension, and can include both transcriptional and nontranscrip-

tional responses in the cell (Fig. 1) [31]. The best-characterised

b-catenin-independent WNT pathways are the planar cell polarity

(PCP) pathway and the WNT/calcium pathway. Activation of PCP

results in downstream events that involve activation of the small

GTPases Rac-1, RhoA, and Jun-N-terminal kinase (JNK). Activation

of these effectors can lead to changes in cytoskeletal structure or

cell polarity, either directly or through transcriptional activation

[32]. PCP signalling generally does not require the presence of

LRP5/6, but instead utilises the co-receptors RAR-related orphan

receptor (ROR), related to receptor tyrosine kinase (Ryk) and

tyrosine-protein kinase-like 7 (PTK7) [33]. WNT/calcium signal-

ling involves the FZD-mediated activation of phospholipase C

(PLC), which stimulates the production of diacylglycerol and

inositol-1,4,5-triphosphate (Ins(1,4,5)P3) [34]. Ins(1,4,5)P3 triggers

calcium release from intracellular stores and subsequent activation

of calcium-dependent factors, such as calmodulin-dependent

kinase II (CAMKII), calcineurin, and certain isoforms of protein

kinase C (PKC). These in turn act on the transcriptional regulator

nuclear factor associated with T cells (NFAT) to promote gene

transcription.

Asthma genetics and epigenetics
Indications from GWA studies
Asthma frequently expresses itself in early life and has a substantial

heritable component [35,36], indicating a strong genetic contri-

bution to disease susceptibility. Furthermore, suboptimal foetal

growth, maternal micronutrient deficiencies (e.g., vitamin E or

vitamin D), and maternal smoking are associated with impaired

infant lung function and subsequent predisposition to develop

asthma later in life [37–39], suggesting that asthma develops as a

consequence of the interaction of multiple environmental and

genetic factors. Pre- or perinatal exposures can also drive remodel-

ling upon birth. For example, maternal smoking during pregnancy

induces airway remodelling in mouse offspring [40], and these

changes are associated with the differential expression of WNT

pathway genes in neonates [41]. This is in accordance with the

observation that, in many asthmatics, airway remodelling devel-

ops in early life, even before asthma is officially diagnosed [42–49].

Despite the large number of studies aimed at identifying suscepti-

bility loci, genome-wide association studies (GWAS) of asthma

have only yielded a few targets as strong asthma susceptibility

genes [50] that only explain a small proportion of asthma herita-

bility, with limited ability to predict overall disease risk. GWA

studies are generally restricted to common single-nucleotide

polymorphisms (SNPs), but not rare or copy number variants,

and positive hits require exceedingly small P values to declare
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FIGURE 1

Wingless/Integrase-1 (WNT) signalling pathways. Simplified scheme showing the main WNT pathways. (a) WNT/b-catenin signalling. Under steady-state
conditions and in the absence of WNT ligands, glycogen synthase kinase 3 (GSK-3) phosphorylates b-catenin, which triggers its degradation. In the presence of
extracellular WNT ligands, the destruction complex [comprising GSK-3, casein kinase-Ia (CK-Ia), Axin and adenomatosis polyposis coli (APC)] is recruited to the
WNT–receptor complex and inactivated. This saturates the destruction complex and allows newly formed b-catenin to accumulate and translocate to the
nucleus, where it activates the transcription of target genes under the control of T cell factor (TCF), among others. (b) b-catenin-independent signalling with
purple- and blue-labelled components depicting planar cell polarity (PCP) and WNT/Ca2+ signalling, respectively. PCP signalling triggers activation of the small
GTPases RhoA and Rac-1, which in turn activate Rho kinase (ROCK) and Jun-N-terminal kinase (JNK), leading to actin polymerisation. This pathway is prominently
involved in the regulation of cell polarity, cell motility, and airway smooth muscle contraction. The WNT/Ca2+ pathway activates Ca2+- and calmodulin-
dependent kinase II (CamKII), protein kinase C (PKC), and calcineurin (Cn). Calcineurin activates Ca2+-sensitive transcription factors, including nuclear factor of
activated T cells (NFAT), which regulates the transcription of genes controlling cell fate and cell migration. Abbreviations: b-TrCP, beta-transducin repeat-
containing E3 ubiquitin protein ligase; DVL, Dishevelled; LRP5/6, low-density lipoprotein receptor-related protein 5/6; ub, ubiquitin.
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significance, thus filtering out many potential true associations. In

addition, the statistical models used in GWAS are simplistic and do

not take into account models of interactions, such as gen-

e�environment, which is highly relevant for asthma. Therefore,

a complex disease such as asthma might require a more sophisti-

cated approach. Indeed, when incorporating gene interplay, WNT

signalling was found to strongly associate with asthma risk, in

particular FZD3 and FZD6 [51]. The importance of genotype-

specific responses to environmental exposures suggests that genes

that control lung development are especially relevant for asthma

risk. Three large meta-analyses of GWAS from individuals of

European decent were recently published, and identified 28 loci

that were associated with lung function [52–55]. These studies

prompted the question whether the same set of genes were impli-

cated in chronic lung disease, such as asthma or chronic obstruc-

tive pulmonary disease (COPD). Two follow-up meta-analyses

studies were performed by a single group to determine specifically

whether the identified loci from these studies, associated with lung

function in the general population, also determined lung function

in individuals with asthma. They found that genetic variants
related to the gene encoding Family With Sequence Similarity

13 Member A (FAM13A) associated with both lung function [52–

56] and asthma [57–59]. Interestingly, FAM13A has also consis-

tently been linked with COPD [60–70], even in those who have

never smoked [71]. Importantly, FAM13A was recently found to

regulate b-catenin stability, highlighting WNT signalling in asth-

ma [72]. Although the function of FAM13A remains to be further

investigated (Box 1) [72,73], two splice variants have been identi-

fied in humans [FAM13A isoform 1 (long variant) and isoform 2

(short variant) [74]], expressed in mucosal cells, club cells, airway

epithelial cells, alveolar cells, and alveolar macrophages [72].

Further evidence in support of this view has come from several

studies. In one study, of five selected WNT signalling pathway

genes that were differentially expressed in human foetal pseudo-

glandular and canalicular-stage lung tissue samples, two genes,

encoding WNT-1-inducible-signaling pathway protein-1 (WISP-1)

and WNT inhibitory factor-1 (WIF-1), harboured polymorphisms

in children diagnosed with mild to moderate persistent asthma

(Box 1) [75]. This was later confirmed in asthmatics of Chinese

decent [76].
www.drugdiscoverytoday.com 51
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BOX 1

Asthma susceptibility genes

Several susceptibility genes have been associated with asthma
risk, but for some it is not always clear how they affect cell
behaviour. The function of FAM13A is not entirely clear, but studies
have suggested a role in stabilising levels of b-catenin through
interaction with PP2A. In HEK293T and A549 cells, FAM13A is
phosphorylated at Ser 322 by Akt, which increases its binding
affinity with 14-3-3, leading to cytoplasmic sequestration of
FAM13A [73]. FAM13A bound to the B56 regulatory subunit of
PP2A leads to dephosphorylation at Ser 322, and promotes
nuclear localisation. FAM13A also interacts with Axin, but not
GSK-3,and it has been suggested that FAM13A regulates
post-translational modification(s) of Axin in the nucleus, leading to
increased Axin turnover, which indirectly increases b-catenin
stability [73]. Another study showed that, in 16HBE cells,
overexpression of FAM13A resulted in increased phosphorylation
(Ser 33 and 37, and Thr 41) and reduced levels of b-catenin [72].
Similarly, depletion of FAM13A increased b-catenin stability and
TOPFlash reporter activity. These different findings warrant further
investigation.
In light of these results, it is worth noting that FAM13A contains a
putative nuclear export signal (NES) sequence [73], as well as a
bipartite nuclear localisation signal (NLS) and two shorter Pat7
sequence motifs, which suggest the nuclear presence and function
of FAM13A [74]. Isoform two is also associated with a RhoGAP
domain, known to affect Rho family GTPases [74]. Belonging to the
family of secreted matricellular CCN proteins, WISP-1, along with
other CCN family members, can interact with various receptors,
including LRPs, as part of WNT/b-catenin signalling [215].
However, its precise function remains poorly described. WISP-1
can interact with integrins through several integrin recognition
sites [216–218]. Thus, it could serve as a mediator of cell–matrix
adhesion in a pleiotropic, cell-specific manner, with potential
distinct functions depending on different cell surface receptors in
different cell types [219]. Functionally, WISP-1 has been shown to
drive proliferative and EMT responses in alveolar epithelial cells
and increase the synthesis of ECM components in fibroblasts.
Antibody-mediated inhibition of WISP-1 improved lung function in
the bleomycin mouse model for pulmonary fibrosis [220]. Both
DKK-3 and WIF-1 are secreted negative regulators of WNT signal
transduction [221]. WIF-1 can directly bind and antagonise some
WNT ligands. In addition, it contains a heparin sulfate-binding site
(membrane-bound glycosaminoglycans, commonly covalently
linked to heparin sulfate proteoglycans, thought to mediate
localisation of WNTs near the target cell surface [222]), which is not
necessary for, but greatly facilitates, WNT inhibition [221].
Generally, inhibition of WIF-1 exacerbates WNT/b-catenin
signalling, and its expression is commonly silenced in human lung
cancer [223,224]. By contrast, DKK inhibits WNT signalling by
preventing WNT binding with LRP5/6 [225]. Interestingly, whereas
WNT ligands typically bind to only one or two distinct structural
domains within LRP5/6, DKK binds several, and, therefore, can
potentially antagonise different WNT proteins simultaneously
[226]. Similar to WIF-1, inhibition of DKK generally results in
activation of WNT/b-catenin signalling, and its decreased
expression is relevant in lung cancer. Its functional significance in
relation to asthma is described in more detail in the main text.
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Indications from epigenetic studies
GWAS alone is unable to address whether SNPs are protective or

whether they accelerate disease development, or even if the pre-

dicted gene is the key gene at that GWAS locus. Thus, focussing on

epigenetic markers is a highly valuable tool to complement GWAS
52 www.drugdiscoverytoday.com
data. In one study, the b-catenin-dependent gene encoding low-

density lipoprotein receptor-related protein 5 (LRP5), as well as

WNT2, APC and several other WNT genes were differentially

methylated specifically in blood monocytes of patients with neu-

trophilic asthma, but not eosinophilic asthma [77]. Another study

showed that differentially methylated regions corresponding to

elevated expression of the CTNNB1 (encoding b-catenin) and

AXIN2 (a b-catenin target gene) genes in whole-blood samples

from children at the time of birth, were associated with the

increased risk of the child developing late or persistent wheeze

later in life [78], which increased when mothers were exposed to

high levels of stress. By contrast, at 4 years of age, this association

no longer remained, suggesting that early exposures are critical in

disease development.

Indications from lung development
The importance of b-catenin in driving lung developmental path-

ways has been demonstrated in numerous studies. Mice with

b-catenin knocked out at embryonic day (E)14.5 in pulmonary

epithelial cells (giving rise to airway and alveolar epithelial cells

after birth) develop proximal lung tubules that differentiate nor-

mally. However, lungs fail to form peripheral airways and instead

develop into proximal tubules, resulting in early death after birth

[79]. By contrast, overexpression of b-catenin in CCSP-expressing

Clara cells (which start to express CCSP approximately at E14.5)

perturbs epithelial cell differentiation and causes goblet cell hy-

perplasia and air space enlargement [80]. In addition, constitutive

expression of stabilised b-catenin prevents differentiation into

secretory Clara cells and terminally differentiated ciliated cells,

which is accompanied by a corresponding increase in functionally

immature epithelial cells [81]. b-catenin is also important in the

mesenchymal lineage. Mesenchymal deletion of b-catenin
impairs the amplification, but not differentiation, of parabron-

chial smooth muscle progenitor cells as well differentiation into

mature endothelial cells [82], and several WNT ligands [83–85] are

essential for smooth muscle cell development in the airways.

An important area of study will be to further characterise the

functional significance of genetic variants associated with WNT

signalling and asthma risk, where genetic and environmental

interactions are key to furthering our understanding of asthma.

Although large-scale GWA studies incorporating interactions

could prove challenging, a more flexible alternative to studying

global transcriptional and epigenetic responses to key exposures

relevant for asthma could include in vivo and in vitro models. Of

particular interest here is the FAM13A locus. How FAM13A reg-

ulates b-catenin is an important question to answer, not only in

adult life, but also during lung development. This will also help us

understand how different SNPs within the FAM13A region relate

to different diseases, such as asthma and COPD, which have both

been associated with SNPs linked to th FAM13A [60–70].

WNT signalling in asthma: evidence from animal
models
Animal models, although lacking the genetic background that

asthmatic individuals have, nonetheless provide a valuable tool

to observe how disease development might occur, and to disen-

tangle which factors are a cause or determinant of the disease.

Allergic asthma in mice is typically modelled by exposure to
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ovalbumin (OVA) in combination with aluminium hydroxide as

an adjuvant to facilitate the early-phase allergic response and skew

inflammatory events in favour of T-helper type 2 (Th2) cells.

Alternative allergens that are used include extracts of purified

proteins from house dust mites, cockroaches, ragweed, or fungi

[86]. In addition, occupational asthma can also be modelled and is

usually accomplished by exposure to di-isocyanates, the most

commonly identified cause of occupational asthma. Protocols

differ, but generally include subcutaneous injection with liquid

toluene di-isocyanate (TDI) (sensitisation), followed by inhalation

with TDI vapours (challenge). Although substantial differences

have been noted, many features of di-isocyanate asthma are simi-

lar to atopic asthma, including airway inflammation characterised

by activated CD4+ T cells, eosinophils, and mast cells, airway

remodelling, and increased levels of interleukin (IL)-4 and IL-5

[87].

Allergic asthma models have frequently been associated with a

change in WNT signalling, although the direction appears to

depend on the duration of the protocol and route of administra-

tion of the allergen. In acute OVA models (up to 3 days of chal-

lenge), b-catenin expression is generally reduced compared with

control lungs [88–91], whereas in chronic OVA models (10 weeks

or more), b-catenin expression is generally higher [89,90]. For

occupational asthma models, the results are less clear. Balb/c mice

sensitised to TDI for 3 weeks and then challenged for 1 week

showed either reduced [83,92–95] or mildly increased [93] levels

of total b-catenin, concomitant with increased levels of the non-

phosphorylated form of b-catenin [93,94]. Alternative, but less-

frequently used asthma models are also associated with changes in

WNT/b-catenin signalling. Mice exposed to a mixture of benzene,

toluene, xylene (collectively called BTX), and formaldehyde (FA)

showed differential expression of several WNT-related miRNAs

[95], and Aspergillus fumigatus-exposed mice exhibited elevated

levels of Axin-2 in the ASM and epithelial layers [83]. The initial

reduction in b-catenin activity in the acute allergen model might

reflect a physiological response to protect the host from excessive

amounts of b-catenin. As ovalbumin exposure increases over time,

this response might eventually lose ground as airway remodelling

starts to develop, accompanied by increased activation of b-cate-
nin. CTNNB1 is a pleiotropic gene and its activation requires tight

regulation to coordinate cell behaviour. This translates into tran-

sient periods of activation, where both activation and diminution

act in quick succession. As such, it is possible that CTNNB1 is

activated in a wave pattern in response to allergens, and failure to

detect differences in CTNNB 1expression could be a result of

‘missing the wave’. In addition, some of the measured variables

are not restricted to WNT signalling. For example, inactivation of

GSK-3 through phosphorylation and the corresponding increase

in b-catenin stability is achieved through WNT-independent fac-

tors, such as PKB/Akt [96,97], phospholipase C [98], or PKA [99].

Therefore, these findings might not reflect WNT-pathway activa-

tion. Finally, WNT pathway activation might not always be best

determined by its expression. For example, studies with both

animal models [92,93] and biopsies from patients with asthma

[100] have shown decreased expression of the membrane-bound

protein E-cadherin, resulting in disruption of barrier function.

This observed reduction was paralleled by a decrease in junctional

b-catenin, which might become active as it diffuses into the
cytosol. These changes are maintained when epithelial cells are

isolated and cultured in air liquid interface (ALI), suggesting that

they are intrinsic in nature.

WNT signalling and inflammation in asthma
Asthma is primarily considered a disease associated with activation

of the adaptive immune response, most notably the Th2 cell-

dependent promotion of immunoglobulin (Ig)E production and

recruitment of mast cells. However, asthma is also characterised by

innate immune responses that influence the activation and traf-

ficking of dendritic cells (DCs), production of innate immune

cytokines, and priming of lymphoid cells [101]. Both of these axes

involve WNT signalling (Fig. 2).

Evidence for b-catenin-independent WNT signalling
Evidence suggests a strong link between b-catenin-independent
WNT signalling and allergic inflammation. WNT-5A was recently

implicated in asthma in peripheral blood mononuclear cells

(PBMCs). PBMCs isolated from healthy individuals, treated with

either IL-4 or IL-13 for 24 h, and then processed for microarray

analyses, showed increased expression of WNT-5A for both IL-4

and IL-13 [102]. Accordingly, WNT-5A expression could be

completely prevented by anti-IL-13 mAb. These findings were

extended in another study towards patients with asthma, where

endobronchial biopsies from patients with mild-to-moderate asth-

ma, stratified into ‘Th2-high’ and Th2-low’ subphenotypes on the

basis of a signature of three IL-13-inducible genes, were analysed

by whole-genome microarray analyses. The authors reported that

multiple WNT genes were positively correlated with the Th2-high

signature [103]. Moreover, WNT5A was found to be increasingly

expressed in PBMCs from asthmatics of Korean decent [104]. These

findings suggest a link between b-catenin-independent WNT sig-

nalling and Th2-high asthma, or possibly between WNTs and

allergy, which is generally considered to be a Th2-predominant

response. A more recent paper has substantiated this idea, in which

bronchial airway epithelial brushings were screened for differen-

tially expressed genes and then correlated to fractional exhaled

nitric oxide (FeNO) [105]. The authors then used k-means cluster-

ing to partition the subset of genes that correlated with FeNO into

five different asthma phenotypes, or subject clusters. One cluster

was enriched with WNT pathway genes, including WIF1, WNT5B,

and DKK3. Of note, all of the patients in this cluster were atopic

and had a normal FeNO, but the earliest age of asthma onset,

longest disease duration, and a high disease severity and percent-

age of bronchoalveolar lavage (BAL) lymphocytes. Moreover, this

cluster showed elevated levels of tumour necrosis factor (TNF)-a
signalling, which is known to drive expression of noncanonical

WNT mediators [106]. ASM cells from patients with mild-to-mod-

erate asthma have also been shown to contain elevated levels of

WNT-5A compared with healthy ASM [107]. Apart from its role in

regulating bronchomotor tone, ASM is intimately involved

in modulating airway inflammation [108]. Collectively, these

results imply a role for b-catenin-independent WNT signalling

and inflammation, in particular allergic responses.

Evidence for WNT/b-catenin signalling
In blood samples, polymorphisms within the promoter region

of CTNNB1 have been associated with either an increased or
www.drugdiscoverytoday.com 53
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FIGURE 2

Involvement of Wingless/Integrase-1 (WNT) signalling in asthmatic responses. Release of WNT ligands that engage in WNT/b-catenin signalling generally
suppresses adaptive immune responses at various levels. Trafficking of inflammatory cells into the alveolar space because of upregulation of adhesion
molecules, proliferation of activated T helper 2 (Th2) cells following antigenic exposure, and expression of Th2 cytokines are all inhibited upon activation of
WNT/b-catenin signalling. Conversely, secreted negative regulators of WNT signalling [e.g., Dickkopf-1 (DKK-1)] can undo this inhibition. Suppression of
b-catenin also signalling attenuates airway remodelling, examples including airway smooth muscle growth and synthesis of extracellular matrix proteins.
b-catenin-independent WNT signalling exerts diverse effects that, in general, are poorly described. Examples are modulation of airway smooth muscle
contraction and activation of inflammatory responses. There is also a substantial amount of cross-regulation between b-catenin-independent WNT signalling
and other pathways, such as transforming growth factor (TGF)-b signalling, which collectively drives airway remodelling.
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decreased risk of developing asthma, depending on whether these

variants increased or decreased the expression of b-catenin, re-

spectively [109]. Furthermore, endobronchial biopsies from

patients with mild-to-moderate asthma showed that WNT3A

and WNT10A associated with Th2-high asthma [103]. In support

of this, the b-catenin destruction effector genes Axin1, APC and

GSK3b were all found to be decreased in PBMCs from Korean

patients with asthma [104].

Collectively, these results support the view that both axes of

WNT signalling are elevated in asthmatic tissues and link to Th2-

specifc inflammation. These results are largely backed up by

mechanistic and translational studies in animal models, although

some discrepancies exist, which are further outlined below.

Evidence from mechanistic studies on adaptive
immunity
WNT/b-catenin signalling is critically involved in T cell develop-

ment in the thymus [110,111], primarily through interaction of

b-catenin with the transcription factor special AT-rich-binding

protein 1 (SATB1) [112], which was recently also shown to be

associated with mucous hypersecretion [113]. However, WNT/

b-catenin has also been implicated in the Th2-mediated response

that occurs after maturation in the thymus, specifically within the
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context of allergy. Transgenic mice producing WNT-1 in a tetra-

cycline-based (tet-ON) manner, under control of the Clara cell

secretory protein (CCSP) promoter, specific for Clara cells, and

subjected to OVA exposure to drive allergic asthma-like changes,

showed attenuated AHR, BAL eosinophilia, and a reduction in

mucus production [114]. Overexpressed WNT-1 had no effect on

systemic sensitisation, as evidenced by unchanged OVA-specific

IgE, IgG1, and IgG2b levels in serum. Treatment with the nonse-

lective GSK-3 inhibitor lithium chloride could mimic these results,

highlighting the role of b-catenin signalling in this response. In

line with this, mice with a homozygous hypomorphic mutation at

the Dickkopf-1 (DKK-1) allele, in which DKK-1 expression is

reduced by approximately 90%, showed amplified WNT/b-catenin
signalling, accompanied by reduced levels of neutrophils, eosin-

ophils, and CD4+ T cells in BAL fluid in response to allergen

challenge with house dust mites [115]. In another study, suppres-

sion of DKK-1 by a neutralising antibody, or administration of

WNT-3A, reduced neutrophil trafficking during acute inflamma-

tion [116]. Moreover, inhibition of DKK-1 reduced the production

of IL-4, IL-5, IL-10, and IL-13 in CD4+ T cells, and suppressed

interferon (IFN)-g expression under Th1-cell polarisation condi-

tions [112,117]. WNT–10 B was also recently implicated in Th2

activation [118]. WNT-10 is expressed in airway epithelium as well
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as in T cells. Full-body ablation of WNT-10 resulted in an increased

Th2 predominant inflammatory response in an acute house dust

mite mouse model. BAL fluid eosinophils were elevated as well as

whole-lung homogenate expression of IL-4 and IL-13 and infiltra-

tion of antigen-specific effector cells in the lungs, although there

was no difference in the proportion of infiltrated T cells within the

lungs of WNT-10B–/– mice. However, among the infiltrated cells

was a higher number of effector cells, characterised as CD44high

CD62Llow, suggesting that antigen exposure is a requisite for the

WNT-10B–/– state to take effect [119]. In line with this, sorted T

cells from WNT-10B–/– mice exposed to IL-4 to drive Th2 polarisa-

tion exhibited increased GATA-3 and IL-4 expression. Of note,

these changes were absent under baseline conditions, and no

differences were found in expression of T-box transcription factor,

(T-bet; expressed in CD4+ T cells committed to Th1 T cell devel-

opment). Moreover, WNT-10B–/– T cells exposed to CD3/CD28 to

drive clonal T cell expansion through ligation of the T cell receptor

(TCR), showed increased proliferation. Other immune cells have

also been linked with WNT signalling, although not all of these

studies have been tested within the context of an asthma or

allergic inflammatory model. Isolated DCs exposed to curcumin,

a natural substance that increases b-catenin activity in these cells,

prevented upregulation of the activation markers CD40 and CD68

induced by lipopolysaccharide (LPS). Curcumin also prevented

lymphocyte proliferation following exposure to LPS in a mixed

lymphocyte reaction assay, and reduced OVA-induced accumula-

tion of inflammatory cells in the BAL fluid of mice [120]. Further-

more, intestinal DCs deficient in b-catenin are compromised in

their ability to produce retinaldehyde dehydrogenases (RALDH)

[121], an enzyme that is part of the conversion of vitamin A to

retinoic acid. Failure to mount a RALDH response subsequently

shifts Th polarisation in favour of Th1 cells [122]. Although

retinoic acid production by DCs has been considered to be limited

to gut-resident DCs only, other DC populations have recently been

shown to also express RALDH, particularly lung-resident DCs,

which express RALDH-2 [123,124]. Survival of eosinophils has

also been reported to require the nuclear presence of b-catenin,
which can be triggered via IL-5 in a WNT-independent manner

[125]. Moreover, eosinophils from patients with asthma can mod-

ulate the WNT secretory profile of cultured ASM cells when

adhered to [126,127]. These changes can subsequently affect

how smooth muscle cells proliferate and maintain their extracel-

lular matrix (ECM) surroundings. Other cell types, such as mast

cells or B cells, have thus far not been researched in an asthmatic or

allergic setting, although active WNT signalling is required for

their proper differentiation [128,129].

Evidence from mechanistic studies on innate immunity
WNT/b-catenin signalling has also been demonstrated to regulate

innate immune responses, primarily through interaction with

nuclear factor kappa-light-chain-enhancer of activated B cells

(NF-kB). NF-kB is a transcription factor that drives the expression

of multiple cytokines, chemokines, and cell adhesion molecules

that are involved in asthma pathophysiology. Its activation occurs

mainly through ILs or TNF, or is elicited by the activation of

Toll-like receptors (TLRs) during a bacterial or viral exacerbation.

The usefulness of targeting NF-kB in asthma has already been

demonstrated by the efficacy of glucocorticosteroids, which can be
contributed in part to the inhibition of NF-kB [130]. b-catenin has

been shown to interact with both the p65 [131–133] and p50

[131,132,134–136] subunit of NF-kB in various cell types, general-

ly resulting in impaired DNA binding, transactivation activity, and

target gene expression mediated by NF-kB. GSK-3 is also required

for NF-kB activation via degradation of b-catenin [137–139],

although direct phosphorylation of NF-kB p65 by GSK-3 has also

been proposed [140,141]. Interestingly, another line of research

has proposed a dependency of NF-kB on b-catenin. Increased

b-catenin signalling in alveolar epithelial cells enhanced NF-kB
signalling and transcriptional output in vitro [142]. The nuclear co-

factors CREB-binding protein (CBP) and E1A binding protein p300

(p300) have been shown to be required for b-catenin and NF-kB
interactions [143,144]. It was recently shown that, in ASM, inhi-

bition of the b-catenin–CBP interaction could amplify NF-kB-
mediated inflammation, whereas inhibition of the b-catenin–
p300 interaction could attenuate it (authors’ unpublished find-

ings, 2017). Although detailed molecular events remain to be

determined, these results suggest a molecular switch that directly

controls NF-kB output, requiring the presence of b-catenin
(Fig. 3).

The interconnected nature of WNT/b-catenin signalling with

both adaptive and innate immune responses complicates the

interpretation of genetic screening studies that have implicated

b-catenin signalling in asthma. In addition, both inflammatory

cascades interact with each other. Innate immune mechanisms are

required for DC priming [145] and can amplify a Th2 response to

inhaled ovalbumin [146,147]. Furthermore, commercially avail-

able OVA is known to contain traces of LPS [148], which facilitate

the priming of Th cells to inhaled OVA. The degree of LPS exposure

in conjunction with OVA also determines the type of T cell

response that is elicited (e.g., Th1 versus Th2) [146,149–152].

NF-kB p50–/–mice were completely devoid of airway inflammation

when challenged with inhaled allergen in a murine model of

asthma [153], and it has been shown that NF-kB is critical for

Th2 differentiation through expression of GATA-3 [154]. To help

facilitate the drug development process, future efforts aimed at

identifying new WNT targets should extricate innate from adap-

tive immunity.

WNT signalling and airway remodelling in asthma
Evidence for b-catenin-independent WNT signalling
WNT-5A is increasingly expressed in ASM cells of patients with

mild to moderate asthma compared with healthy individuals

[107]. A recent study implicated WNT-5A with ASM contraction,

where WNT-5A acts via autocrine signalling to promote actin

polymerisation in ASM cells [155]. The increased presence of actin

filaments increased maximum force generation in ASM cells with-

out affecting sensitivity to histamine. Increased activity of WNT

pathway activation and modulation of the actin cytoskeletal

network could serve as an alternative model to explain AHR in

asthma [155]. In addition, WNT-5A is responsible for some of the

actions mediated by transforming growth factor (TGF)-b. In hu-

man ASM, fibronectin and collagen synthesis following stimula-

tion with TGF-b requires de novo synthesis of WNT-5A and

subsequent activation of TGF-b-activated kinase 1 (TAK1) and

specificity protein-1 (SP-1) [107,156]. It was further shown that

some of the effects of WNT-5A initiated by TGF-b require the
www.drugdiscoverytoday.com 55
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FIGURE 3

Targeting Wingless/Integrase-1 (WNT) signalling in asthma. When WNT pathway inhibition is to be achieved to treat asthma, it is important to consider the
different levels of intervention, which can profoundly impact the final outcome of the treatment. Here, we categorise these levels in three compartments based
on cellular architecture: (i) the extracellular environment; (ii) the cytosolic environment; and (iii) the nuclear compartment. Generally, designing compounds that
act upstream can result in a lack of specificity, because of the interconnected nature of cell signalling and its numerous feedback loops. In this case, potential off-
target effects can be expected. At the same time, this approach allows for a broader therapeutic reach, because upstream effectors (e.g., WNT ligands) are more
likely to be shared by different cell types compared with downstream effectors. It also presents a more diverse platform for drug development; because cell
permeability is not required, small molecules, monoclonal antibodies, recombinant proteins, and receptor constructs (e.g., fusion proteins) are all part of the
drug repertoire. Conversely, designing compounds that act downstream in the cell allows for the inhibition of specific signalling events, thus minimising off-
target effects. Maximum specificity can be achieved by inhibiting only a specific subset of protein–protein interactions, for example the interaction of b-catenin
with CREB-binding protein (CBP), but not E1A binding protein p300 (p300). However, targeted therapy in the nucleus presents more difficulties in the drug
designing phase, because compounds have to cross several barriers before reaching their designated site, requiring them to be soluble and cell permeable, or
encapsulated by a delivery vehicle. Additionally, the delivery and retainment of drugs inside the cell can be highly dependent on the presence and activity of
ABC transporters that are expressed in the lungs and that might use pulmonary drugs as substrates.
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release of actin-binding proteins following formation of actin

filaments. Of particular interest here is myocardin-related tran-

scription factor A, which is released upon WNT stimulation and

can drive expression of TGF-b target genes [157]. Individually,

WNT-5A is unable to achieve the effects mediated by TGF-b,
indicating that cooperative signalling is a requisite for this effect

[155]. The effects of TGF-b–WNT–MRTF-A are also relevant for

other aspects of airway remodelling. For example, MRTF-A is

critically involved in the induction of TGF-b-mediated epithelial-

–mesenchymal-transition (EMT) [158,159] and the epithelial–

myofibroblast transition [160]. Myofibroblasts are a rich source

of ECM proteins, and MRTF-A is an important mediator of myofi-

broblast activation and expression of ECM proteins [161]. Inhibi-

tion of mechanotransduction by blocking the RhoA–MRTF-A axis

attenuated experimental pulmonary fibrosis in mice [162]. In

asthma, cross-regulation between TGF-b and WNT signalling

could allow for the development of treatment strategies that

can overcome the shortcomings of drugs that target TGF-b signal-

ling more directly (which are associated with severe adverse

effects). Going forward, it is essential that we study this level of

integration in more detail, because the nature of this crosstalk can
56 www.drugdiscoverytoday.com
be overwhelmingly complex and context dependent [163]. Failure

to recognise this level of integration will confound the develop-

ment of effective therapeutic interventions in a complex disease

such as asthma.

Evidence for WNT/b-catenin signalling
b-catenin is a critical regulator of airway remodelling, particularly

in ASM and fibroblasts. Both cells require active b-catenin signal-

ling to promote cell growth [90,164] and production of ECM

proteins [165–167]. Although the nature of WNT/b-catenin ex-

pression in animal models for asthma is controversial (see above),

targeting this pathway could still be beneficial in a therapeutic

setting. OVA-exposed Balb/c mice treated with small interfering

(si)RNA targeted against b-catenin showed considerably reduced

parameters of airway remodelling. Both deposition of newly

synthesised collagen and expression of alpha smooth muscle actin

(a-SMA) were attenuated following inhibition of b-catenin [89].

Similarly, inhibition of the b-catenin–CBP interaction with the

small-molecule ICG-001 was able to prevent ASM thickness after

repeated OVA challenge and showed a trend towards a decline in

peribronchial collagen deposition [90]. These results have been
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corroborated in a mouse model for occupational asthma [94].

Moreover, inhibition of WISP-1 (an inducer of WNT/b-catenin
signalling) by a neutralising antibody attenuated OVA-induced

ASM thickening in rats [168].

Current therapies and WNT signalling
According to the Global Initiative for Asthma (GINA), key points

in asthma management are to achieve good symptom control and

to minimise future risk of exacerbations, fixed airflow limitation,

and adverse effects of treatment [169], highlighting our lack of

understanding of asthma aetiology and the focus on symptomatic

rather than curative treatment. To date, there have been no

clinical trials for asthma involving the modulation of the WNT

signalling pathway. Current therapy is mainly based on (combina-

tions of) inhaled corticosteroids, b2-adrenergic receptor agonists,

and leukotriene inhibitors [169,170]. Some of these, most notably

glucocorticoids, have been reported to elicit secondary effects on

WNT signal transduction, mainly in off-target tissues. Mesenchy-

mal cell commitment towards osteoblastic differentiation to pro-

mote bone formation requires endogenous glucocorticoids that

signal through WNT pathways downstream [171]. In line with

this, osteoporosis, one of the most frequent adverse effects of long-

term glucocorticoid therapy [172], is accompanied by inhibition of

WNT/b-catenin signalling in osteoblasts. Glucocorticoids activate

GSK-3 [173], inhibit TCF/LEF [174], and increase the expression of

WNT pathway inhibitors, such as DKK-1 [175–177] and soluble

Frizzled-related protein-1 (sFRP-1) [178]. GSK-3 can also phosphor-

ylate the glucocorticoid receptor (GR), which facilitates its re-

sponse to glucocorticoids [179–181]. It would be interesting to

assess the effects of glucocorticoids in different tissues that are

more relevant for asthma pathophysiology, and to evaluate

whether potential effects on WNT signalling activation are clini-

cally significant. At the moment, there is no evidence that both

short-acting and long-acting b2-adrenergic receptor agonists can

modulate WNT signalling in the lung. One study addressed the

interaction of fenoterol with WNT pathway components in hu-

man bronchial rings [182], but these findings have thus far not

been corroborated and require additional verification. Although it

has been shown that cysteinyl leukotrienes can activate b-catenin
signalling [183,184], primarily in a WNT-independent manner

through activation of phosphatidylinositol 3-kinase (PI3K)

[185], there are no studies that have shown WNT pathway modu-

lation by any of the currently available cysteinyl leukotriene-

receptor antagonists (montelukast, zafirlukast, and pranlukast).

The same holds true for most other available treatment strategies,

examples being IgE inhibition with omalizumab or cholinergic

pathway inhibition with tiotropium. Of note, asthma treatment is

moving towards personalised medicine and a focus on asthma

pheno- and endotypes [186–188]. Drug therapies previously

deemed ineffective have gained renewed interest in light of these

developments, one example being biologics targeted against Th2

cytokines [189]. Given the close involvement of WNT pathway

components with innate and adaptive immunity, it would be

interesting to re-evaluate these drugs based on their potential

secondary and/or indirect effects on WNT signalling. In addition,

several other drugs that are currently under trial might prove

efficacious in terms of WNT signal modulation. For example, drugs

that inhibit the prostaglandin (PG) D2 receptor subtype DP2 [also
known as the chemoattractant homologous receptor expressed on

Th2 cells (CRTh2)], important in Th2 and type 2 innate lymphoid

cell (ILC2) function [190,191], but possibly also in airway remo-

delling [190], are now in clinical development for asthma [192]. It

is known that b-catenin functions downstream of the closely

related eicosanoid PGE2 in a cAMP-dependent manner in several

malignant cell types [193,194], and it would be worthwhile to

assess the effects of CRTh2 antagonists on b-catenin signalling.

Concluding remarks
More than 30 years after the discovery of what is possibly the

oldest evolutionary conserved pathway in animals, and extensive

research efforts to characterise this fundamental pathway, target-

ing WNT signalling in a clinical setting is still in its infancy.

Despite intensive efforts to characterise this pathway in a disease

setting, including asthma, unveiling a multitude of potential

therapeutic points of intervention, there have been surprisingly

few attempts to modulate WNT pathway components in clinical

trials. This is not because of a lack of available reagents that target

the WNT pathway [195], which are increasingly being discovered

and developed. Some of these compounds are currently being

tested in clinical trials, of which most are within the scope of

cancer treatment, but most other fields have so far lagged behind,

including asthma [196]. Most drugs tested in current trials target

extracellular modulators of WNT signalling, including not only

DKK-1, but also the WNT ligands themselves, as well as WNT

receptors [196]. This is surprising, considering the widespread

involvement of WNT signalling in almost every tissue within

the human body, and is likely to have secondary effects in off-

target tissues. Nonetheless, these studies will provide critical clues

to the safety profile of these WNT modulators, and whether they

can be efficacious in a therapeutic (cancer) setting. They will also

provide important information about whether full inhibition or

activation of WNT signalling is the right approach for therapy

[197]. During drug-screening approaches, the most potent drugs

are usually selected for and tested in a clinical setting. However,

full reduction of aberrant WNT signalling might not necessarily be

the right approach. Given that WNT signalling is intricately

involved in tissue homeostasis, therapeutic targeting might re-

quire a more delicate approach, where WNT pathway activation

needs to be brought back down to normal levels. In fact, the safety

profile of WNT modulators currently in preclinical and clinical

trials for cancer, including PRI-724 [198], LY209314 [199],

CWP232291 [200], OMP-54F28 [201], and OMP-18R5 [202], show

that many of these compounds share some of their adverse effects.

Although the safety results from these studies showed good toler-

ability overall, most of these compounds associated with symp-

toms of nausea, diarrhoea, and vomiting. Although these adverse

effects might raise concern over their general usability in the

clinic, limiting systemic exposure by restricting the reach of these

drugs to the lungs through inhalation could largely overcome

these issues. Nonetheless, these results highlight the difficulty that

resides in developing safe and effective therapeutic compounds

targeting this complex pathway.

The increasing interest in characterising asthma phenotypes

and endotypes, and the emerging concept that asthma might have

a developmental basis, raises interesting thoughts in terms of

future therapy. Identifying biomarkers for asthma development
www.drugdiscoverytoday.com 57
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and susceptibility in early life could pave the way for treatment

strategies that could alter disease progression entirely, possibly

even halting or reversing it. In light of the genetic and develop-

mental aspects of asthma, targeting the WNT pathway would be a

primary candidate in this regard. Of particular interest would be

WNT-associated therapies that affect airway remodelling in early

life, because remodelling may already develop before the onset of

asthma symptoms. Targeting WNT signalling in patients who

already have asthma might also be beneficial. Of special interest

here are compounds that target the selective inhibition of the

interaction between b-catenin and co-factors, such as CBP or

p300, because they only disrupt a small subset of co-factor inter-

actions, initiating a transcriptional program that potentially inhi-

bits disease parameters, while leaving others intact. They also act

significantly downstream in the cell, possibly preventing unwant-

ed secondary effects. To improve the development of therapeutic

targets downstream of WNT signalling, it is essential that we learn

more about the nuclear actions of b-catenin, because this is

currently an underappreciated topic. For example, CBP and

p300 are paralogous genes that share a large degree of structural

similarity, yet they are often ascribed opposing roles [203]. How

CBP and p300 can exert these seemingly bimodal functions

remains to be determined. It has been suggested that the interac-

tion between b-catenin and CBP or p300 results from competition

[203], but this model seems too much of an oversimplification,

because CBP and p300 are known to facilitate transcriptional

output through a plethora of additional transcription factors.

Additionally, differential phosphorylation of CBP or p300

[203,204], or yet to be discovered binding partners, could govern

selectivity and binding with regulatory components. Both the

ability of CBP and/or p300 to modulate chromatin and acetylate

b-catenin or other proteins through their histone acetyl-transfer-

ase (HAT) domain will be an important focus of study. Expanding

our knowledge of these architectural elements will further our

ability to design drug therapies that target a selective range of
58 www.drugdiscoverytoday.com
transcriptional events involved in disease, without interfering

with the crucial role of WNT signalling in tissue homeostasis. Five

clinical trials are currently underway, all in cancer, using the small-

molecule inhibitor PRI-724 (an enantiomer of ICG-001), which

selectively targets the b-catenin–CBP interaction, with no effect

on p300 [205].

Type 2 inflammation can be efficiently suppressed in most

patients with asthma with the regular use of inhaled glucocorti-

costeroids. Although Th2-high asthma is generally a corticoster-

oid-responsive endotype [206–208], a notable subgroup of

patients with this endotype maintain symptoms and experience

severe uncontrolled asthma despite regular use of steroids [209–

213]. Novel drug treatment of this group of steroid-insensitive

patients with severe asthma is warranted. Furthermore, some

Th2-high asthmatics require high doses of inhaled steroids or

oral steroids for maintenance therapy, and these patients are in

need of alternatives to avoid excessive adverse effects. The advent

of more specific inhibitors, such as biologicals targeted against

type 2 inflammation, has raised hope that these drugs will

provide similar benefits to patients with asthma, while displaying

fewer adverse effects. However, compared with glucocorticoids,

these compounds have a more limited effect on airway function

and asthma control, even when stratified for different asthma

pheno- or endotypes. Thus, they have so far not been able to

replace steroid therapy and are adjunctive at best [214]. In addi-

tion, glucocorticoids have no noticeable effect on airway remo-

delling. This is where anti-WNT therapy could confer additional

benefit, because of its combined effects on Th2 immunity, airway

remodelling, and muscle biology. Most trials using anti-DKK-1

antibody therapy in cancer are now complete, and a positive

outcome of these studies will be important in furthering our

understanding towards the development of asthma therapy. Over

the next couple of years, these results and others should shed new

light on whether we can use the WNT pathway as a therapeutic

target in asthma.
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