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Teaser From crisis to cures – a review on status, knowledge gaps and major obstacles in
NTM drug discovery and development, and how to move forward.

NTM drug discovery: status, gaps and
the way forward
Mu-Lu Wu1, Dinah B. Aziz1, Véronique Dartois2 and
Thomas Dick2

1Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, 14 Medical Drive,
117599, Singapore
2 Public Health Research Institute, New Jersey Medical School, Rutgers, The State University of New Jersey,
225 Warren Street, Newark, NJ 07103, USA

Incidence of pulmonary diseases caused by non-tuberculous mycobacteria

(NTM), relatives of Mycobacterium tuberculosis, is increasing at an

alarming rate, surpassing tuberculosis in many countries. Current

chemotherapies require long treatment times and the clinical outcomes

are often disappointing. There is an urgent medical need to discover and

develop new, more-efficacious anti-NTM drugs. In this review, we

summarize the current status of NTM drug development, and highlight

knowledge gaps and scientific obstacles in NTM drug discovery. We

propose strategies to reduce biological uncertainties and to begin to

populate a NTM drug pipeline with attractive leads and drug candidates.

Introduction
Whereas the incidence of tuberculosis (TB) is decreasing, a new health concern has been raised by

non-tuberculous mycobacteria (NTM). Different from their relative: Mycobacterium tuberculosis (the

etiologic agent of TB), NTM are opportunistic pathogens, causing mostly TB-like pulmonary diseases

largely inimmunocompromisedpatients orpatientswith pre-existing lung conditions, such ascystic

fibrosis (CF), bronchiectasis or chronic obstructive pulmonary disease (COPD). The annual preva-

lence of NTM pulmonary disease (NTM-PD) varies in different regions, ranging from 0.2/100 000 to

9.8/100 000 [1,2] with an overall alarming growth rate [3,4]. The situation is worse among vulnerable

populations. Large-scale epidemiological studies from several countries and regions reported a high

prevalence of 3.3–22.6% in CF patients [5], whereas COPD patients treated with inhaled cortico-

steroid therapy are associated with a 29-fold increased risk of NTM-PD [6]. In developing countries,

misdiagnosis of NTM as TB is common, owing to their similar appearance under microscopic

examination of sputum smears [7,8]. This is problematic in many ways: NTM incidence is vastly

underestimated, it unnecessarily drains resources dedicated to the global fight against TB and it leads

to mistreatment of patients because NTM infections do not respond to classic TB drug regimens.

NTM represent >160 species commonly found in soil and water, including municipal and

household water supply systems. The species show varying degrees of virulence leading to diverse
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clinical features. Within this group of bacteria, the Mycobacterium

avium complex (MAC: M. avium, Mycobacterium intracellulare and

Mycobacterium chimaera) and Mycobacterium abscessus are the most

frequently encountered pathogens associated with NTM-PD, ac-

counting for >90% of the total cases reported [5,9]. Until recently,

it was thought that the majority of NTM patients were infected

with genetically unrelated strains acquired independently

through exposure to soil or water [10,11]. However, recent

whole-genome analysis of a large global collection of M. abscessus

clinical isolates uncovered that most patients were actually

infected with genetically clustered strains [12,13]. Although these

data are compatible with infection from a common environmental

source, studies on transmission events suggest that indirect hu-

man-to-human transmission, presumably through fomite spread

or infectious aerosols, could have also contributed to the spread of

NTM infections [12,13].

Treatment for NTM-PD as recommended by the American Tho-

racic Society and the British Thoracic Society is largely empirical

[14,15]. Despite significant NTM interspecies variability in drug

susceptibility, treatment is often lumped together. Therapeutic regi-

mens tailored for specific species are only available for a few com-

monly encountered pathogens including for instance MAC, M.

abscessus, Mycobacterium kansasii and Mycobacterium xenopi. In gener-

al, macrolide-based (clarithromycinor azithromycin) multidrug regi-

mens are prescribed. For infection with MAC, the standard regimen

includes ethambutol and rifampicin. Whereas, in the case of M.

abscessus a macrolide is usually given with parenteral antibiotics,

an aminoglycoside and either cefoxitin, imipenem or tigecycline.

Standardofcarecallsfor12monthsofnegativesputumcultureswhile

on therapy [14], which usually results in 18–24 months of treatment

with a minimum of three antibiotics [16,17]. Despite this, treatment

outcomes remain poor. Although �50–88% MAC-PD patients

achieve sputum conversion (with 4–12% true relapse rate, as opposed

to reinfection) [16,18,19], the cure rate among patients with M.

abscessus pulmonary infection is only 25–58% [17,20,21]. Thus, M.

abscessus is often referred to as the ‘incurable nightmare’. In addition,

the prolonged treatment forNTM-PDnotonly induces severeadverse

events in patients but also creates a high burden to society. Ithas been

estimatedthat a totalofUS$815millionwasspent inrelationtoNTM-

PD in the USA in 2010 [22].

Clearly, owing to the poor treatment outcomes and lengthy

treatment duration accompanied by drug toxicity, there is an

urgent medical need to develop more-effective and safe regimens

consisting of ideally orally bioavailable drugs with broad-spectrum

anti-NTM activities for the treatment of NTM-PD. However, this

target product profile is not easy to achieve. In this review, with a

focus on NTM-PD caused by MAC or M. abscessus, we summarize

the current state of NTM drug discovery and development, present

our perspective on the underlying knowledge gaps and challenges

in NTM drug discovery and discuss how to focus research efforts to

accelerate building a NTM drug pipeline, based on lessons learnt

during the past decades in the TB field.

Current status of NTM drug discovery and
development
Since the critical shift in the 1990s from anti-TB regimens toward

macrolide-based multidrug therapy, not much has been accom-

plished in the treatment of NTM diseases owing to limited research
efforts. Most agents in the current treatment recommendations are

derived from clinical practice or in vitro drug susceptibility testing

results. The only new antibiotic that has been introduced to the

chemotherapy with clinical evidence is tigecycline [23]. Based on

literature and information from NIH ClinicalTrials.gov (https://

clinicaltrials.gov), we have summarized agents in development for

the treatment of NTM infections in Fig. 1. Unsurprisingly, in compar-

ison with the TB drug pipeline where >35 chemical entities are in the

discovery stage and �30 interventions are currently in clinical trials

(Working Group on New TB Drugs: https://www.newtbdrugs.org),

the NTM drug pipeline is nearlyempty. Most of the current candidates

and leads are derived from repurposing and reformulation of existing

antibiotics or ‘cross-testing’ of a few TB active compounds.

Clofazimine
Clofazimine is an orally administered drug approved for the

treatment of leprosy, currently repurposed as an anti-TB drug.

Clinical uses against M. avium infections since the 1990s have

demonstrated some efficacy in combination with other drugs

[24,25], but its use remained limited owing to lack of demonstrable

clinical utility and higher mortality rates reported in a trial among

HIV patients where it was added to clarithromycin and ethambu-

tol [26]. Research interest was revived in 2012 after a retrospective

review reported that a significantly greater proportion of MAC-PD

patients (HIV-negative) treated with clofazimine converted to

negative cultures, although relapse still occurred [27]. In vitro,

its MIC ranges from 1–4 mg/l against M. avium and is �1 mg/l

against the majority of M. intracellulare isolates [28]. Currently, a

Phase II clinical trial of clofazimine is in progress to evaluate its

efficacy for the treatment of MAC-PD (ClinicalTrials.gov identifier:

NCT02968212; Table S1, see Supplementary material online).

Clofazimine is also active against M. abscessus and other rapidly

growing mycobacteria: a majority of clinical isolates had clofazi-

mine MICs of �1 mg/l [29,30]. A retrospective study in Korea

reviewed the clinical outcomes of 27 refractory M. abscessus lung

disease patients after addition of clofazimine for 12 months: 15%

of the previously nonresponsive patients achieved sputum culture

conversion [31]. Additional safety and efficacy data of clofazimine

within a bigger group of patients have recently been documented

in another retrospective study by Martiniano et al. [32]. Among a

total of 112 patients with NTM infections (MAC, M. abscessus or

other species), 80% tolerated treatment with clofazimine for

>6 months; and out of 60 patients with pulmonary infections

who failed previous treatment 29 (48%) converted to negative

cultures within 1 year [32]. These results further imply a contrib-

uting effect of clofazimine in the treatment of NTM-PD. In line

with clinical observations, in vitro studies have demonstrated

additional merits of clofazimine in multidrug regimens for NTM

infections: the drug is synergistic with amikacin against M. avium

and M. abscessus [29,30] and it significantly prevented regrowth of

NTM strains after clarithromycin and amikacin exposure [33].

Linezolid and other new oxazolidinones
Linezolid, the first FDA-approved oxazolidinone, has been shown

to exhibit some – but relatively weak – in vitro activity against M.

avium and M. abscessus, with MICs ranging from 16 to 64 mg/l

[28,34,35]. Substantial toxicity associated with prolonged use of

linezolid is a major concern in clinical practice [36]. A Phase IV
www.drugdiscoverytoday.com 1503
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FIG. 1

Non-tuberculous mycobacteria (NTM) drug pipeline. Agents currently in discovery or development for the treatment of NTM pulmonary disease are shown.
Compounds in the ‘Discovery’ column are from literature. The asterisks (*) indicate repurposed drugs in the discovery stage. A ‘Pre-clinical’ column is not
included because no NTM candidates are currently in preclinical development. Drugs under ‘Phase I–IV’ are from ClinicalTrials.gov (https://clinicaltrials.gov) and
more details are shown in Table S1 (see Supplementary material online). Phase I and II are combined in one column: the first three trials are in Phase II and the last
one is a Phase I/II trial. aGaseous nitric oxide is composed of 0.5% NO and 99.5% nitrogen. Abbreviations: M. abs, Mycobacterium abscessus; MAC, Mycobacterium
avium complex; PD, pulmonary disease; CF, cystic fibrosis; FAS-II, type II fatty acid synthase; NDH-2, type II NADH-quinone oxidoreductase.
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clinical trial is underway in Bangkok to study the efficacy and

tolerability of linezolid in the treatment of NTM diseases (Clin-

icalTrials.gov identifier: NCT03220074). Recently, two other oxa-

zolidinones were considered based on their potency against NTM.

Tedizolid, which has an improved safety profile [37], exhibits an

MIC 4- to 16-fold lower than linezolid [38,39]. LCB01-0371, a

novel oxazolidinone currently in Phase II clinical development for

pulmonary TB, was found to be potent against M. abscessus, with

linezolid-like activity in vitro and in vivo [40].

Nitric oxide and aerosolized amikacin
There are two inhaled drugs in clinical development: nitric oxide

(NO) and liposomal amikacin for inhalation (LAI). NO is thought

to be promising in eliminating NTM infections because of its roles

in immune defense and its antimicrobial functions. Two formula-

tions of NO from two companies (AIT Therapeutics and Novoteris)

are currently in clinical trials with the objective of evaluating their

safety in patients. LAI, a novel formulation of amikacin, seems to

be associated with reduced toxicity and improved efficacy in

patients with refractory NTM lung disease especially those infected

with MAC, as suggested by its Phase II clinical trial results [41]. Its

efficacy and safety profiles are being further evaluated in a Phase II

trial against M. abscessus and a Phase III trial for recalcitrant MAC

lung disease.
1504 www.drugdiscoverytoday.com
Bedaquiline
Bedaquiline, being the only TB drug approved by the FDA during the

past 40 years, has low MIC values against a collection of M. avium and

M. abscessus clinical isolates [42–45]. However, despite being an

excellent growth inhibitor at low doses, it lacks bactericidal activity

against NTM in vitro [44,46]. The in vivo efficacy of bedaquiline seems

to be limited as well. Although it reduced colony-forming units

(CFU)inthe lungsby1 log inanacuteM.abscessusmousemodel [47],

it failed to prevent death of the infected mice in another chronic

study [48]. Similarly, bedaquiline was shown to exhibit bacteriostat-

icactivity ina M.avium late-infectionmousemodel [46]. Preliminary

results of bedaquiline as salvage therapy for NTM-PD (infected with

either MAC or M. abscessus) treatment suggested that it might have

some clinical activity because six out of ten patients had a microbi-

ological response, but its efficacy appears to be relatively moderate as

suggested by a low sputum culture conversion rate at 6 months [49].

Furthermore, relapse caused by the emergence of strains resistant to

bedaquiline has been reported [50]. Therefore, the clinical utility of

bedaquiline remains to be further investigated. Of note, similar to

clofazimine which targets type II NADH-quinone oxidoreductase

(NDH-2) [51], a key component in the electron transport chain,

bedaquiline also targets oxidative phosphorylation via inhibiting

ATP synthase [52]. Compared with other TB drugs, such as isoniazid

and rifampicin, which lose their potency against most NTM strains,

https://clinicaltrials.gov
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the fact that both oxidative phosphorylation inhibitors exhibit

relatively broad-spectrum antimycobacterial activities suggests that

targeting this energy-generating pathway could be a useful strategy

in anti-NTM drug discovery.

b-lactams in combination with b-lactamase inhibitor
avibactam
Owing to the presence of b-lactamases, NTM exhibit high levels of

natural resistance to most b-lactams, with the exceptions of

cefoxitin and imipenem, which are currently in use for the treat-

ment of M. abscessus infections [53,54]. The recent discovery of the

potent inhibitory effect by avibactam against b-lactamases in M.

abscessus and M. avium has brought research attentions back to

b-lactams. Treatment with avibactam significantly lowered MICs

of several b-lactams 4–32-fold in M. abscessus and M. avium [54–

56]. Reported combinations are summarized in Table 1.

Rifabutin
Rifampicin has long been known to be inactive against M. absces-

sus. Surprisingly, a recent screen of 2700 FDA-approved drugs

identified rifabutin, belonging to the same drug class as rifampicin,

as active against the bacteria in vitro [57]. It has an MIC of �2.5 mg/

l against a collection of M. abscessus strains and kills 90% of the

bacteria at 5 mg/l. A better understanding of the underlying

differences of these two drugs (such as differences in intrabacterial

metabolism and pharmacokinetic properties) could guide the

development of more-potent rifamycins against M. abscessus.

PIPD1 and indole-2-carboxamides
Two recent screens of TB-active hits against M. abscessus resulted in

two new leads: piperidinol-based compound 1 (PIPD1) and indole-2-

carboxamides [58,59]. Coincidently, these two structurally distinct

chemical entities both target MmpL3, a transporter crucial for the

export of trehalose monomycolates to the periplasmic space and

outer membrane of mycobacteria. Disruption of mmpL3 leads to

defects in mycolic acid synthesis and thus is fatal for mycobacteria

[60]. PIPD1 and indole-2-carboxamides (lead compounds 6 and 12)

have excellent activities against M. abscessus with MICs of 0.0625–

1 mg/l. They are bactericidal in vitro, reducing CFU 100-fold at 1–

2 � MIC. Macrophage assays demonstrated that these compounds

could arrest intracellular bacterial growth, but at much higher

concentrations. Moreover, treatment of infected zebrafish with

PIPD1 at 24 � MIC for 3 days decreased bacterial load by 1 log unit

and improved survival of the infected embryos.

Thiacetazone derivatives
Although thiacetazone (TAC) – a former (toxic) TB drug – is

inactive against NTM, a few derivatives of TAC synthesized for

TB evaluation were found to be effective against M. avium and M.

abscessus. SRI-286 and SRI-224 inhibited a panel of M. avium

isolates at 2 mg/l or lower, and SRI-286 could reduce the bacterial

loads in livers and spleens by 1 log [61]. D6, D15 and D17, second-

generation TAC analogs, are active against M. abscessus with MICs

ranging from 3.1–12.5 mg/l against the type strains. Similar to TAC

in M. tuberculosis, these compounds require cellular activation by

the monooxygenase EthA in M. abscessus [62]. These results sug-

gest that modifications of TAC could be an approach to develop

new chemical entities active against NTM.
Besides the abovementioned compounds that have been stud-

ied extensively for their effect against NTM, TP-271 (a novel

fluorocycline antimicrobial related to tetracycline) and some sal-

icylanilide esters and carbamates were also found to exhibit potent

activity in vitro against M. abscessus [63,64]. Several TB actives in

development, such as SQ109 (a 1,2-ethylenediamine that can

target MmpL3 [65,66]), DC-159a (a novel fluoroquinolone),

SQ641 (a capuramycin analog), ACH-702 (a new isothiazoloqui-

nolone) and mefloquine (a quinoline used for malaria) are active

against some NTM strains [67–71]. In addition, owing to a lack of

new active chemical entities, synergy combinations especially

with clarithromycin, amikacin, tigecycline or imipenem were

explored in vitro, whereas only a few have been studied in vivo

(Table 1). Overall, de novo drug discovery efforts have been very

limited so far. A few attempts have been made to develop novel

therapeutic approaches for NTM disease via repurposing or repo-

sitioning of existing antibiotics. Although some candidates exhibit

promising activity in vitro, most are at an early stage awaiting in

vivo and clinical evaluations. Clearly, more drug discovery efforts

are necessary to fill the NTM antibiotic pipeline.

Challenges in NTM drug discovery: from a bacteriology
point of view
NTM are naturally resistant to a wide spectrum of antibiotics,

including most TB drugs. This poses a major challenge for drug

discovery. Hit rates in primary screens for M. abscessus can be lower

than 0.1%. Thus, generation of attractive chemical starting points

for lead finding presents a bottleneck. The low level of suscepti-

bility of NTM to a wide range of drugs and compounds is attributed

to their ‘intrinsic’ drug resistance.

Intrinsic drug resistance
Considering that NTM reside mostly in soil and water, the selection

pressure from their antimicrobial-producing neighbors could have

driven these bacteria to develop a wide array of resistance mecha-

nisms to allow their survival in hostile environments. Our current

understanding of the mechanisms underlying intrinsic drug resis-

tance in NTM has been reviewed [72,73] and is therefore only briefly

summarized here. The thick hydrophobic, double-membrane cell

envelope of mycobacteria acts as a major permeability barrier.

Studies from the 1990s have demonstrated that Mycobacterium che-

lonae, a species that had not been differentiated from M. abscessus at

that time, has a cell envelope that is about 10–20-times less perme-

able than M. tuberculosis [74]. Morphotypic antibiotic resistance, a

phenomenon of varying degrees of drug resistance in M. avium

associated with a reversible colony morphology switch (white/red

on Congo red containing agar, transparent/opaque), is also attrib-

uted to changes in permeability owing to cell-wall modifications

[75]. Hence, antibiotics that target the cell envelope are likely to

potentiate other drugs with intracellular targets, as implied by the

synergisticeffectobserved betweenethambutol and rifampicininM.

avium [76] or vancomycin plus clarithromycin in M. abscessus [77].

Efflux pumps are additional elements that prevent intracellular

accumulation of drugs such as fluoroquinolones and macrolides

[78]. For drugs that can accumulate inside the bacterial cells, several

mechanisms have been identified that render the molecules inac-

tive. Some NTM species harbor polymorphisms in the target gene

contributing to natural resistance to the drug, for example amino
www.drugdiscoverytoday.com 1505
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TABLE 1

Synergistic antibiotic combinations in Mycobacterium avium and Mycobacterium abscessusa

No. Drug combination Type of study No. strains
tested

Reported outcomeb Refs

(a) M. avium complex

1 Amikacin + clofazimine In vitro 16 100% synergy [29]

2 Avibactam + ceftazidimec In vitro 1 Synergy [56]

In macrophage 1 Synergy

(b) M. abscessus

1 Clarithromycin + linezolid In vitro 2 Synergy [177]

2 Clarithromycin + tigecycline In vitro 20 65% synergy for Mycobacterium massiliense [178]

20 25% synergy for M. abscessus

In vitro 31 80.6% synergy [179]

3 Clarithromycin
+ vancomycin

In vitro 12 100% synergy [77]

4 Clarithromycin
+ moxifloxacin

In vitro 28 39.3% synergy for M. massiliense [180]

26 3.8% synergy and 65.4% antagonism for M. abscessus

In macrophage 15 33.3% synergy for M. massiliense

15 6.6% synergy and 66.7% antagonism for M. abscessus

In mice 6 50% synergy for M. massiliense

7 71.4% antagonism for M. abscessus

In vitro 20 85% synergy for M. massiliense [178]

20 5% synergy and 45% antagonism for M. abscessus

5 Azithromycin + moxifloxacin In vitro 28 35.7% synergy for M. massiliense [180]

26 3.8% synergy and 46.2% antagonism for M. abscessus

In macrophage 15 20% synergy for M. massiliense

15 6.6% synergy and 40.0% antagonism for M. abscessus

In mice 6 50% synergy for M. massiliense

7 71.4% antagonism for M. abscessus

6 Clarithromycin + linezolid
+ moxifloxacin/gatifloxacin/
levofloxacin

In vitro 2 Synergy [177]

7 Clarithromycin
+ ciprofloxacin + rifabutin

In vitro 2 Synergy [177]

8 Imipenem + clarithromycin In vitro 21 43% synergy [181]

9 Imipenem + levofloxacin In vitro 21 29% synergy [181]

10 Amikacin + clofazimine In vitro 40 100% synergy [30]

In vitro 77 80.5% synergy [29]

11 Amikacin + linezolid In vitro 32 53.1% synergy for M. massiliense [182]

32 37.5% synergy for M. abscessus

12 Tigecycline + clofazimine In vitro 19 42% synergy [183]

13 Tigecycline + linezolid In vitro 32 31.3% synergy for M. massiliense [182]

32 21.9% synergy for M. abscessus

In fruit fly 1 Synergy (dramatically improved survival of infected flies and reduced
bacterial population per fly)

[184]

14 Rifampicin + doripenem/
biapenem

In vitro 1 Synergy [185]

15 Avibactam + amoxicillinc In vitro 17 100% synergy [54]

In macrophage 1 Synergy

In zebrafish 1 Synergy (increased larva survival and reduced the proportion of
embryos with abscesses)

16 Avibactam + ceftarolinec In vitro 1 Synergy (increased kill) [186]

In macrophage 1 Synergy (increased kill)

1506 www.drugdiscoverytoday.com
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TABLE 1 (Continued )

No. Drug combination Type of study No. strains
tested

Reported outcomeb Refs

17 Avibactam + imipenem
(+amikacin)c

In vitro 1 Synergy (no significant MIC shift, but increased kill) [187]

In macrophage 1 Synergy (increased kill)

In zebrafish 1 Synergy (increased larva survival)

18 Avibactam + tebipenem/
Ertapenem/panipenemc

In vitro 29 100% synergy [55]

19 Avibactam + doripenem/
Faropenem/meropenem/
biapenemc

In vitro 29 55–75.9% synergy [55]

20 Avibactam + cefalotin/
Cefuroxime/cefamandole/
ceftriaxonec

In vitro 1 Synergy [54]

21 Clavulanic acid
+ meropenemc

In vitro 1 Synergy [185]

a Synergy combinations tested before the year 2000 are not included. In vitro synergy is defined as a combination with a fractional inhibitory concentration index (FICI) �0.5, unless
otherwise stated.
b The percentage in ‘Reported outcome’ column indicates the percentage of strains tested that showed synergy (or antagonism in some cases). Percentage is not reported when fewer
than five strains were tested. Antagonism (a FICI score >2 as defined by Choi et al.) is indicated when the percentage was significantly larger than that of synergy. Almost all combinations
reported here were synergistic except for macrolide (clarithromycin or azithromycin) + moxifloxacin which showed a synergistic effect for 30–50% of M. massiliense but an antagonistic
effect for 40–70% of M. abscessus strains. ‘M. abscessus’: M. abscessus subsp. abscessus; ‘M. massiliense’: M. abscessus subsp. massiliense.
cb-lactam and b-lactamase inhibitor combinations are defined as synergistic if the potency of the b-lactam is significantly improved (e.g., at least fourfold shift in MIC) in the presence of
the b-lactamase inhibitor.
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acid alterations in the arabinosyl transferase EmbB of M. abscessus

make ethambutol inactive by preventing drug binding [79]. Upon

exposure to the drug, some NTM species induce the expression of

certain genes resulting in the modification of the target binding site

of the drug. A well characterized example for this strategy is the

inducible macrolide resistance in M. abscessus mediated by the erm

(41) gene, which encodes a ribosomal methylase. Exposure to clar-

ithromycin or azithromycinincreases the expression level of erm(41)

dramatically within 24 h. Erm(41) methylates A2058 in the 23S

rRNA, leading to reduced binding of macrolides to their target site,

thus rendering the drugs inactive [80]. Because such resistance

occurs in specific environments (e.g., exposure to antibiotics) and

does not involve any genetic alterations, this type of resistance is

called adaptive – as opposed to acquired – resistance. Furthermore,

NTM possess a large collection of enzymes capable of metabolizing

drugs to a less active form. Knockout of these modifying genes such

as blaMab (encoding a b-lactamase) and eis2 (encoding a GNAT-

acetyltransferase) restored the activity of b-lactams and aminogly-

cosides in M. abscessus, respectively [81,82]. More examples of these

intrinsic resistance mechanisms are shown in Table 2. Interestingly,

a conserved transcription factor in mycobacteria: WhiB7, acts as a

regulator for many intrinsic drug-resistance mechanisms [83]. In M.

abscessus, 128 genes including erm(41) and eis2 have been identified

in the WhiB7 regulon (i.e., they are induced via a whiB7-dependent

mechanism). Deletion of M. abscessus whiB7 sensitized the bacteria

to drugs like clarithromycin, amikacin, erythromycin and tetracy-

cline 2–8-fold [84]. Altogether, the abundant intrinsic resistance

mechanisms form an elaborate network leaving behind only a few

antibiotics to exhibit inhibitory activity against NTM. A better

understanding of these molecular mechanisms might provide

insights into overcoming or bypassing some resistance pathways.

Development of a tool box to measure – and to understand –

compound uptake, metabolism and excretion by the bacteria (a

‘bacterial cell pharmacokinetics platform’) might not only greatly

facilitate specific lead finding and optimization projects but also
enable rational repositioning programs to improve the potency of

poorly active antibiotics targeting pharmacologically validated

pathways.

Acquired drug resistance
Besides being equipped with plentiful intrinsic resistance mecha-

nisms, NTM also have the ability to acquire new resistance through

genomic mutations that is inherited by offspring. The prolonged

course of treatment has greatly contributed to the emergence of

resistant strains, allowing the bacteria to develop mutations in the

target or other related genes to confer high-level resistance. As a

result, drug efficacy is abolished.

Up to now, there have been limited studies on acquired resistance

mechanisms associated with NTM. Acquired resistance to clarithro-

mycin emerged in the early 1990s soon after its introduction for

NTM treatment, especially with monotherapy. Mutations at nucleo-

tides 2058 and 2059 in the peptidyl transferase loop of the 23S rRNA

(rrl) were found in M. avium and M. abscessus clinical isolates to

confer a high level of macrolide resistance (MICs �256 mg/l) [85,86].

Of note, it has been shown recently in vitro that the chance of

acquiring mutations in the 23S rRNA gene is higher in the absence

of a functional erm(41) in M. abscessus [87]. Rifampicin is primarily

used in the treatment of M. avium infections. Acquired resistance has

been documented in clinical isolates and is associated with muta-

tions within the rpoB gene encoding the b-subunit of bacterial RNA

polymerase. However, introduction of the mutated rpoB sequence

into Mycobacterium smegmatis did not confer resistance to rifampi-

cin, suggesting that there might be other factors contributing to M.

avium rifampicin resistance [88]. Acquired resistance to aminoglyco-

sides has been demonstrated in M. abscessus. Mutations at position

1408 of 16S rRNA (rrs) in clinical isolates are associated with ami-

noglycoside resistance [89]. In addition, an in vitro study by Nessar

et al. has shown that mutations at positions 1406, 1409 and 1491 in

M. abscessus could also confer a high level of resistance (MICs

�1024 mg/l) [90]. Recently, Alexander et al. reported the emergence
www.drugdiscoverytoday.com 1507
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TABLE 2

Intrinsic drug resistance mechanisms in Mycobacterium avium and Mycobacterium abscessusa

Agent Target M. avium (genes involved) M. abscessus (genes involved) Refs

Isoniazid InhA Presumably efflux pumps Presumably efflux pumps [73]
Rifampicin RNA polymerase NAb Inactivation of drug (arrMab) [188]
Ethambutol Arabinosyl transferase NAb Polymorphisms in target gene embB [79]
Pyrazinamide PanD Presumably due to active efflux of POAc Presumably owing to active efflux of POAc [189,190]
Aminoglycosides 16S rRNA NAb Inactivation of drug [aac(20), eis2–whiB7] [82,84,191]
Fluoroquinolones DNA gyrase Polymorphisms in target gene gyrA Polymorphisms in target gene gyrA [192]
b-lactams Penicillin-binding protein b-lactamase with mild activity

Other unknown reasons
Inactivation of drug (blaMab) [81]

Thiacetazone FAS-II dehydratased The target is not essential: redundant
dehydratase present

The target is not essential: redundant
dehydratase present

[193]

BTZ043 DprE1 Polymorphisms in target gene dprE1 Polymorphisms in target gene dprE1 [194,195]
BRD4592 Tryptophan synthase NAb Polymorphisms in target gene trpA [196]
Macrolides 23S rRNA Efflux pumps (MAV_1695, MAV_1406) Modification of drug target [erm(41) � whiB7] [78,80,84,191]
a Cell envelope, porins and efflux pumps are likely to be involved in intrinsic drug resistance to many antimicrobials and are thus not specified in the table unless roles have been
experimentally proven or suggested.
b NA: not applicable, the drug is active.
c POA: pyrazinoic acid, bioactive metabolite of pyrazinamide.
d FAS-II: type II fatty acid synthase.
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of mmpT5 mutations during bedaquiline treatment in all seven

patients with M. intracellulare lung infections who relapsed after a

positive initial microbiological response [50]. MmpT5 is a transcrip-

tional regulator that represses the expression of the MmpS5–MmpL5

efflux pump. Similar to M. tuberculosis, mutations in M. intracellulare

mmpT5 are associated with low-level resistance to bedaquiline (2–8-

fold). Two out of seven patients had mutations in the primary target

(ATP synthase subunit c), conferring high-level resistance (50-fold).

There is currently limited evidence of lateral gene transfer of

drug resistance genes in NTM. However, whole-genome analysis of

M. abscessus has revealed a large number of genes in common with

two pathogens most frequently isolated from CF patients: Pseudo-

monas aeruginosa and Bulkholderia cepacia [91], indicating that

acquiring drug resistance by horizontal gene exchange is likely

to play a part. Although the genetic mechanisms of acquired drug

resistance have been extensively studied in M. tuberculosis, not

much information is available for NTM with regard to mecha-

nisms, mutation frequency and how fast resistance develops.

Recent studies by Ferro et al. have exploited a hollow-fiber model

to mimic the effect of various drug therapies in the host. Their

study demonstrated that M. abscessus could develop genetic resis-

tance against moxifloxacin in 3 days [92], suggesting that acquired

drug resistance in NTM can develop very quickly during treatment.

Thus, it is of importance to understand the genetic basis for

acquired resistance, and more importantly how to optimize regi-

mens to prevent development of resistance.

Lack of bactericidal activity
To make NTM drug discovery more daunting, there is a curious

lack of bactericidal activity for most drugs tested against NTM –

drugs in the current regimens are either bacteriostatic (tigecycline,

imipenem) or exert only weak bactericidal activity at high con-

centrations (clarithromycin) [93,94]. Bedaquiline, despite a very

potent growth-inhibitory effect, exerted only bacteriostatic activ-

ity in M. avium – the same concentrations that reduced M. tuber-

culosis CFU by 5 logs resulted in only 1 log CFU reduction after 14-

day exposure in M. avium [46]. Similar observations have been

made for a wide spectrum of rapidly growing NTM [95]. Because
1508 www.drugdiscoverytoday.com
mycobacteria have a high metabolic rate and divide slowly [96],

they are rather unique among bacteria for their ability to adapt to

stress before the cells are killed. This could provide a general

physiologic basis for the lack of bactericidal activity of drugs.

However, the exact reasons behind the lack of bactericidal activity

of anti-NTM drugs are not known and should be explored. Insights

into why certain drug-induced cell death pathways are not opera-

tional in NTM could reveal ways to overcome this phenomenon.

Obviously, new anti-NTM agents should be bactericidal (i.e., have

sterilizing properties to improve the currently poor treatment

outcomes and accelerate cure).

Challenges in NTM drug discovery: from a disease
pathology point of view
A low MIC value is often a good starting point for antibacterial

drug discovery because it usually predicts eradication of the infec-

tion once adequate pharmacokinetic properties have been intro-

duced into the lead compound. However, this general rule does

not appear to hold true for NTM pulmonary diseases. Clinical

practice has consistently observed a lack of correlation between in

vitro MICs and clinical outcomes (i.e., sensitivity for a particular

drug as indicated by drug susceptibility testing does not necessarily

translate to a positive clinical response) [72]. Why is there such a

disconnect? In vitro MIC testing is usually performed with myco-

bacteria growing exponentially as a suspension under optimal

conditions in aerated nutrient-rich broth. These culture condi-

tions are very different from the environments where bacilli reside

in the host. TB studies have demonstrated a wide range of lung

lesion types, from cellular granuloma mainly composed of macro-

phages to caseous granuloma with a necrotic core. These lesions

are complex and dynamic, giving rise to microenvironments of

diverse features and stresses, which in turn drive the

tubercle bacilli into distinct physiological and morphological

states associated with increased antibiotic tolerance [97]. This

increased drug tolerance is also termed ‘phenotypic drug

resistance’ to distinguish this phenomenon from drug resistance

due to genetic alterations. In TB, several conditions, including

intracellular and caseum growth, and quiescent states linked to
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oxygen or nutrient starvation, have been associated with pheno-

typic drug resistance of the bacilli [98,99]. Considering similarities

between NTM and TB pathology in pulmonary diseases, the same

factors are likely to contribute to the persistence of NTM infections

despite extensive chemotherapy. Moreover, two features unique to

bacterial pathophysiology in NTM-PD – growth in airway mucus

and as biofilms – can also lead to physiological adaptations asso-

ciated with phenotypic drug resistance. Equally important to

phenotypic drug resistance is the impact of the local microenvir-

onments on drug penetration, which can lead to subtherapeutic

concentrations of antimicrobials at the anatomical sites where

bacilli reside, thus affecting treatment efficacy. These factors,

altered bacterial physiology associated with phenotypic drug re-

sistance and reduced drug penetration into infection sites are

likely to collectively contribute to the observed disconnect be-

tween in vitro MICs and clinical outcomes observed for NTM-PD.

Intracellular growth
Similar to M. tuberculosis, NTM can grow and survive extra- as well

as intra-cellularly, for instance inside macrophages. In the context

of pulmonary infection, NTM invade the mucosa and get phago-

cytized by macrophages. Whereas some bacilli are killed, those

remaining exhibit robust growth within phagocytic vacuoles until

autophagy and apoptosis are induced after a few days of infection.

M. avium could escape macrophage apoptosis and seize the chance

to spread and infect other macrophages [100]. By contrast, M.

abscessus, especially the smooth morphotype, could restrict intra-

phagosomal acidification, induce less apoptosis and block autop-

hagy flux, and thus was able to persist inside macrophages for

longer periods of time [101,102]. Regardless of the distinct strate-

gies that can be employed by different NTM species, the selective

pressures of macrophages on NTM such as reactive oxygen radi-

cals, NO and low pH as well as carbon source composition (a lipid-

rich environment inside macrophages) are likely to invoke myco-

bacterial adaptations and induce drug tolerance. The Ramakrish-

nan laboratory has carried out studies on drug tolerance in

macrophages [103]. The authors demonstrated that the resistance

level of M. tuberculosis and Mycobacterium marinum against isonia-

zid increased over time inside macrophages: after a 96 h infection

period �49.5% of M. marinum survived isoniazid treatment where-

as only 7.6% of bacilli from a 2 h infection period survived.

Importantly, it was observed that macrophages harboring drug-

tolerant mycobacteria could disperse from the existing granulo-

mas that had shrunk substantially owing to treatment and could

disseminate to establish a new site of infection in zebrafish.

Factors contributing to the increased drug tolerance of intracel-

lular mycobacteria are multifold. The tolerance might result from

macrophage-induced bacteriostasis because multiple static subpo-

pulations of M. avium have been found in human macrophages after

quinolone treatment [104]. The increased resistance could also be

attributed to replicating cells with adaptive physiological changes

including induction of the master drug-tolerance regulator WhiB7,

which has been shown to be strongly induced (14-fold) in M.

tuberculosis in macrophages [105]. Upregulated along with WhiB7

are efflux pumps and drug-modifying genes in a WhiB7-dependent

or -independent manner. Transcriptome studies on internalized M.

tuberculosis suggested that macrophage residence triggered dramatic

differential gene expression, among which a large group of efflux
pumps (19 out of 55 annotated) were induced [106,107]. Further

studies by Adams et al. [103] showed that the increased drug toler-

ance to isoniazid and rifampicin of M. tuberculosis in macrophages

can be reverted by addition of the efflux pump inhibitor reserpine.

The same has been observed with M. marinum in macrophages. In

addition, two M. tuberculosis transposon mutants defective in

Rv1258c – a multidrug efflux pump – were hypersensitive to rifam-

picin specifically in macrophages, suggesting that the macrophage-

induced tolerance in mycobacteria could be mediated by efflux

pumps [103]. Besides the abovementioned reasons, drug activity

could also be limited intracellularly owing to restricted uptake and

accumulation inside macrophages.

Caseum growth and nonreplicating state of persistence
In advanced human TB, most bacteria reside extracellularly in

caseum [108]. Owing to lack of vasculatures, tubercle bacilli in the

center of caseum are believed to confront oxygen and/or nutrient

limitation. Direct measurement with oxygen probes and in situ

staining with the hypoxia marker pimonidazole have demonstrat-

ed a low oxygen tension in the necrotic and caseous regions of

granulomas in patients and animal models [109,110]. M. tubercu-

losis isolated from lung lesions has also been found to display

altered morphology and staining properties similar to bacilli

grown in distilled water [111], suggesting that the bacilli are

starved in lesions. These lines of direct or indirect evidence have

promoted the development of several in vitro models for M. tuber-

culosis to mimic conditions of oxygen deprivation or nutrient

starvation. Studies have shown that, upon hypoxia or nutrient

starvation, the bacilli stop growth and enter a nonreplicating state

with reduced metabolism [112–115]. Accompanied by such

changes is phenotypic drug resistance to most anti-TB drugs.

Isoniazid and moxifloxacin for instance are highly active against

replicating bacteria; however, they have little or no effect on the

viability of nonreplicating nutrient-starved cells [115]. Rifampicin,

the remaining active agent against starved bacteria, is active only

at a considerably higher concentration [115,116]. The drastic loss

of drug potency could be attributed to reduced drug uptake [117]

and/or change in drug target essentiality. For instance, absence of

cell wall synthesis in nonreplicating starved cells might result in

the lack of efficacy of isoniazid [116].

Direct evidence demonstrating drug tolerance of M. tuberculosis

present inside caseous necrotic lesions has been provided recently

by Sarathy et al. [118]. The authors measured the drug susceptibil-

ity of M. tuberculosis bacilli present in ex vivo caseous lesion samples

collected from rabbits with active TB. No significant bacterial

growth was observed in the caseum homogenate during the first

7 days of incubation, indicating that the bacilli from caseum are

largely nongrowing. Intra-caseum M. tuberculosis was highly toler-

ant to most antibiotics: isoniazid, kanamycin and clofazimine had

minimal to no activity. Similar to oxygen- and nutrient-starvation-

induced nonreplicating bacteria, rifampicin was active but

achieved tenfold killing only at 8 mM, a concentration 100-times

higher than the concentration required to kill actively replicating

cells. In accordance with the data from this ex vivo caseum model,

preclinical efficacy studies that focused on the bacterial popula-

tion surviving drug treatment also illustrated that lesion compart-

ments that were not sterilized at the end of therapy were mostly

necrotic granulomas and caseous foci [119,120].
www.drugdiscoverytoday.com 1509
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NTM lung disease shares many traits with TB: pulmonary lesions

are broadly classified as nodular bronchiectatic and fibrocavitary

[14], highly reminiscent of TB-induced pathology. Advanced lung

histopathology of M. avium-infected mice is characterized by necro-

tizing granulomas with minimal microvessels and a hypoxic center,

strongly resembling human TB lesions [121,122]. Whether M.

abscessus and/or M. avium have evolved similar metabolic and

physiologic adaptations to M. tuberculosis under hostile conditions

remains to be determined. Nevertheless, earlier studies on the non-

pathogenic NTM species M. smegmatis showed its capability to

maintain long-term viability by entering a nonreplicating state

under nutrient or oxygen limitation [123,124]. Reminiscent of M.

tuberculosis, nongrowing M. smegmatis is characterized by lower

intracellular ATP concentrations, reduced oxygen consumption

and extreme tolerance to antibiotic treatment [123]. Interestingly,

DosR, the dormancy survival response regulator crucial for hypoxia

survival of tubercle bacilli, along with the two histidine kinases, is

conserved across NTM species [125]. In a recent M. abscessus tran-

scriptomic study, the entire DosR regulon was strongly upregulated

upon NO-induced hypoxia [126], suggesting that there are largely

conserved molecular strategies between NTM and M. tuberculosis

that persist inside the host. A similar conclusion was drawn by

Drapal and colleagues after metabolite profiling of several Mycobac-

teria species including M. avium under hypoxic conditions [127].

Therefore, it is tempting to hypothesize that, similar to M. tuberculo-

sis, NTM are capable of entering a nonreplicating state and exhibit-

ing phenotypic drug resistance inside lung lesions, and this could be

one of the factors contributing to the persistence of NTM infection

under prolonged treatment.

In addition to phenotypic drug resistance, the pharmacokinetics

of drugs inside lesions also affects the drug efficacy via differential

drug access. In a laboratory, in vitro MIC setting, bacteria are exposed

to constant drug concentrations present in broth. In patients, how-

ever, for successful treatment of NTM pulmonary disease, drugs from

the blood vessel need to penetrate the complex lung lesions to reach

the bacteria (i.e., they must diffuse from the cellular rim that borders

the necrotic center and penetrate the entire caseous region without

any assistance) [128]. The Dartois laboratory has carried out several

studies on drug penetration into rabbit and human TB granulomas.

By visualizing drugs using MALDI MS imaging, the authors observed

a heterogeneous distribution of drugs across different lesion com-

partments. First-line TB drugs with treatment-shortening properties

suchaspyrazinamideand isoniazidcouldreach a highaccumulation

in caseum and maintained therapeutic levels in this compartment

throughout the dosing intervals [129]. However, for moxifloxacin,

although it accumulates in lesions at relatively high concentrations,

it stays predominantly in immune cells and barely diffuses to the

acellular caseum [130]. This seems to explain why moxifloxacin, a

strong killer of replicating and nonreplicating tubercle bacilli, failed

to shorten TB treatment in clinical trials. The correlation between

drug distribution into caseous foci and its efficacy in TB is likely to be

applicable to NTM-PD as well. Thus, the extent of diffusion into the

caseous center by current NTM drugs and newcandidatesneeds tobe

investigated.

Mucus growth
Different from TB, mucus plays an important part in the develop-

ment of NTM pulmonary disease, at least in selected patient
1510 www.drugdiscoverytoday.com
populations with preexisting chronic lung diseases such as CF

or COPD. Owing to the hyper-production of mucus or defective

cilia function, sticky mucus cannot be effectively swept out of the

lungs. As a result, bacteria residing in mucus remain in the lung,

evade the immune system and thrive in the excess of thick

stationary mucus adherent to airway surfaces. Excessive mucus

in the patient’s airways is likely to trap the bacilli in a unique

environment with varied oxygen and nutrient content, as sug-

gested by studies on CF patients infected with P. aeruginosa. By

inserting an O2 electrode directly into the right upper lobar

bronchi of chronically Pseudomonas-infected CF patients, it was

shown that oxygen is depleted in the mucopurulent material

obstructing the lobar bronchus possibly owing to restricted oxy-

gen diffusion through thickened mucus, consumption by the CF

epithelium or by the bacteria themselves [131]. Nutrient compo-

sition in sputum from CF patients also differs with an increased

amount of amino acids [132]. Preliminary studies on M. abscessus

toward an artificial sputum media that mimic the nutritional

composition of CF sputum showed that the organism slowed its

growth and induced a ‘low energy’ transcriptional response [126],

suggesting that the bacilli indeed undergo a phenotypic switch in

the mucus niche. More studies are warranted to further explore

how NTM adapt in the mucus and most importantly how mucus

growth affects drug susceptibility.

Biofilm growth
Being a common persistence strategy for many microorganisms,

biofilms are multicellular structures in which bacterial cells stick to

each other and to living or nonliving surfaces. NTM are notorious

biofilm producers in nature and human-engineered environ-

ments. They are frequently recovered in biofilms from surfaces

of water pipes, showerheads and even healthcare equipment, such

as heater–cooler units [133,134]. Biofilms of NTM are hard to

eliminate by conventional decontamination procedures, thereby

raising a serious public health threat. The ability of NTM to form

biofilms has been linked to their pathogenicity. This correlation

was first speculated by Carter et al. when they observed that a M.

avium isolate attenuated in mice happened to form a biofilm less

effectively in vitro [135]. Yamazaki et al. further provided evidence

by demonstrating that biofilm-deficient transposon mutants of M.

avium showed impaired invasion in human bronchiolar epithelial

cells and caused limited infection in mice [136]. Importantly, the

connection between NTM biofilms and pulmonary disease pathol-

ogy has been demonstrated recently. M. abscessus has been ob-

served to form biofilms within thickened alveolar walls and

airways of CF patients, as well as within the lung cavity in COPD

patients [137,138]. One notable attribute of biofilms is their in-

creased tolerance to antimicrobials, and this holds true for NTM

biofilms [139–142]. NTM in biofilms are generally ten-times less

susceptible to antibiotics than their planktonic counterparts. Even

clarithromycin, the cornerstone of NTM treatment therapy, which

showed some activities on the initial formation of M. avium

biofilms in vitro, is completely inactive in established biofilms

[143]. Thus, biofilm growth is likely to contribute to the discon-

nect between MIC and clinical outcome, and the persistence of

NTM infection.

The reason why NTM in biofilms are more prone to escaping

attack by antimicrobials remains elusive. Nevertheless, it seems
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clear that antibiotic tolerance promoted by biofilm growth is

adaptive and temporary (i.e., rather than genetic) [139]. A few

factors could contribute to the increased tolerance to antibiotics.

Similar to other bacterial species, NTM in biofilms are embedded

within a matrix composed of extracellular polymeric substances

(EPS). Despite interspecies differences, the EPS matrix of NTM has

been found to primarily comprise free mycolic acid, glycopepti-

dolipids, mycolyl-diacylglycerol or lipopeptides [144]. Therefore,

it is likely that the waxy nature of the lipid-rich NTM EPS matrix

builds a physical barrier that shields antibiotics from penetration.

In addition, the presence of extracellular DNA (eDNA) in M. avium

and M. abscessus biofilm matrix has also been associated with

antibiotic resistance. Disruption of eDNA by DNase treatment

led to a significant increase in the susceptibility of NTM biofilm

to clarithromycin and moxifloxacin [144]. Besides the physical

barrier provided by biofilm architecture, antibiotic resistance

could also be attributed to the adaptations that NTM undergo

during the biofilm development, as suggested by the transient

resistance observed after resuspension of biofilm bacteria

[142,145], as well as transcriptional changes observed during M.

smegmatis biofilm formation [146].

Although the biofilm structures of NTM have been character-

ized to some extent, the molecular mechanisms are poorly de-

scribed. Genes involved in the transition from ‘swimmers’ to

‘stickers’ have not been identified. Interestingly, the fact that

exposure to a sub-inhibitory concentration of streptomycin or

tetracycline resulted in increased M. avium biofilm formation

[139] implies that some of the stress-response-related genes trig-

gered by antibiotic exposure are linked to biofilm formation.

Besides the molecular mechanisms, two more knowledge gaps

of NTM biofilms remain to be filled. First, biofilms of other

bacterial species are usually dynamic and complex, harboring

bacterial cells at various growth stages with differential physiolog-

ical activities in the same biofilm [147]. However, whether NTM

biofilms are a dynamic and differentiated community or a rela-

tively more homogenous population remains to be determined.

Second, given the nature of NTM infection in patients, especially

in CF patients where co-infection with other bacteria such as P.

aeruginosa or another NTM species in the respiratory tract is

common, mixed-species biofilms appear to be likely. Thus, inter-

species interactions in biofilm formation as well as its impact on

antibiotic tolerance are important to investigate.

Taken together, it appears that, over the course of evolution, the

dual lifestyle of NTM – saprophytic in soil and water vs pathogenic

– has equipped these bacteria with a large arsenal of molecular

strategies that allows them to adapt swiftly and effectively to a

wide spectrum of hostile environments encountered in various

habitats. Owing to the complex nature of NTM pulmonary disease,

the abovementioned conditions and stresses are not mutually

exclusive. For instance, nonreplicating bacilli or biofilm-like struc-

tures might be present in thick mucus together with growing

organisms. In fact, these factors are likely to collectively contribute

to the emergence of NTM persisters. The development of repro-

ducible persister assays and a more comprehensive understanding

of molecular mechanisms employed by M. avium and M. abscessus

to adjust to various conditions and exert phenotypic drug resis-

tance will assist discovery of leads able to eradicate these physio-

logical forms of NTM and thus increase treatment effectiveness.
Additionally, attention should be paid to the assessment of drug

penetration pharmacokinetics into macrophages, caseous lesions,

biofilms and mucus, because sufficient penetration into the site of

infection is crucial for an efficacious treatment.

A road map to new anti-NTM drugs
To date, de novo drug discovery campaigns for novel anti-NTM

agents are limited. To facilitate NTM drug discovery, a workflow

for compound progression from whole-cell screening to preclini-

cal development (i.e., from primary hit generation to compounds

showing tolerability, exposure and efficacy in a mouse model of

disease) is proposed in Fig. 2. The overall workflow corresponds to

the generic compound progression cascade for antibacterial and

anti-TB drug discovery that we have described previously

[148,149], with a number of biological and pharmacological assays

designed specifically to cater for the needs of NTM-PD regimens

according to their unique bacteriological and pharmacokinetic

requirements. Briefly, to discover new chemical entities active

against NTM, a whole-cell-based phenotypic screening should

be pursued to generate hits with antimicrobial activity. With

the objective to kill two birds with one stone, double hits (i.e.,

hits active against M. avium and M. abscessus) with reasonable

growth-inhibitory and -cidal activity and an acceptable cytotoxic-

ity profile should be identified and further profiled and prioritized

for their potency in bacterial persister models, and for their in vitro

pharmacokinetic properties in assays that predict lesion penetra-

tion. It is important to confirm medium-independent activity of

hits as well as activity against a selection of M. avium complex and

M. abscessus species and subspecies early in the process. Parallel to

hit-to-lead activities, target deconvolution should be carried out to

understand drug mechanism-of-action and facilitate medicinal

chemistry efforts during lead optimization. Regarding the choice

of chemical libraries to be screened for the identification of chem-

ical starting points, collections of TB actives generated over the

past two decades should be considered, because they display

higher NTM hit rates compared with ‘random’ compound collec-

tions [150]. Furthermore, this strategy increases the chance of

identifying broad-spectrum antimycobacterials. A few consider-

ations regarding compound profiling and prioritization are elabo-

rated below.

NTM strains for MIC determinations
Different from the obligate parasite M. tuberculosis, which is geno-

mically rather homogeneous, environmental NTM present a het-

erogeneous group of species and subspecies. This needs to be

considered early in drug discovery projects because different spe-

cies and subspecies do differ in their drug susceptibility profile.

Using surrogates such as the model organism M. smegmatis instead

of the actual pathogenic species in drug screening could be coun-

terproductive. Because the most common and the most difficult to

cure NTM-PD are caused by members of the M. avium and M.

abscessus complexes, respectively, efforts should focus on these

two species. For instance, we use the clinical isolates M. avium 11

(belonging to M. avium subsp. hominissuis [151]) and M. abscessus

Bamboo (belonging to M. abscessus subsp. abscessus [152]) for

primary screens. Immediately after hit confirmation, hits should

be tested for activity against reference strains obtained from

culture collections representing species and subspecies of M. avium
www.drugdiscoverytoday.com 1511
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FIG. 2

Proposed workflow for non-tuberculous mycobacteria (NTM) drug discovery. Activities and assays from whole-cell library screening to the preclinical
development compound are shown. Light blue boxes indicate NTM-specific assays discussed in more detail in the text. Assay and model gaps are in bold. Gray
box indicates generic drug discovery activities and assays described elsewhere [148,149]. Abbreviations: PK, pharmacokinetics; tox, cytotoxicity assays.
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and M. abscessus complexes: M. avium subsp. hominissuis, M.

intracellulare and M. chimaera; M. abscessus subsp. abscessus, M.

abscessus subsp. bolletii; M. abscessus subsp. massiliense (Fig. 2). At a

later stage, lead compounds are tested against a large collection of

clinical isolates of the two NTM species derived from different

regions of the world because geographic variabilities of antibiotic

susceptibility have been described [153–156]. Moreover, consider-

ing colony phase variation (e.g., smooth vs rough, opaque vs

transparent) seen in M. avium and M. abscessus, it is useful to cover

all types of colony morphologies in the clinical isolates tested to

identify any potential correlation between colony morphology

and drug susceptibility.

Media and incubation conditions for MIC determinations
Currently, most in vitro drug testing studies for NTM followed either

the Clinical and Laboratory Standards Institute (CLSI) recommen-

dationsforNTM susceptibilitytestinginclinical settings (i.e., cation-

adjusted Mueller–Hinton broth and incubation at 30 �C) or standard

mycobacterial drug discovery culture conditions (i.e., Middlebrook

7H9 broth and incubation at 37 �C). We and other researchers have

observed that differences in these two assay systems including media

composition and presence or absence of detergent (Tween1 80 in

7H9) can affect drug potency and lead to variabilities in the MIC

results [54,77,157]. This highlights a need for further investigations
1512 www.drugdiscoverytoday.com
to improve the predictive value of current NTM in vitro drug testing

assays for clinical outcome. For the time being, primary hits should

be tested in at least two different media to provide preliminary

evidence of medium-independent activity. Medium dependence

of antimycobacterial compounds is not a new phenomenon. During

the past ten years of TB drug discovery, we have encountered several

cases in which compound activity was dependent on certain com-

ponents present in the culture media. One well-documented exam-

ple is a series of pyrimidine-imidazole compounds, which exhibited

low MICs in vitro (and adequate pharmacokinetic properties) but had

no efficacy in vivo. It was later realized that the activities of these

compounds were dependent on glycerol – a major carbon source in

TB culture media but apparently not relevant for bacterial growth in

mice [158].

Besides media composition, incubation time is another crucial

factor that can affect drug susceptibility results for NTM, especially

in the case of macrolides when tested in M. abscessus. It was shown

by Nash et al. that extended exposure (14 days) to macrolides is

required to detect the inducible resistance conferred by erm(41):

the MIC on day 3 was �0.5 mg/l, this value increased to >32 mg/l

on day 14 [80]. Therefore, to better evaluate macrolides and their

potential synergistic effects with other drugs in M. abscessus, it is

recommended to perform 14-day incubation for MIC determina-

tions. Of note, drug stability should be considered when inter-
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preting susceptibility results, particularly when long incubation

periods are used. As demonstrated by Rominski et al., severe drug

degradation observed for b-lactams (e.g., imipenem and cefoxitin)

after 3 days results in misleading MIC values [81].

Persister-specific assays
As elaborated above, the existence of persisters (i.e., bacteria dis-

playing phenotypic drug resistance) in the host might be one of

the main factors that hampers the eradication of NTM infection in

patients. Hence, conventional MIC alone is not a good predictor of

clinical outcome; we need persister-specific assays to identify leads

with improved efficacy in vivo. Yet, most persister-specific assays

have not been thoroughly characterized, profiled or benchmarked

for NTM. Research efforts are warranted to adapt and implement

assays developed for either M. tuberculosis or other pathogens such

as P. aeruginosa to generate a tool box for NTM drug discovery.

Macrophage infection assays

Macrophage assays have been employed to study the intracellular

activity of drugs and chemicals against NTM. A wide variety of

macrophages including bone-marrow-derived macrophages, J774

and THP-1 cells are being used [40,58]. Drug treatment usually

starts a few hours post-infection followed by incubation for 24–

96 h. Drug activity is usually indicated by a reduction in CFU or

CFU per macrophage.

Nonreplicating assays

Two in vitro assays, namely the Loebel model (nutrient-starvation

model) and the Wayne model (oxygen-depletion model), have been

established and widely applied in the TB field to evaluate drug

potency against nonreplicating bacilli. In the Loebel model, log-

phase cultures are washed and transferred to PBS and nutrient-

starved for 14 days beforedrug treatment [115]. In the Wayne model,

hypoxic nonreplicating bacilli are generated under gentle stirring in

tightly sealed glass tubes with rubber septa. Oxygen indicator meth-

yleneblue is used to monitor oxygen depletion over time in a control

tube. Upon reaching a nonreplicating phase, drugs are injected into

each tube via a needle through the rubber septa. Because Loebel and

Wayne bacilli are nonreplicating, the potency readouts in these

systems are concentrations that kill 90% of the bacteria: LCC90

for Loebel cidal concentration and WCC90 for Wayne cidal concen-

tration are the counterparts of minimum bactericidal concentra-

tion, or MBC90, for growing bacteria.Characterization of growth and

survival kinetics of NTM in the Wayne and Loebel models is required

before applying these assays for drug testing. Both models have been

established for M. smegmatis [123,124] and should thus be adaptable

to M. avium and M. abscessus.

Caseum assay

An ex vivo caseum assay was recently described for M. tuberculosis

[118]. Caseum tissue obtained from cavities of TB-infected rabbits

is homogenized and dispensed into 96-well plates with drugs.

Owing to the nonreplicative nature of bacilli inside caseum, the

readout is also the cidal concentration (casMBC90). Currently, this

assay might be difficult to develop for NTM because caseum-

producing animal models are not well established (see below).

Alternatively, the development of artificial, cell-culture-based

caseum [129] could be considered.

Biofilm assays

To study NTM biofilms, several laboratory-based biofilm forma-

tion models have been developed, among which two systems
might be suitable for NTM drug susceptibility testing. The first

assay system is known as the Calgary Biofilm Device employed by

Bardouniotis et al. to evaluate the cidal activity or the minimal

biofilm eradication concentration (MBEC) of biocides on Mycobac-

terium phlei [159]. The device consists of a 96-peg lid-plate that

bacteria can adhere to and a ridged trough into which a standard-

ized inoculum is added. Upon biofilm formation on the pegs, the

lid can be transferred to a standard 96-well plate in which the

biofilms are challenged by antibiotic treatment. Surviving bacteria

in biofilms can be removed from pegs by sonication in media

following washing and plated for CFU numeration. This method

could be applied to the determination of biofilm MIC and cidal

concentrations. The second assay system utilizes a 96-well polyvi-

nyl chloride (PVC) microtiter plate in which NTM such as M. avium

and M. smegmatis can adhere and develop biofilm on the PVC

surface [141,143]. Following incubation, planktonic bacteria are

rinsed away and the remaining adherent bacteria in biofilms with

or without antibiotics are stained and quantified by crystal violet.

This method is simple and straightforward and enables the deter-

mination of concentrations that inhibit biofilm growth. However,

because crystal violet is toxic to bacteria, this is usually an end-

point measurement and the stained bacteria cannot be used for

further studies.

Mucus assay

Kirchner et al. have described the use of synthetic mucus media or

artificial sputum medium (ASM) in microtiter plates to test antibi-

otic efficacy against P. aeruginosa [160]. The ASM contains amino

acids, mucin and free extracellular DNA to mimic the thick mucus

within the lung of CF patients. P. aeruginosa and Staphylococcus

aureus grow as biofilm-like structures (not attached to the surface)

in this matrix [161]. This method can be further investigated for

NTM (especially for M. abscessus) and exploited as an effective

platform to identify antibiotics with potential activity in the lungs

of CF patients. The use of patient-derived mucus should be con-

sidered to validate assays based on artificial mucus.

Lesion- or infection-site-specific pharmacokinetic assays
NTM reside in many anatomical locations where drugs might not

penetrate efficiently owing to differential vascularization and

cellular composition. Owing to the complexity of NTM pathology,

PK/PD correlations that are made on the basis of drug exposure in

plasma are not sufficient to inform drug distribution at the site of

infection (inside lesions) in patients. Clinical studies with resected

lung lesions have indicated that drugs with better penetration into

lesions, especially the necrotic core where most of the persisters

locate, tend to play a key part in pathogen sterilization and

treatment shortening [130]. To this end, Sarathy et al. developed

a medium-throughput caseum-binding assay to predict lesion

partitioning of TB drug candidates [129]. In this assay, a surrogate

caseum is generated by lysing oleic-acid-induced foamy macro-

phages followed by protein denaturation to mimic the situation in

the necrotic core of granulomas. Based on the negative correlation

between ex vivo caseum binding and in vivo passive diffusion into

caseum, the authors could predict drug diffusion capacity based on

the unbound faction in the surrogate caseum. Combined with

drug uptake into macrophages, this assay can be used to predict

the partitioning of drugs and newly discovered compounds at the

cellular–caseum interface of necrotic lesions [162]. Owing to the
www.drugdiscoverytoday.com 1513
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similarities in granuloma and cavity structure between TB and

NTM, these assays could be applied to predict the lesion pene-

trance of novel anti-NTM compounds as well.

Animal efficacy
Animal models, including many mouse strains, the guinea pig,

rhesus macaque, zebrafish and fruit fly, have been investigated for

their potential to develop NTM disease. The details of each model

have been reviewed by Chan and Bai and Bernut et al. [163,164],

and will thus only be briefly mentioned here. Because we are

dealing with NTM lung disease, we consider the use of mammalian

species as advantageous for in vivo efficacy determinations. Over-

all, owing to the general low virulence of NTM compared with M.

tuberculosis, it is difficult to generate a sustained infection with

advanced human-like lung pathology in animals. Although M.

avium can cause a relatively high level of infection in the lungs of

mice, M. abscessus is cleared rapidly from the lungs of most mouse

strains and other animal models including guinea pigs. Only when

severely immunocompromised strains of mice such as GKO or

SCID mice are used can characteristics of certain lung disease

histology (e.g., cellular infiltration, consolidation) be observed,

yet non-necrotizing and necrotizing lesions have only been shown

in the SCID mouse model [47,165]. A few attempts have been

made to evaluate various mouse strains for their adequacy for

antimycobacterial testing. However, owing to the differences in

disease progression (acute vs chronic infection stage), and disease

manifestations (lung vs disseminated infection), in vivo studies in

these mouse models have sometimes led to inconsistent results.

For instance, bedaquiline treatment reduced CFU by 2 logs in a

SCID mouse model but was almost inactive in nude mice [47,48].

As discussed above, the morphological structure and composition

of infection sites are likely to impact bacterial pathophysiology

and drug penetration. Therefore, robust and practical animal

models that present hallmarks of human NTM pathology (e.g.,

caseous necrosis) are urgently required for improved in vivo assess-

ment of novel anti-NTM compounds.

Design of clinical trials
Owing to the heterogeneity of NTM disease presentation, clini-

cal trials that evaluate the efficacy of new drug candidates or

new combinations against NTM-PD are not simple to design

[166]. One major challenge lies in the great variabilities among

study populations in terms of disease manifestations (e.g., fibro-

cavitary vs nodular-bronchiectasis type), pre-existing condi-

tions (nil, CF, COPD, AIDS or other causes of immune-suppres-

sion), causative agents (M. avium, M. abscessus or co-infection

with other NTM or bacteria) and drug susceptibility profiles.

Previous studies have demonstrated that such heterogeneity

could result in distinct treatment outcomes [18,167]. Thus, it

should be taken into consideration in the clinical trial design

whether to target a general population or a particular patient

group. If working with a broad patient population, trial results

should be stratified by factors such as subspecies and clinical

presentations. Another difficulty encountered in NTM clinical

trials is the limited choice of endpoints. Very few prospective

clinical trials have been conducted for NTM treatment

[23,168,169], all of which used sputum culture conversion or

clinical improvement at the end of chemotherapy as a measure
1514 www.drugdiscoverytoday.com
of treatment success (Table S1, see Supplementary material

online). In TB studies, primary endpoints such as sputum cul-

ture conversion at 2 months, time to sputum culture conversion

and serial sputum colony counting, have been introduced in

Phase II clinical trials as surrogates of end-of-treatment outcome

[170,171]. Unfortunately, none of these markers has been eval-

uated for NTM pulmonary disease. As a whole, identification of

accurate, NTM-specific biomarkers capable of predicting long-

term treatment outcome or relapse risk are desired and would

greatly accelerate the development of new NTM agents by

enabling small and more-reliable proof-of-concept studies. Re-

cently, there has been consensus achieved by international

experts from the NTM-NET (international network to promote

clinically oriented research in the field of non- tuberculous

mycobacterial diseases; http://www.ntm-net.org/) committee

on treatment outcome definitions for NTM-PD [172]. The criti-

cal outcome parameters proposed in the statement should be

considered in future clinical trial designs to standardize out-

come reports for meta-analyses of clinical data.

Concluding remarks
To combat recalcitrant NTM lung diseases with more-effective

regimens, we need well-tolerated and preferably orally bioavail-

able compounds that: (i) are active against at least M. abscessus and

M. avium, and ideally against a wider spectrum of mycobacteria

including M. tuberculosis; (ii) are bactericidal against growing and

ideally against various drug-tolerant persister forms of the bacteria;

(iii) show not only adequate standard plasma pharmacokinetic

properties but also penetrate the various sites of infection; (iv)

eradicate the bacteria in an animal model that presents human-

like pathologies. Importantly, drug–drug interactions must be kept

to a minimum because NTM treatments are based on multidrug

regimens. Furthermore, NTM patients often take additional anti-

biotic and nonantibiotic medications. Meeting all these require-

ments seems to be a daunting task at the moment. NTM drug

discovery is still in its infancy with many questions of resistance,

persistence and pathophysiology remaining to be unveiled, and

many assays and models to be developed and validated. Thus,

there is an urgent need to reduce the biological uncertainties

around NTM-PD by increasing research efforts. Today’s state of

NTM drug discovery is reminiscent of the TB situation 20 years

ago. Despite a discovery void in the TB field from the 1970s to early

2000s, significant progress has been achieved during the past two

decades, owing to a better understanding of the pathogen and

disease pathology and – importantly – increased drug discovery

efforts. Looking on the bright side, we can benefit from knowledge,

bacteriological and pharmacokinetic assays, and from models

developed for TB drug discovery. Furthermore, we can make use

of chemical matter generated in TB screening campaigns. Libraries

of TB actives are available and have been shown to deliver rela-

tively high hit rates for NTM, offering a much-needed impetus to

jump-start NTM drug discovery projects, start populating the drug

pipeline and discover broad(er)-spectrum antimycobacterials. In

addition to de novo drug discovery approaches, repositioning and

repurposing efforts must be undertaken (Box 1). We believe that,

with increasing research and drug discovery efforts and expanding

knowledge on NTM, significant therapeutic advances for NTM

diseases will be achieved in the coming years.

http://www.ntm-net.org/


Drug Discovery Today �Volume 23, Number 8 �August 2018 REVIEWS

BOX 1

Proposed strategies for populating the non-tuberculous
mycobacteria (NTM) drug pipeline
Repurposing
In the context of drug development, ‘repurposing’ is the
application of known drugs to treat new indications (i.e., new
diseases). Because de novo drug discovery and development easily
takes longer than a decade, the evaluation of existing and
clinically used antibiotics is a low-hanging-fruit approach that can
dramatically accelerate drug development, and has the potential
to bring rapid relief to NTM patients. For example, the rifampicin
analog rifabutin was recently shown to be active against
Mycobacterium abscessus in vitro through a systematic screen of
FDA-approved drugs [57]. Likewise, the systematic exploration of
antibiotic combinations could reveal synergistic pairs that could
rapidly be tested clinically in patients with very limited therapeutic
options such as those with refractory M. abscessus lung disease. In
addition, more-targeted synergistic studies based on mechanisms-
of-action expected to deliver synergistic effects could yield high
hit rates: (i) large-scale combinations of b-lactamase inhibitors
with b-lactams; (ii) cell wall targeting drugs with drugs
modulating intracellular targets; and (iii) efflux pump inhibitors
with other drugs should be further explored, as suggested by
several recent studies [55,56,77,78].
Repositioning
We refer to repositioning as the NTM-specific chemical
optimization of antibiotic classes that act against
pharmacologically validated targets but have been developed for
infectious diseases other than NTM. Because these drug classes
include members that are FDA-approved, attrition rates are lower
and the probability of success is significantly higher than incurred
through de novo drug discovery. Examples include the macrolide
clarithromycin, the backbone of NTM therapy, but whose efficacy
against M. abscessus is affected by inducible resistance conferred
by erm(41). Screening of macrolide collections against M. abscessus
is a low-risk and high-reward approach to identify analogs that are
not affected by the ribosomal modifications. Likewise, the
oxazolidinone linezolid is active against NTM but suffers from low
potency and toxicity. A few recent studies reported oxazolidinones
with improved potency [38,40,150], thus validating the proposed
strategy. Finally, although rifampicin is inactive against M.
abscessus, other rifamycins appear to exhibit adequate potency
[57] (unpublished data).
De novo drug discovery
The third strategy is based on the identification of new chemical
entities and targets. Whole-cell screens against mycobacteria
suffer from extremely low hit rates. We propose the acceleration of
NTM drug discovery by screening compound collections with
known activity against Mycobacterium tuberculosis rather than
‘random’ large compound libraries – an approach that has
delivered significantly higher hit rates [150]. Furthermore, novel
antibacterial discovery concepts such as screening of fragment
(MW <300 Da) libraries and membrane targeting molecules
should be explored. Although fragment-like compounds are often
filtered out in whole-cell screening campaigns, many crucial
components of current TB chemotherapies such as isoniazid and
pyrazinamide are ‘dirty’ fragments that hit multiple targets and
display attractive physicochemical and pharmacokinetic
properties, an asset to eradicate the notoriously robust
mycobacterial diseases [173]. Targeting the M. tuberculosis
membrane has been investigated over the past few years with the
attempt to tackle the issues of resistance and persistence.
Targeting membrane integrity as opposed to a specific enzyme or
pathway also has a lower propensity to enable emergence of
genetic resistance. In addition, as opposed to classical pathways

targeted by conventional antibiotics, membrane integrity is
essential irrespective of the physiological status of the bacilli. Thus,
membrane-targeting compounds should retain their activity
against slow-growing or nonreplicating persisters. Indeed, several
novel compounds targeting the M. tuberculosis membrane do
overcome resistance and persistence, with some compounds
showing cross-activity against NTM [174–176].
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