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Over the past decade, deep learning has achieved remarkable success in various artificial intelligence

research areas. Evolved from the previous research on artificial neural networks, this technology has

shown superior performance to other machine learning algorithms in areas such as image and voice

recognition, natural language processing, among others. The first wave of applications of deep learning

in pharmaceutical research has emerged in recent years, and its utility has gone beyond bioactivity

predictions and has shown promise in addressing diverse problems in drug discovery. Examples will be

discussed covering bioactivity prediction, de novo molecular design, synthesis prediction and biological

image analysis.
Introduction
Digital data, in all shapes and sizes, is growing exponentially.

According to the National Security Agency of the USA, the Internet

is processing 1826 petabytes of data per day [1]. In 2011, digital

information grew nine times in volume in just five years [2]; and by

2020 its amount in the world is expected to reach 35 trillion

gigabytes [3]. The high demand of exploring and analyzing big

data has encouraged the use of data-hungry machine learning

algorithms like deep learning (DL). DL has gained huge success in

a wide range of applications such as computer games, speech

recognition, computer vision, natural language processing, self-

driving cars, among others [4]. It is fair to say that DL is changing

our everyday life. In the Gartner-selected top ten technology

trends of 2018, DL-represented AI technologies were ranked at

the top position [5].

Over the past decade, there has been a remarkable increase in

the amount of available compound activity and biomedical data

[6,7] owing to the emergence of new experimental techniques

such as HTS, parallel synthesis, among others [7,8]. How to effi-

ciently mine the large-scale chemistry data becomes a crucial
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problem for drug discovery. Larger data volumes in combination

with increased automation technology have promoted further use

of machine learning. Besides established methods like support

vector machines (SVM) [9], neural networks (NN) [10] and random

forest (RF) [11], which have been utilized to develop QSAR models

for a long time, methods like matrix factorization [12] and DL have

started to be used. DL has taken advantage of the increased

amounts of data and the continuous increase of available com-

puter power. A difference between most other machine learning

methods and DL is the flexibility of the NN architecture in DL.

Architectures that will be discussed in this review are convolu-

tional neural networks (CNNs), recurrent neural networks (RNNs)

and fully connected feed-forward networks. Single-layer NNs have

been used in QSAR modeling for a long time [10]; and with

increasing data size and computational power have made it natu-

ral to apply multilayer feed-forward networks for bioactivity pre-

dictions. A somewhat surprising development has been the use of

RNNs in de novo design which could not be foreseen a few years

ago. With the adoption of high-throughput imaging equipment,

CNNs have gained remarkable success in computer vision and

have become a natural choice for biological image processing.

The field of applying DL in drug discovery is rapidly progressing
icense (http://creativecommons.org/licenses/by/4.0/).
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FIGURE 1

A simple illustration of neural networks (NNs). (a) A NN is composed of input, hidden and output layers. (b) The output values of a hidden unit are calculated from
input values via an activation function.
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with new articles published almost every week. Recently, several

reviews on DL applications in computational chemistry and life

sciences have been published [13–18]. Here, we focus more on DL

applications in drug discovery particularly in the chemoinfor-

matics and biological image analysis domains and highlight DL

architectures used so far within drug discovery.

Principles of deep learning
DL is a class of machine learning algorithms that uses artificial

neural networks (ANNs) with many layers of nonlinear processing

units for learning data representations. The earliest ANN can be

traced back to 1943 [19], when Warren McCulloch and Walter Pitts

developed a computational model for NNs based on mathematics

and algorithms called threshold logic. The basic structure of a

modern ANN is represented in Fig. 1 and is inspired by the

structure of the human brain. There are three basic layers in an

ANN: the input layer, hidden layer and output layer. Depending

on the type of ANN, the nodes, also called neurons, in neighboring

layers are either fully connected or partially connected. Input

variables are taken by input nodes and the variables are trans-

formed through hidden nodes, and in the end output values are

calculated at output nodes. The interrelationship between input

and output values of a hidden unit can be exemplified in Fig. 1b.

The output value Yi of the node i is calculated as shown in Eq. (1).

Yi ¼ g
X
j

Wij � aj

0
@

1
A ð1Þ

where aj refers to the input variables, Wij is the weight of input

node j on node i and function g is the activation function, which is

normally a nonlinear function (e.g., sigmoid or Gaussian function)

to transform the linear combination of input signal from input

nodes to an output value. The training of an ANN is done by

iterative modification of the weight values in the network to

optimize the errors between predicted and true value typically

through the back-propagation methods [20]. The modern ANN

algorithm was developed during the 1960s to the 1980s and

applications have appeared since then. But the traditional ANN

method suffered from problems such as overfitting, diminishing

gradients, among others, and was largely replaced by other ma-

chine learning algorithms like SVM [9] and RF [11]. The recent

development of DL has given ANN a renaissance. The major
1242 www.drugdiscoverytoday.com
difference between DL and traditional ANN is the scale and

complexity of the NNs. DL uses larger numbers of hidden layers

whereas traditional ANNs normally can only afford one or two

hidden layers owing to the limitation of computer hardware in the

early days. DL can afford to use many more nodes in each layer

owing to the appearance of more-powerful CPU and GPU hard-

ware. There are also many algorithmic improvements in DL, for

example using the dropout [21] and DropConnect [22] methods to

address the overfitting problem, applying rectified linear unit

(ReLU) [23] to avoid vanishing gradients and introducing con-

volutional and pooling layers as novel network architectures to

enable the usage of large numbers of input variables. Most of the

DL software packages are open-sourced. TensorFlow [24], Caffe

[25], PyTorch [26], Keras [27] and Theano [28] are among the most

popular DL packages used in the data science community. Here,

we briefly introduce several popular NN architectures used in DL

(Fig. 2). First is the fully connected deep neural network (DNN)

which contains multiple hidden layers and each layer comprises

hundreds of nonlinear process units (Fig. 2a). DNNs can take large

numbers of input features and the neurons in different layers of a

DNN can automatically extract features at different hierarchical

levels [29].

Another very popular NN is CNN, which is widely used for

image recognition (Fig. 2b). It usually contains several convolu-

tion layers and subsampling layers. The convolution layer consists

of a set of filters (or kernels) that have a small receptive field and

learnable parameters. During the forward pass, each filter is con-

voluted across the width and height of the input volume, com-

puting the dot product between the entries of the filter and its

receptive field in input volume and producing a 2D feature map of

that filter. The subsampling layer is used to reduce the size of

feature maps. In the end, the feature maps are concatenated into

fully connected layers where neurons in neighboring layers are all

connected just like in a traditional ANN to give a final output

value. Owing to sharing the same parameters for each filter, a CNN

largely reduces the number of free parameters learned, thus low-

ering the consumed memory and increasing the learning speed.

It has outperformed other types of machine learning algorithms in

image recognition [30].

One additional variant of an ANN (Fig. 2c) is RNN. Unlike feed-

forward NNs, it allows the connection among neurons in the same

hidden layer to form a directed cycle. RNNs can take sequential
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FIGURE 2

Architecture of several popular neural networks: (a) fully connected deep neural network (DNN), (b) convolutional neural network (CNN), (c) recurrent neural
network (RNN) and (d) autoencoder (AE).
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data as input features, which is very suitable for time-dependent

tasks like language modeling [31]. Using a technology called long

short term memory (LSTM) [32], RNNs can reduce the vanishing

gradient problem.

The fourth ANN architecture shown in Fig. 2d is called auto-

encoder (AE) [33]. An AE is a NN used for unsupervised learning.

It contains an encoder part, which is a NN to transform the

information received from the input layer into a limited number

of hidden units, and then couples a decoder NN with the output

layer having the same number of nodes as the input layer. Instead

of predicting labels of input instances, the purpose of the decoder

NN is to reconstruct its own inputs from a fewer number of hidden

units. Typically, the purpose of AE is for nonlinear dimensionality

reduction. Recently, the AE concept has become more widely used

for learning generative models from data [34]. Below, we illustrate

how these DL technologies are applied in drug discovery research.

Application of deep learning in compound property
and activity prediction
Machine learning methods including ANN have been applied in

compound activity prediction for a long time. Naturally, DL

methods are adopted to address the activity prediction problems

in the first place. When compounds are presented by the same

number of molecular descriptors, the straight forward method is to

use fully connected DNNs to build models. Dahl et al. [35] applied

a DNN on the Merck Kaggle challenge dataset using a large number

of 2D topological descriptors; and the DNN showed slightly better

performance in 13 of the total 15 targets than the standard RF

method. Some of the key learnings from the study are: (i) DNNs

can handle thousands of descriptors without the need of feature

selection; (ii) dropout can avoid the notorious overfitting problem

faced by a traditional ANN; (iii) hyper-parameter (number of

layers, number of nodes per layer, type of activation functions,

etc.) optimization can maximize the DNN performance; (iv) mul-

titask DNN models perform better than single-task models. Mayr

et al. [36] reported their multitask DNN models that won the Tox21

challenge on a dataset comprising 12 000 compounds for 12 high-

throughput toxicity assays. Similar to Dahl’s architecture [35,37],

dropout and ReLU activation function were used in the DNN, and

model training was run in parallel on GPU machines. They used a

large feature set with static descriptors (3D, 2D descriptors, pre-

defined toxicophores) as well as dynamically generated extended

connectivity fingerprint descriptors (ECFP) to enable DNN to

make self-feature deduction during training. More interestingly,

statistical association analysis was done for DNN models exclu-

sively using ECFP, and substructures significantly associated with

known toxicophores in each hidden layer can be identified. These

benchmark results demonstrate the advantages of a multitask

DNN compared with a single-task DNN and conventional machine

learning methods.

Recently, some other benchmark studies were published to

further support the conclusion. Ramsundar et al. carried out a

systematic study [38] to build multitask DNNs and compare their

performance with single-task DNN models. Their results show that

multitask models constantly perform better than single-task and

RF models. Koutsoukas et al. [39] compared a DNN model with

some commonly used machine learning methods such as SVM, RF,

among others, on seven datasets selected from ChEMBL [40].
1244 www.drugdiscoverytoday.com
DNNs were found to statistically outperform (with P value

<0.01 based on the Wilcoxon’s statistical test) other machine

learning methods. Lenselink et al. [41] reported another bench-

mark study for comparing DNN with conventional machine learn-

ing methods RF, SVM, naive Bayesian and logic regression

methods taking protein descriptors into account [i.e., the proteo-

chemometric (PCM) study]. They investigated performance of

various classification models on a dataset comprising 314 767

target–compound interactions. The DNN model turned out to

be the best model in terms of BEDROC (Boltzmann-enhanced

discrimination of receiver operating characteristic), and multitask

and PCM implementations were shown to improve performance

over single-task DNNs.

Besides the benchmark studies of DNN, Subramanian et al. [42]

reported a study using DNN with 2D topological descriptors to

build a predictive BACE activity model and achieved a classifica-

tion accuracy of 0.82 and standard error of pIC50 �0.53 on the

validation set. Aliper et al. [43] built DNN models for predicting

pharmacological properties of drugs and for drug repurposing

leveraging transcriptomic data from the LINCS project [44], as

well as the pathway information. It has been shown that, using

pathway and gene-level information, DNN models achieved high

accuracy in predicting drug indications, hence they could be

useful for drug repurposing.

Efforts have also been made in using representation learning

(i.e., enabling NNs to learn directly from the molecular structure

instead of using predefined molecular descriptors). This idea was

first explored by Merkwirth et al. in 2005 [45]. Several years later,

two different methods were developed to address the problem.

Lusci et al. [46] reported a method that employed a variant of RNN,

called UGRNN, which first transforms molecular structures into

vectors of the same length as the molecular representation and

then passes them to a fully connected NN layer to build models.

Bit values in the vectors are learned from the dataset. The UGRNN

method was shown to be able to build predictive solubility models

that were comparable in accuracy to models built with molecular

descriptors. Xu et al. [47] applied the same method to model drug-

induced liver injury (DILI). The DL models were built based on 475

drugs and validated on an external dataset of 198 drugs. The best

model achieved an AUC of 0.955 exceeding the accuracy of

previously reported DILI models.

Another type of method is called graph convolution models.

The basic idea is similar to the UGRNN method, which employs

NNs to automatically generate a molecular description vector and

vector values are learned by training NNs. Inspired by the Morgan

circular fingerprint method [48], Duvenaud et al. [49] proposed the

neural fingerprint method as one of the first efforts in creating a

graph convolution model. The workflow of this method can be

seen in Fig. 3. First, the 2D molecular structure is read to form a

state matrix, containing atom and bond information (based on

the bonds attached to the atom) for each atom. The state matrix

then goes through a convolution operation via a single-layer NN to

generate a fixed length vector as the molecular representation.

The convolution operation can be run at different levels by con-

sidering the contribution of neighboring atoms, which is equiva-

lent to the circular fingerprints at different neighboring levels.

The vectors generated from different convolution operations first

go through a softmax transformation and then are summed up to
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form the final vector for the compound, which is a neural finger-

print encoding molecular level information. The neural finger-

prints are passed through another fully connected NN layer to

generate the final output. The bit values in the neural fingerprint

are learned through training and are differentiable. In Duvenaud’s

three test cases, better results were obtained using neural finger-

prints than with Morgan fingerprints and, more importantly, the

influential substructures in the graph convolution model can be

visualized to interpret the model. The advantage of the graph

convolution model is that descriptors are generated automatically

during the training and do not need any predefined molecular

descriptor. Such a descriptor is not a general descriptor, but is task-

specific and fully differentiable and hence can potentially provide

better prediction. Other molecular graph convolution methods

were reported by Kearnes et al. [50], Xu et al. [51], Li et al. [52] and

Coley et al. [53] to extend on Duvenaud’s method. Recently,

researchers from Google [54] reformulated several existing graph

convolution algorithms [49,50,53,55,56] into a common frame-

work known as a message passing neural network (MPNN) and

used the MPNNs to predict quantum chemical properties.

Besides the graph-based representation learning methods, DL

methods based on other types of molecular representation were
also explored. Bjerrum [57] used a SMILES string as the input to

LSTM RNNs to build predictive models without the need to

generate molecular descriptors. More interestingly, it was observed

that augmenting the dataset by using multiple SMILES strings to

represent the same compound achieved better results than using

canonical SMILES. Goh et al. [58] applied a CNN on images of 2D

drawings of molecules and achieved surprisingly comparable

results to DNN models trained on ECFP. Moreover [59], when

the images were augmented with some basic chemical informa-

tion, the model performance was further improved. The capability

of learning representations from structures directly without using

any predefined structure descriptor is an important feature distin-

guishing DL from other machine learning methods and it basically

makes the traditional feature selection and reduction procedures

unnecessary.

De novo design through deep learning
Another interesting application of DL in chemoinformatics is the

generation of new chemical structures through NNs. Gómez-Bom-

barelli et al. proposed a novel method [60] using variational

autoencoder (VAE) to generate chemical structures (Fig. 4). The

first step is to use VAE to do unsupervised learning to map
www.drugdiscoverytoday.com 1245
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FIGURE 4

The illustration of a variational autoencoder (VAE) method. The encoder neural network (NN) converts a discrete molecule into Gaussian distribution
deterministically. After the latent variables are reparameterized against the gaussian distribution with given mean and variance, a new point is sampled and fed
into the decoder NN. In the generation mode, only the decoder is used to generate a new molecule from the sampled latent point.
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chemical structures (SMILES strings) in the ZINC database into

latent space. Once the VAE training is done, the latent vector in

the latent space becomes a continuous representation of molecular

structure and can be reversibly transformed to a SMILES string

through the trained VAE. Generation of a new structure with

desirable properties can be realized by searching optimal latent

solutions in the continuous latent space via any optimization

method (e.g., Bayesian optimization) and then decoding the

searched latent solutions into SMILES. Following on from

Gómez-Bombarelli’s work, Kadurin et al. [61] used VAE as a

molecular descriptor generator coupled with a generative adver-

sarial network (GAN) [62], a special NN architecture, to generate

new structures that were claimed to have promising specific anti-

cancer properties. Blaschke et al. [63] utilized VAE to generate

novel structures with predicted activity against dopamine receptor

type 2.

RNNs have been very successful in the natural language proces-

sing area [31]. Segler et al. [64] and Yuan et al. [65] reported their

studies using RNNs to generate novel chemical structures. After

training the RNN on a large number of SMILES strings, the RNN

method worked surprisingly well for generating new valid SMILES

strings that were not included in the training set (Fig. 5). The RNN

writes structurally valid SMILES by learning the underlying prob-

ability distribution of characters in a SMILES string and, in this

case, RNN can be regarded as a generative model for molecule

structures. Segler et al. [64] also explored the possibility of using

RNNs to generate target-specific libraries by first training a general

prior model and then a fine-tuned focused model through transfer

learning on a small set of target-specific active compounds. In a

retrospective analysis for testing on two antibioactive targets, their

focused models were able to generate 18% unseen true actives for

Staphylococcus aureus and 28% for Plasmodium falciparum.

Jaques et al. [66] applied a reinforcement learning technology,

called Deep Q-learning, together with an RNN to generate SMILES

with desirable molecular properties such as cLogP [67] and QED

drug-likeness [68]. However, their method needed a reward func-

tion that incorporates handwritten rules to penalize undesirable

types of structures, which otherwise would lead to exploitation of

the reward resulting in unrealistically simple molecules. To over-

come the drawback, Olivecrona et al. [69] proposed a policy-based

reinforcement learning approach to tune the pre-trained RNNs for

generating molecules with given user-defined properties. In one

test example for tuning the model toward generating compounds
1246 www.drugdiscoverytoday.com
predicted to be active against the dopamine receptor type 2, the

model generated structures of which >95% were predicted to be

active, including experimentally confirmed actives that have not

been included in the generative model nor the activity prediction

model.

The methods described above have demonstrated potentials as

alternatives to the traditional rule-based approaches for de novo

design. However, GANs and the reinforcement learning methods

are known to be susceptible to mode collapse (i.e., the models only

generate a single solution or a small family of similar solutions).

This has been highlighted in a recent survey [70] on de novo

structure generation using DL tools. Considerable effort [71,72]

has been spent to address this issue.

Application of deep learning in predicting reactions
and retrosynthetic analysis
Synthesis predictions have a long history dating back to rule-based

methods in the 1960s [73]. Very recently some promising results

were reported in reaction prediction using DL methods. Although

there has been no explicit comparison with other machine

learning methods, the results indicated that DL can achieve per-

formance on-par with, or superior to, the rule-based methods.

Schematically, two types of problems can be addressed with ma-

chine learning including DL in reaction informatics. One type is

forward reaction prediction, where the products are predicted

given a set of reactants, and the other type is retrosynthetic

prediction, where given a final product the reaction steps that

produce the product are predicted. Coley et al. [74] utilized NN to

rank the candidate products for a set of reactions based on a

training set of 15 000 reactions from US patents. The reactions

were classified into templates and the trained model correctly

assigned the major product rank 1 in 71.8%, rank �3 in 86.7%

and rank �5 in 90.8% of cases. To overcome the coverage and

efficiency issues faced with the template-based reaction prediction

methods, a template-free approach was proposed [75] in a follow-

up study by the same research group. They employed the

Weisfeiler–Lehman difference network to score the generated

candidate reactions and superior performance was achieved com-

pared with reaction template-based methods. Segler et al. [76] used

3.5 million reactions as the training set for DNN. A top-ten

accuracy of 97% for reaction prediction and 95% in retrosynthetic

analysis were achieved. In another study [77], they combined

policy networks and Monte-Carlo tree search for retrosynthetic
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FIGURE 5

Structure generation from recurrent neural networks (RNNs). The upper plot shows how the RNN model thinks when generating the structure on the bottom
right. The y axis lists all possible tokens that can be chosen at each step, the color represents the conditional probability for the character to be chosen at the
current step given the previously chosen characters, and the x axis shows the character that, in this instance, was sampled. The bottom left figure demonstrates
how the RNN actually works in the structure-generation mode. At each step a character was sampled based on the conditional probability distribution calculated
from the RNN model and the generated character will then be used as the input character for generation of the next character.
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prediction utilizing a training set consisting of 12 million reactions

from scientific literature. Their system can solve twice as many

molecules’ retrosynthesis plans as the rule-based method. Liu et al.

[78] used neural sequence-to-sequence models for retrosynthetic

prediction. They used 50 000 reactions obtained from US patents

to train the network and obtained similar accuracy to rule-based

methods.

Application of convolutional neural networks to
predict ligand–protein interactions
Assessing the interaction between a protein and a ligand is the

crucial part of the molecular docking program and a lot of scoring

functions were developed either based on forcefields or knowledge

from existing protein–ligand complex structures [79]. Inspired by

the success of CNNs in image analysis, several studies have been

recently published in applying a CNN to score protein–ligand

interaction. A typical example is the investigation done by Ragoza

et al. [80]. The protein–ligand structures were discretized into a

grid with a resolution of 0.5 Å. The grid was 24 Å on each side and

centered on the binding site. Each atom was described with a

function, and atom densities over the grid were generated to form

the input matrix. Multilayer CNN models were defined and trained

using the Caffe DL framework. The CNN scoring outperformed
AutoDock Vina [81] on the CSAR inter-target pose-prediction

dataset [82], but performed worse for intra-target ranking of poses.

Other studies utilizing CNNs or DNNs have also been published

[83–85]. Although some encouraging results have been obtained

with convolutional networks, it is not clear whether they will

consistently improve results compared to currently used scoring

functions.

Benchmark datasets within chemoinformatics
The rapid advances made in the field of image recognition can be

attributed to not only the emergence of novel algorithms but also

to the existence of canonical and large datasets. The standardized

dataset would allow the community to conveniently benchmark

or evaluate developed machine learning methods. The yearly

ImageNet Large Scale Visual Recognition Competition (ILSVRC)

[86] has seen the birth of many influential CNN architectures.

Although several open-source chemoinformatics datasets

[87,88] are available, their impact on machine learning method

development is still limited owing to the limited size of those

datasets, lack of diverse ways of splitting training and test-sets and,

more importantly, lack of a standard evaluation platform for

proposed new algorithms. Inspired by WordNet [89] and ImageNet

[90], Wu et al. [91] introduced the MoleculeNet dataset by curating
www.drugdiscoverytoday.com 1247
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a number of diverse collections including quantum mechanics,

physicochemical, biophysics and physiological datasets, and

developing a suite of software implementing many known mole-

cule representations and machine learning algorithms. Molecule-

Net is built on the open source package DeepChem [92] and

provides easy access to some popular DL algorithms existing in

DeepChem. This will largely facilitate comparison and develop-

ment of novel machine learning algorithms in the future.

Application of deep learning in biological imaging
analysis
In the drug discovery process, biological imaging and image

analysis are widely used at various stages from preclinical R&D

to clinical trials. Imaging enables scientists to see the phenotypes

and behaviors of hosts (human or animals), organs, tissues, cells

and subcellular components. Through digital image analysis, the

hidden biology and pathology, as well as the drug mechanism of

action, are revealed. Examples of imaging modalities are fluores-

cently labeled or unlabeled microscopic images, computed tomog-

raphy (CT), MRI, positron emission tomography (PET), tissue

pathology imaging and mass-spectrometry imaging (MSI). DL

has also made its way to successes in biological image analysis

and many studies reported a superior performance compared with

classical classifiers.

For microscopic images, CNNs have been used [93,94] for

segmenting and subtyping individual fluorescently labelled cells,

as well as unlabeled imageries from phase contract microscopy

[95,96]. Other traditionally laborious tasks from preclinical set-

tings, such as cell tracking [96] and colony counting [97], could

also be automated using DL. Images from tissue pathology are

typically complex in nature compared with the fluorescently

labeled images owing to rich tissue morphology. Nevertheless,

at the cellular level, the segmentation and classification of indi-

vidual cells were achieved in breast and colon tissues stained with

hematoxylin and eosin (H&E) staining [98,99]. At the tissue region

level, the tumor regions from H&E-stained breast tissue were

identified through DL [100], whereas the extra categories of leu-

kocytes and fat tissue can also be recognized [101]. Beyond basic

image segmentation, DL has already been used for the histopath-

ological diagnosis with H&E and the immunohistochemistry

stained tissue [102,103].

The application of DL was also applied for the analysis of CT

[104–106], MRI [107,108] and PET [108] imaging. Besides the

popular application of the image segmentation [106,107] and

classifications [104,105], its utilities have also been shown in

content-based image retrieval [109] and it was reported that

DL methods outperformed the popular ISOMAP and Elastic Net

methods.

For the emerging MSI, similar to the application of DL in tissue

pathology, tumor subtyping can be performed by high-resolution

matrix-assisted laser desorption/ionization (MALDI) MSI [110].

Given that MSI can visualize the metabolic information of a tissue,

sub-regions of a tumor with metabolic heterogeneity from desorp-

tion electrospray ionization (DESI) MSI can already be detected

through DL [111]. Finally, in an unusual imaging area: flow

cytometry, DL enabled the cell classification in real-time for

high-throughput applications [112]. The training of DNNs for

imaging is time-consuming and requires dedicated GPU proces-
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sing. Furthermore, in the context of high-throughput imaging

screening, good-quality training sets are rare. Therefore, image

features trained from natural scenes and other datasets were

‘borrowed’ to perform biological image segmentations and classi-

fications, and robust performances were reported [101,113].

Future development of deep learning in drug
discovery
Machine learning methods and DL in particular generally need

large datasets for training; however, the human brain has the

capability of learning through only a few examples. How to learn

with only a small amount of available data is therefore one of the

hottest topics in machine learning. A DL example of exploiting

auxiliary data to improve a model with only a few data points is

matching networks [114], which was proposed as a variant of one-

shot learning. Improved results were obtained when the auxiliary

data were included. Methods like one-shot learning are relevant to

drug discovery, where medicinal chemists often work on novel

targets with limited data available. Altae-Tran et al. [115] utilized

the LSTM method on chemoinformatics datasets to build models

with a very small training set and promising results were reported.

Very recently, a new type of architecture has been used in DL:

memory augmented neural networks. The first version was the

neural Turing machine. This architecture was significantly im-

proved with a differentiable neural computer (DNC) [116]. DNCs

have been applied to several problems like question-answering

systems and finding the shortest path in graphs. However, these

more-advanced architectures have not been applied so far in drug

discovery.

Concluding remarks
Machine learning has been used since the late 1990s in drug

discovery and has established itself as a useful tool in drug discov-

ery. A recent extension of the machine learning toolbox is DL.

In comparison with other methods, DL has a much more flexible

architecture so it is possible to create a NN architecture tailor-made

for a specific problem. A disadvantage is that DL in general needs

very large training sets. A relevant question is: is DL is superior to

other machine learning methods? We believe it is still too early to

draw any firm conclusion, the results so far indicate that DL is

superior for certain tasks like image analysis and very useful for de

novo molecular design and reaction predictions. For tasks with

structured input descriptors, DL seems to perform at least on-par

with other methods. The most relevant example is bioactivity

prediction where DL seems to achieve better performance overall

through multitask learning. However, other machine learning

methods are also improving. One example is the XGBoost [117]

method, which has dominated Kaggle competitions for structured

input data [118] after its introduction. Thus, in practice the choice

of method used in bioactivity prediction might depend on which

method the modeler is most familiar with. If different machine

learning methods achieve roughly the same accuracy, the limit of

what can be achieved with a machine learning model could

depend on experimental uncertainty for the data and dataset size

rather than the specific algorithm used.
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