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Peptides have recently attracted much attention as promising drug candidates. Rational design of

peptide-derived therapeutics usually requires structural characterization of the underlying protein–

peptide interaction. Given that experimental characterization can be difficult, reliable computational

tools are needed. In recent years, a variety of approaches have been developed for ‘protein–peptide

docking’, that is, predicting the structure of the protein–peptide complex, starting from the protein

structure and the peptide sequence, including variable degrees of information about the peptide binding

site and/or conformation. In this review, we provide an overview of protein–peptide docking methods

and outline their capabilities, limitations, and applications in structure-based drug design. Key

challenges are also briefly discussed, such as modeling of large-scale conformational changes upon

binding, scoring of predicted models, and optimal inclusion of varied types of experimental data and

theoretical predictions into an integrative modeling process.
Introduction
Computational docking methods have proven to be useful in the

discovery and design of small-molecule drugs. Similar efforts are

being made in the field of peptide therapeutics [1,2]. However, the

docking methods designed for small-molecule interactions are

usually not well suited for the modeling of the significantly more

flexible and larger peptide molecules [3]. The interest in peptide

therapeutics [4,5] triggered the rapid development of new tech-

niques dedicated to protein–peptide docking [1,2], which are

being increasingly incorporated into the drug discovery and de-

sign process [6–18]. In this review, we outline state-of-the-art

protein–peptide docking methods. We first provide an overview

of the available software solutions and discuss the opportunities

they offer and then highlight the main challenges in the field of

protein–peptide docking.
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Different methods–different opportunities
Protein–peptide docking methods can be divided into three cate-

gories: template-based docking; local docking; and global docking

(Fig. 1). Different approaches offer different levels of prediction

accuracy, often determined by the amount of interaction infor-

mation provided as input. A summary of the main currently

available tools and servers is presented in Table 1.

Template-based docking
Template-based (comparative) docking methods use known struc-

tures(templates)as scaffolds to build a model ofthecomplex [19–21].

One ofthe mostcommondocking practices is to thread receptor and/

or peptide sequences through a template structure. This method can

be particularly effective if the template is similar to the investigated

complex [22,23]. Template-based docking is usually performed man-

ually or semiautomatically using a set of tools for sequence–structure

comparison and analysis. The GalaxyPepDock [19] web server
. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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FIGURE 1

Typical pipelines for protein–peptide molecular docking. Docking methods can be divided into three categories according to the amount of required input data:
(a) template-based methods that utilize knowledge about the structure of similar complexes (templates); (b) local docking methods that require some
knowledge about the binding site; and (c) global docking methods that assume no knowledge about the peptide beyond its sequence.

Re
vi
ew

s
� I
N
FO

R
M
A
TI
C
S

provides a fully automated template-based approach. It searches for

templates based on similarities of the input protein structure and

protein–peptide interaction to structures of complexes stored in

PDB. Next, it builds complex models using energy-based optimiza-

tion and refinement that allows for structural flexibility. Template-

based docking of highly homologous complexes is also provided by

protocols dedicated to the prediction and design of peptide binding

specificity [15]. For example, the FlexPepBind protocol enables the

modeling of different peptide sequences into a receptor binding site,

with constraints that reinforce defined critical features, such as

conserved hydrogen bonds [15]. Additionally, template-based

modeling methods can also use fragments of monomeric proteins

[24,25] and interfaces from protein–protein complexes to build

modeling scaffolds [3,26]. Structures of protein–protein interaction

interfaces are particularly useful in the design of peptide inhibitors of

protein–protein interactions [1,3,26].

Local docking
Local docking methods perform a search for a peptide binding

pose in the proximity of a user-defined binding site; therefore,

docking accuracy depends on the input information on the bind-

ing site: the more precise, the better. The available methods use

different ways of defining the binding site. Rosetta FlexPepDock

[27], DynaDock [28], or PepCrawler [29] require an initial model of

the complex prepared by the user. As demonstrated, the methods

should enable improvement of the initial model if its accuracy is in

the range of approximately 5 Å backbone- root-mean-square devi-

ation (RMSD) from the experimental structure. Additionally, the

input model may need some method-specific preparation, such as
elimination of internal clashes [15]. However, some of the meth-

ods require less rigorously defined initial models. For example, the

input peptide conformation in Rosetta FlexPepDock ab initio [30]

might be far from the native, because the method enables high

flexibility of the peptide and extensive sampling of rigid body

orientations within the binding site. By contrast, HADDOCK [31]

can automatically place the peptide in the proximity of the

binding site defined by a user-provided list of interface residues

[32]. Another group of local docking methods comprises tools

dedicated to small-molecule docking. The applicability of these

methods (AutoDock Vina [33], Gold [34] or Surflex-Dock [35]) is

limited to short peptides (up to a few amino acids). They also

require the user to manually place a peptide conformation within

the binding site. All three methods were validated against an up-

to-date benchmark of protein–peptide complexes and produced

near-native models in 19%, 30%, and 38% of cases, respectively

[36]. As presented recently, the peptide size limitation of small-

molecule docking tools could be overcome by docking peptide

fragments [37,38] (see the DINC 2.0 web server [37] in Table 1).

Finally, local docking methods can be used for refining medium-

quality models to better resolution (e.g., the PIPER-FlexPepDock

[39] global docking protocol successfully uses Rosetta FlexPepDock

[27] for the refinement of top-scored models): if Rosetta FlexPep-

Dock is provided with a high-quality initial model, it can yield

even subangstrom resolution [11,15].

Global docking
Global docking methods perform a coupled search for the peptide

binding site and pose. The simplest approach to global protein–
www.drugdiscoverytoday.com 1531
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TABLE 1

Overview of protein–peptide docking approaches

Method Server Required
inputa

Description Performanceb on benchmark sets and comments Refs

GalaxyPepDock http://galaxy.seoklab.
org/pepdock and a
standalone version

N/A Template-based docking procedure: (i) search for templates
based on structure and interaction similarity; (ii) model building
by energy-based optimization; (iii) energy-based scoring; and (iv)
refinement of final structures

Tested on unbound complexes from PeptiDB [45] database:
medium resolution or better models obtained; used in study to
design peptide ligands for neuronal polo-like kinase [10], where it
was used to redock fragments extracted from protein–protein
interfaces

[19]

PepComposer http://biocomputing.
it/pepcomposer/
webserver

B (does not
require
peptide
sequence)

Template-based docking procedure: (i) search for regions
structurally similar to region of predefined binding site in
database of experimentally solved monomeric proteins; (ii)
retrieve continuous backbone fragments in contact with region of
binding site; and (iii) design peptide sequence

Tested on LEADS-PEP [36] set: in �50% of cases (23 out of 53),
median backbone RMSD between designed peptide ranking first
and native peptide was 1.9 Å (or 1.1 Å if best out of first ten-
ranked peptides was considered, accounting for 25 out of 53
cases); direct comparison with other tools is not straightforward,
because Pepcomposer does not use sequence of docked peptide
and designed peptides are usually shorter than native ones [24]

[24]

Rosetta
FlexPepDock

http://flexpepdock.
furmanlab.cs.huji.ac.il
and standalone
version

PcB Local docking procedure: Monte Carlo-based optimization of fully
flexible peptide within binding pocket. Receptor flexibility limited
to side-chains, but can be extended to full receptor. Clustering
and scoring according to Rosetta energy function

Tested on locally perturbed complexes from PeptiDB [45]: near-
native or better models obtained for input structures perturbed
up to 5–6 Å peptide RMSD from native [27]; ab initio FlexPepDock
version [30] enables extensive sampling of peptide backbone
conformations. FlexPepBind extension [15] enables prediction of
relative binding affinities for given receptor; in drug design
studies, often used for high-resolution refinement of models to
recover atomistic details of interaction [10,12]; e.g., successfully
used to find binding modes of peptide inhibitor of Pseudomonas
aeruginosaMurA enzyme [6] and to investigate unknown binding
mechanism of ALOS4 to integrin in development of a non-RGD
cyclic peptide drug conjugate for human metastatic melanoma
treatment [9]; performs well for pHLA complexes [11] and
peptide–MHC complexes [16]; also used as a part of ToxDock tool,
dedicated to prediction of bindingmodes of peptide toxins to ion
channels [18]

[27]

DynaDock Not available publicly PcB Local docking procedure: (i) rigid-body optimization of peptide
orientation within binding site, followed by (ii) refinement of fully
flexible peptide receptor with Optimized Potential Molecular
Dynamics procedure (using soft-core potentials for implicit
receptor flexibility)

Tested on custom set of locally perturbed bound (15) and
unbound (4) cases: near-native or better models obtained in most
bound cases; performed best for input peptide conformations
within 5.5 Å peptide RMSD from native

[28]

PepCrawler http://bioinfo3d.cs.tau.
ac.il/PepCrawler/

PcB Local docking procedure: (i) fully flexible peptide docked with
Rapidly-exploring Random Trees algorithm, followed by (ii)
clustering-based scoring. Receptor flexibility limited to side-
chains

Tested on set of 25 complexes from PeptiDB [45] combined with
18 additional complexes: near-native or better models obtained
in most cases; performed best for input peptide conformations
within 5 Å backbone RMSD from native

[29]

HADDOCK
peptide docking

http://milou.science.
uu.nl/services/
HADDOCK2.2/
haddock.php

PcB (user lists
binding site
residues)

Local docking procedure: (i) generation of peptide structures by
threading peptide sequence onto three peptide conformations
(alpha-helix, polyproline-II or extended); (ii) rigid-body docking of
peptide structures within binding pocket; (iii) scoring based on
binding free energy (calculated using dampened Molecular
Mechanics Poisson–Boltzmann Surface Area); (iv) flexible
refinement of model; peptide and interacting residues of receptor
are fully flexible

Tested on PeptiDB [45] database: near-native or better models
obtained; enables incorporation of sparse experimental data to
guide docking [62]; successfully used to perform high-throughput
docking [14] and to incorporate NMR data into drug design
process [13]

[31]

PEP-FOLD 3 http://bioserv.rpbs.
univ-paris-diderot.fr/
services/PEP-FOLD3

PcBa Local docking procedure: (i) generation of starting poses; (ii)
Monte-Carlo-based sampling of peptide conformation; (iii) RMSD-
based clustering of resulting models

Tested on PeptiDB [45] database: medium–high-quality models
obtained; provides framework for structural characterization of
peptides both in solution and in complex with protein

[68]
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TABLE 1 (Continued )

Method Server Required
inputa

Description Performanceb on benchmark sets and comments Refs

AutoDock Vina Standalone version Pc and B (user
marks binding
region)

Local docking procedure: Monte-Carlo-based sampling of
peptide conformations within binding pocket. Receptor flexibility
is by default limited to side-chains, but can be extended to
include backbone

Tested on LEADS-PEP [36] set and on a custom set of 47 complexes:
medium-resolutionmodels obtained [36]; performed best for short
peptides (up to four residues) [33]; standard docking tool for small-
molecule ligands; has been used to perform high-throughput
docking [12] and to design protein–protein interaction inhibitors
[17]

[33]

DINC 2.0 http://dinc.kavrakilab.
org

Pc and B (user
marks binding
region)

Local docking procedure: based on AutoDock 4 for docking long
peptides, in which peptide is divided into segments of increasing
length. During docking, receptor structure remains rigid

Tested on custom set of 73 complexes from PDB. More accurate
and faster than standard protocol recommended for docking
large ligands using AutoDock (Dinc version 1.0); improved version
(Dinc 2.0) enables docking of more challenging peptides (e.
g., >25 flexible bonds)

[37]

Gold Standalone version Pc and B (user
marks binding
region)

Local docking procedure: Monte-Carlo-based sampling of
peptide conformations within binding pocket. Receptor flexibility
either limited to side-chains or implicit (ensemble docking)

Tested on LEADS-PEP [36] set: medium-resolution models
obtained [36]; standard docking tool for small-molecule ligands;
used in drug design study to identify best MHC binder peptide [8]

[34]

Surflex-Dock Standalone version Pc and B (user
marks binding
region)

Local docking procedure: rotamer library-based generation of
peptide conformations within binding pocket. Receptor flexibility
limited to binding pocket

Tested on LEADS-PEP [36] set: medium-resolution models
obtained [36]; standard docking tool for small-molecule ligands

[35]

pepATTRACT http://bioserv.rpbs.
univ-paris-diderot.fr/
services/pepATTRACT/

N/A Global docking procedure: (i) generation of peptide structures by
threading peptide sequence onto three peptide conformations
(alpha-helix, polyproline-II or extended); (ii) global rigid-body
docking of peptide structures within binding pocket; (iii) scoring
with ATTRACT score; followed by (iv) flexible refinement of
models with iATTRACT [53]. Both peptide and interacting residues
of receptor are fully flexible

Tested on unbound complexes from PeptiDB [45] database: near-
native or better models obtained; also available in a local-docking
version, pepATTRACT-local [53], which additionally uses user-
provided list of residues involved in binding

[42,53]

MDockPeP Not publicly available N/A Global docking procedure: (i) MODELLER [69]-based prediction of
peptide conformation using fragments of monomeric protein
structures; (ii) global rigid docking using a modified version of
AutoDock Vina [33]; (iii) scoring with knowledge-based
ITScorePeP method; and (iv) fully flexible local optimization

Tested on complexes from PeptiDB [45] database: medium-
resolution or better models obtained

[40]

CABS-dock http://biocomp.chem.
uw.edu.pl/CABSdock
and as a standalone
version

N/A Global docking procedure: (i) explicit fully flexible docking
simulation; and (ii) clustering-based scoring. Receptor flexibility
limited by default to small backbone fluctuations, but can be
increased to include selected receptor fragments

Tested on complexes from PeptiDB [45] database: medium-
resolution or better models obtained; can be used for global
docking with large-scale conformational rearrangements of both
peptide and receptor [44,49]

[44]

AnchorDock Not available publicly Pc (peptide in
extended
conformation)

Global docking procedure: (i) simulation of folding of free peptide
in implicit solvent; (ii) ANCHORSmap [63]-based prediction of
anchoring spots; (iii) simulated annealing MD simulation of
peptide in proximity of anchoring spot; and (iv) clustering and
energy-based scoring

Tested on custom set of 13 complexes: near-native or better
models obtained in most cases

[43]

ClusPro
PeptiDock

https://peptidock.
cluspro.org/

N/A Global docking procedure: (i) motif-based prediction of peptide
conformation; (ii) PIPER [48] rigid-body docking; (iii) scoring
according to structural clustering; and (iv) minimization of final
structures

Tested on set of 16 complexes from PeptiDB [45] and additionally
on set of five newly published structures: medium-resolution
models obtained for all but three cases [41]

[41]

PIPER-
FlexPepDock

http://piperfpd.
furmanlab.cs.huji.ac.il

N/A Global docking procedure: (i) prediction of peptide conformation
using Rosetta fragment picker; (ii) PIPER [48]-based rigid-body
docking; (iii) refinement using Rosetta FlexPepDock [27] and (iv)
clustering and scoring according to Rosetta energy function

Tested on set of 27 complexes from PeptiDB [45]: near-native
conformation obtained in 70% of bound cases and 41% of
unbound cases

[39]

a All programs require as input a receptor structure and a peptide sequence. Additional requirements are as follows: PcB, initial peptide conformation in the binding site; Pc, initial peptide conformation; B, information on binding site of receptor.
bModel quality: peptide backbone-RMSD to experimental structure: subangstrom: <1 Å; near-native: <2 Å; medium: >2 Å and <5 Å (upper limit can vary slightly depending on method).
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peptide docking is to treat the protein and the peptide input

conformations as rigid and to perform exhaustive rigid-body dock-

ing. More sophisticated methods automatically predict peptide

conformation using a sequence provided by the user. Their pipe-

lines usually has three stages: (i) generation of input peptide

conformations; (ii) rigid-body docking; and (iii) scoring of the

models and/or refinement. As presented in Table 1, the peptide

conformation can be predicted using various strategies (e.g., using

structure fragments from monomeric protein structures [40,41],

threading the sequence onto a predefined set of template con-

formations [42], or simulating peptide folding in solution [43]).

Generation of peptide conformations can also be combined with

global docking in one explicit simulation. This is possible in the

CABS-dock method [44], which starts from random peptide con-

formations and induces their conformational changes only by

interactions with a flexible receptor. Alternatively, global docking

can be combined with predictions of the binding site. This ap-

proach is used in AnchorDock [43], which automatically identifies

potential binding sites and docks a flexible peptide in the proxim-

ity of these spots. High-accuracy predictions were recently

obtained by PIPER-FlexPepDock [39], a global-docking tool that

uses fragments extracted from solved monomer structures based

on sequence and (predicted) secondary structure similarity to

mimic the peptide conformational ensemble with significant re-

presentation of bound-like peptide conformations. The ensemble

is then rigid body-docked using exhaustive Fast Fourier Transform-

based docking with PIPER followed by flexible all-atom refinement

to near-atom resolution by Rosetta FlexPepDock (Fig. 2).
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Examples of global docking results obtained with PIPER-FlexPepDock [39]. The pict
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Challenges
We identify at least three major challenges to protein–peptide

docking: (i) modeling significant conformational changes of both

peptide and protein molecules (flexibility problem); (ii) selection

of the highest accuracy structure out of many generated models

(scoring problem); and (iii) integration of experimental data and

computational predictions into the protein–peptide docking

scheme (integrative modeling).

Flexibility
Docking difficulty and the prediction accuracy depends on the

number of flexible bonds of a peptide and, therefore, not only on

peptide size, but also on its defined secondary structure. Small-

molecule docking programs are usually limited to very short

peptides, up to a few residues [33,36]. Most of the docking methods

presented in Table 1 were tested on the PeptiDB set which com-

prises peptides that are 7–15 amino acids long. Within this size

range, acceptable results are usually obtained for well-structured,

helical or beta-sheet peptides. Modeling unstructured peptides is

more difficult and feasible for peptides up to ten residues. Model-

ing longer peptides can be overcome by docking peptide fragments

followed by their merging [37,38].

Receptor flexibility upon binding can range from small side-

chain reorganization to large-scale backbone rearrangements

[46,47]. The difficulty of docking increases with increasing recep-

tor conformational changes, and explicitly addressing backbone

flexibility can become a major challenge [20,46]. The most

straightforward approach is to perform rigid-body docking,
-340
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Receptor flexibility
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FIGURE 3

Approaches to modeling flexibility of a protein receptor in protein–peptide docking. The flexible elements of the system are marked in blue: (a) rigid-body
docking; (b) docking with flexible side-chains in the expected binding site; (c) ensemble docking of different protein conformations; and (d) docking with a
flexible protein backbone allowing for large-scale rearrangements.
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ignoring receptor flexibility (Fig. 3a). The main advantage of this

method is the low computational cost, which enables exhaustive

sampling of the receptor surface in search for a binding site. Rigid-

body docking is often used as the main or one of the main

components of global docking protocols (Table 1). However, those

protocols allow at least for side chain flexibility in other modeling

steps (Fig. 3b, Table 1). Other protocols use implicit flexibility

models: for example, Gold [34] uses ensemble docking (Fig. 3c),

whereas protocols such as DynaDock [28] and PIPER [48] use soft

potentials to mimic receptor flexibility. Finally, coarse-grained

protein models can be used to model large-scale backbone rear-

rangements, for example of disordered regions of significant

length [49] or a loop region close to the binding site [50] (Fig. 3d).

Scoring
The successful identification of the most accurate model among

the large pool of docking results remains a challenge [20]. In most

cases, the top-ranked models are of lower quality than the most

accurate models present in the docking results. Most docking

tools use energy-based scoring methods for model ranking. For

example, Rosetta FlexPepDock [27] uses the Rosetta energy func-

tion or its modification in the ab initio variant [30]; HADDOCK

[32] uses a method based on binding free energy calculated with

the dampened Molecular Mechanics Poisson–Boltzmann Surface

Area (MM-PBSA) algorithm [51]; pyDockWEB [52] uses a semi-

empirical physicochemical scoring function; pepATTRACT [53]

picks the best models according to the complex binding energy

derived from short MD simulations [54]; CABS-dock uses knowl-

edge-based scoring functions [44]; and BiPPred method MM-PBSA

affinity calculations [57]. Except for energy-based scoring, some

protein–peptide docking tools use additional methods to

improve model selection, such as structural clustering and selec-

tion of the largest clusters [44,49,55], incorporation of coevolu-

tionary information [56] or mutagenesis data [20], comparison

with template structures [15], or sequence-based predictions [57].

CAPRI competition results show that hybrid methods, based on

mixed scoring functions, generate the best protein–peptide dock-

ing results [20]. For example, including coevolutionary informa-

tion in the scoring procedure yielded outstanding results in a

recent CAPRI competition [56].
Integrative modeling
Using available experimental data can significantly increase dock-

ing accuracy: for example, nuclear magnetic resonance (NMR)

experiments can be used to identify native contacts, whereas

small-angle X-ray scattering (SAXS) or high-resolution cryo-elec-

tron microscopy (cryo-EM) provides the shape of the bound

complex [58]. However, making use of experimental data can be

challenging because of data ambiguity. As an example, the HAD-

DOCK server [31] enables the user to translate experimental data

into ambiguous interaction restraints that can be used in docking

[32,59,60]. Docking methods can also be helpful in the interpre-

tation of ambiguous data that describe a binding mechanism

[49,61]. Beyond the use of experimental data, prediction accuracy

can also be improved by integrating docking tools with other

computational techniques, such as molecular dynamics-based

approaches [62], key interactions [63], and prediction of the

binding site [1]. In case of prediction of the binding site, it is

advisable to use methods dedicated for detecting peptide binding

sites [64–66] (a recent book [1] provides an in-depth guide to such

computational tools). Traditional methods for small molecule-

binding site prediction might not be well suited to differentiate

the binding sites of nonpeptide ligands and protein–protein inter-

actions from protein–peptide binding sites [67]. Finally, different

predictions obtained with various protein–peptide docking tools

can be used in a meta-analysis approach to detect the protein–

peptide interface hotspots [22].

Concluding remarks
Recent interest in peptide therapeutics has triggered rapid develop-

ment of the field of protein–peptide docking [1,2,4,5]. So far, several

successful protein–peptide docking applications in drug design have

been reported, including virtual inhibitor screening [17,18],

prediction of subangstrom-quality models [6,11,12,14,15], interpre-

tation of experimental data [13,49], specificity prediction [1,15],

and design of interfering peptides targeting protein–protein

interactions [5,6,26].

Answers to practical questions, such as: ‘‘how accurate can

docking be?” or ‘‘how many poses should one consider to have

a chance to get a correct pose?”, are not straightforward. They

depend on the case, the method used, and, in addition, the success
www.drugdiscoverytoday.com 1535
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measures are not easy to establish. For example, the accuracy

measured as the commonly used RMSD to the experimental

structure is not always the best criterion of docking success. It

was recently shown that low-resolution (low-RMSD) models could

provide high-quality information on the complex structure, cor-

rectly identifying most of its key interactions [22]. Presently,

structure-based drug discovery and design uses protein–peptide

docking methods most commonly as tools supporting experimen-

tal work, for example for the interpretation of ambiguous
1536 www.drugdiscoverytoday.com
experimental data, identification of key interactions, or simply

for complex visualization. We expect that protein–peptide dock-

ing applications will expand as advances in flexibility modeling,

scoring methods and integrative modeling are made.
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