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The ability of cancers to evade conventional treatments, such as chemotherapy and radiation therapy,

has been attributed to a subpopulation of cancer stem cells (CSCs). CSCs are regulated by mechanisms

similar to those that regulate normal stem cells (NSCs), including processes involving ubiquitination and

deubiquitination enzymes (DUBs) that regulate the expression of various factors, such as Notch, Wnt,

Sonic Hedgehog (Shh), and Hippo. In this review, we discuss the roles of various DUBs involved in the

regulation of core stem cell transcription factors and CSC-related proteins that are implicated in the

modulation of cellular processes and carcinogenesis. In addition, we discuss the various DUB inhibitors

that have been designed to target processes relevant to cancer and CSC maintenance.
Introduction
Stem cells are defined as cells that have the unique ability to self-

renew or to differentiate into any mature tissue type [1] and can be

categorized into two types: embryonic stem cells (ESCs) and adult

stem cells (ASCs). ESCs are pluripotent in nature, whereas ASCs

tend to differentiate into the different cell types of the source

tissue.

CSCs have very similar characteristics to ASCs because they also

have the ability to self-renew and generate tumor cells indefinitely.

Stem cells are able to generate common and more restricted

progenitor cells that eventually differentiate into mature cell types

that constitute a particular tissue, whereas CSCs show aggressive

self-renewal properties and enormous proliferative potential [1]

(Fig. 1).

Oncogenic mutations in ASCs can explain the initiation and

formation of cancers in tissues such as intestine, skin, or other

specialized systems [2]. Dedifferentiation of highly differentiated

cells because of mutations can also give rise to CSCs that have

acquired the ability to self-renew indefinitely (Note S1 in the
Corresponding authors: Kim, K.-S. (ks66kim@hanyang.ac.kr), Ramakrishna, S.
(suri28@hanyang.ac.kr)
z These authors contributed equally.

1974 www.drugdiscoverytoday.com
supplemental information online) [3]. Studies indicate that sig-

naling pathways associated with normal stem cell development,

such as Notch, Wnt, and Shh, also regulate CSCs, and that dysre-

gulation of these pathways leads to cancer. The precise regulation

of these pathways by the ubiquitination or deubiquitination ac-

tivities of regulatory proteins is crucial to the proper execution of

developmental programs, and manipulation of this regulation can

promote cancer by altering stem cell properties [4]. Multiple

cellular pathways are involved in the induction and maintenance

of stemness of stem cells, among which regulation by the ubiqui-

tin (Ub)-proteasome system has a major role [5].

Ubiquitination and deubiquitination
The Ub-proteasome system is the fundamental regulatory mecha-

nism of protein stability, quality, and abundance. It was first

discovered in 1980 by Avram Hershko and Aaron Ciechanover,

who were awarded the Nobel Prize in 2004 [6]. Ubiquitination is a

post-translational modification process by which a highly con-

served 76-amino acid protein, Ub, is covalently conjugated to a

lysine residue of a substrate protein through a cascade of enzy-

matic reactions [7].

The first enzyme in the process, E1 (Ub-activating), activates Ub

in the presence of ATP, forming a thioester bond between the
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FIGURE 1

Normal versus cancer stem cell differentiation. (a) Differentiation of normal stem cells into highly specialized mature cells. (b) Differentiation of cancer stem cells
acts as a seed for tumorigenesis.
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C-terminal glycine of Ub and the active site cysteine of the E1

enzyme. The activated Ub is transferred to the cysteine residue of

the second enzyme, E2 (Ub-conjugating). E3 (Ub ligase) is respon-

sible for the transfer of Ub to the target substrate protein either

directly from E2 or via a thioester intermediate between Ub and E3

[8] (Fig. 2).

Ubiquitination can occur repetitively on the same substrate,

either at additional sites (multi-monoubiquitination) or as poly-

ubiquitination, in which the first added Ub serves as the ‘acceptor’

for additional Ub molecules at one of the e-NH2 lysine groups or,

less frequently, at the a-NH2 group of the acceptor Ub [9].

The ubiquitination process can be reversed by specialized

enzymes known as DUBs. DUBs oppose the action of E3 ligases

by cleaving the isopeptide linkage between the amino group of

lysine and the C-terminal glycine residues of Ub. Analysis of the

human genome has identified approximately 100 functional DUBs

[10], which have been divided according to active site homology

into six broad classes: Ub-specific proteases (USPs), Ub C-terminal

hydrolases (UCHs), ovarian tumor proteases (OTUs), Machado–

Joseph disease protein domain proteases, JAMM/MPN domain-

associated metallopeptidases (JAMMs), and monocyte chemotac-

tic protein-induced proteins (MCPIPs) [11].

Within the classes of DUB, USPs are highly diversified and have

>50 members, including the major ubiquitinaseE3 ligase [12]. Many

studies have reported mutations in USPs involved in multiple bio-
logical processes and frequent alteration of USPs in CSCs, indicating

an association between mutations and/or changes in expression

levels of USPs and tumor progression. However, the role of many

USPs in cancer and CSC biology have remained largely unexplored

[11]. Here, we review the role of DUBs relevant to CSCs, the various

small molecules that have been developed to inhibit DUB activity,

and the implications for CSC-targeted therapy.

DUBs associated with CSC signaling pathways and
their properties
CSCs and NSCs show a striking resemblance in molecular pheno-

types [13]. CSC properties, such as self-renewal, differentiation,

and proliferation, are regulated by several signaling pathways,

including (i) Hedgehog pathway, which maintains cell polarity

and stemness by driving the expression of various stemness-related

genes, including Sox2, Oct4, and Bmi; (ii) Wnt/b-catenin signaling,

which has a role in tissue self-renewal, cell fate determination, and

tumorigenesis; (iii) Notch pathway, which maintains cell stem-

ness; (iv) Hippo pathway, which is involved in cell regeneration

and tumorigenesis; [10] (v) TGF-b/BMP signaling, which has a role

in cell differentiation, proliferation, survival, and motility [14];

and (vi) EGFR signaling, which maintains cell stemness and pro-

vides therapeutic resistance in numerous cancer types, including

tumors in the lung, colon, breast, brain, head and neck [15] (Table

S1 in the supplemental information online).
www.drugdiscoverytoday.com 1975
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FIGURE 2

Ubiquitin (Ub) proteasomal pathway. Three enzymes are responsible for binding ubiquitin molecules to protein substrates: Ub-activating enzyme E1, Ub-
conjugating enzyme E2, and Ub ligase E3. K-48-linked polyubiquitinated proteins are targeted by the proteasomal complex for protein degradation.
Deubiquitination enzymes (DUBs) are mainly involved in the recycling of Ub molecules and also counteract Ub-protein ligase activity.
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CSC properties are regulated by epithelial–mesenchymal tran-

sition (EMT)-inducing transcriptional factors (EIFs), such as Snail

and Twist (Note S2 in the supplemental information online),

inhibitors of differentiation (IDs); epigenetic modifiers, such as

polycomb factors Bmi1 and Ezh2, histone lysine-specific

demethylase1 (LSD1)/lysine (K)-specific demethylase 1A

(KDM1A) and Sirt1; in addition to other CSC-related factors,

such as c-Met and repressor element 1 silencing transcription

factor (REST) [16].

Growing evidence suggests that many DUBs stabilize several

CSC-associated transcriptional factors, such as Oct4, c-myc, Klf4,

Sox2, Lin28,and Nanog, which are known as the Yamanaka factors

that generate induced pluripotent stem cells (iPSCs) (Note S3 in

the supplemental information online). Some of these transcrip-

tional factors are considered biomarkers for CSCs, as summarized

in Table S1 in the supplemental information online. A detailed

review of important DUBs that are involved in the regulation of

CSC self-renewal, proliferation and differentiation is provided

below.
1976 www.drugdiscoverytoday.com
USP1
USP1 belongs to the EIF family of DUBs, which is involved in the

DNA damage response by regulating DNA repair mechanisms and

is also associated with the Fanconi anemia pathway [17]. USP1 is

activated by formation of a complex with USP1-associated factor 1

(UAF1) and deubiquitinates two crucial DNA repair proteins,

PCNA-Ub and FANCD2-Ub [18]. USP1 deubiquitinates polycomb

repressive complex1 (PRC1), an important epigenetic modifier in

stem cell development and maintenance [19]. Studies revealed

that ID proteins are a substrate for USP1 in osteosarcomas and

glioblastomas [20,21]. USP1 deubiquitinates and stabilizes the ID1,

ID2, and ID3 proteins to preserve a mesenchymal stem cell (MSC)

program in osteosarcoma [21].

USP2a
USP2a, an isoform of USP2, is an androgen-regulated DUB that

deubiquitinates anti-apoptotic proteins fatty acid synthase,

Mdm2, and MdmX (also known as Mdm4) [22,23]. USP2a stabi-

lizes Mdm4 and facilitates the p53-mediated intrinsic apoptotic
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pathway in glioblastoma [24]. TP53 is an important tumor sup-

pressor gene encoding the protein p53, which regulates the cell

cycle and is known as ‘the guardian of the genome’ [25]. Studies

have shown that overexpression of USP2a leads to the degradation

of p53 and increased cellular levels of Mdm2 and/or MdmX,

whereas suppression of USP2a has the opposite effect [24]. Fur-

thermore, studies on USP2a suggested an involvement in apopto-

tic pathways by stabilizing receptor-interacting protein 1 (RIP1)

[26]. In prostate cancer, USP2a is generally overexpressed and its

functional inactivation has been shown to enhance the apoptosis

of cancer cells [27]. The Aurora-A protein, which is important for

cell proliferation, has been shown to be deubiquitinated and

stabilized by USP2a [28]. USP2a has also been found to be involved

in cell cycle regulation and tumor progression by interacting with,

and stabilizing cyclin A1 in bladder cancer cells [29].

USP4
USP4 has important roles in cancers by targeting proteins such as

adenosine receptor acid-sensing ion channel 2A (ADORA 2A),

tripartite motif 21 (TRIM 21), tumor necrosis factor (TNF)-recep-

tor-associated factor 2 (TRAF), and TRAF6 [30]. USP4 shuttles

between the nucleus and cytoplasm of the cell and is also involved

in maintaining operational fidelity in the endoplasmic reticulum.

USP4 has been shown to inhibit TNFa-induced cancer cell migra-

tion and breast cancer cell growth through upregulation of pro-

grammed cell death 4 (PCD4) [31]. USP4 also has an important role

in the EMT of lung cancers, which is associated with acquirement

and enhancement of stemness [32].

USP7
USP7, also known as Herpes virus-associated Ub-specific protease

(HAUSP), is the key regulator of p53 activity; it deubiquitinates and

stabilizes both, p53 and Mdm2, thus providing additional control

over p53 regulation [33]. USP7 has a major role in the maintenance

and differentiation of stem cells by stabilizing REST proteins,

thereby preventing Skp1–Cullin-1–F-box beta and transducin re-

peat-containing E3 Ub protein ligase (SCFb-TRCP)-mediated ubi-

quitination [34]. USP7 also deubiquitinates PRC1 and regulates

LSD1/KDM1A, which has a role in embryonic development [35].

USP7, together with USP15, contributes to brain CSC maintenance

by the reversal of stem cell transcription factor-REST activity [36].

USP9X
USP9X, also known as Fat facet in mouse (FAM), is an X-linked Ub-

specific protease that is an essential component of the TGF-b
signaling pathway. Monoubiquitination of the transcription fac-

tor Smad4 at K-519 is counteracted by USP9X, thereby impeding

its activity [37]. USP9X is involved in the regulation of MAPK- and

ASK1-mediated signaling in cancers [38]. USP9X stabilizes the

MCL1 protein, which is normally expressed at low levels as a

result of its rapid turnover by Ub ligases. [39]. USP9X interacts

with Sox2 in glioblastoma cells [40] and has a role in the EMT of

liver cells [41].

USP11
USP11 is capable of deubiquitinating IkBa in vitro [42]. Activation

of NF-kB requires the Ub-mediated degradation of IkBa. Knock-

down of USP11 enhances NF-kB activation by TNFa-induced
ubiquitination of IkBa [42]. USP11 is responsible for deubiquiti-

nating the type I TGF-b receptor, thus regulating TGF-b signaling

[43]. TGF-b signaling is enhanced by the interaction of USP11 with

SMAD7 [44]. The USP11 protein has also been associated with the

BRCA2 protein involved in DNA damage repair systems [44]. In

addition, USP11 directly deubiquitinates p53 and enhances its

stabilization [45].

USP14
USP14 is a histidine and cysteine domain-containing DUB belong-

ing to the Ub-specific processing (UBP) protease family [46]. USP14

is found in the cytoplasm of cells and cleaves Ub from precursors

and ubiquitinated proteins [46]. USP14 is thought to regulate the

degradation of proteins in neurons [47]. USP14 negatively regu-

lates prion protein degradation [48] and has been shown to have

an important role in the EMT of gastric cancers [49]. USP14

functions as a regulator of the Wnt signaling pathway by deubi-

quitinating the disheveled (dvl) protein, which is subsequently

phosphorylated in response to Wnt, whereas knockdown of Usp14

prevents activation of downstream Wnt/b-catenin signaling [50].

The function of USP14 is thought to be complex because it also

appears to be essential for the development of neuromuscular

junctions and maintenance of synaptic Ub levels [51,52].

USP21
USP21 associates with microtubules and centrosomes, suggesting a

role in the cell cycle [53]. USP21 catalyzes the hydrolysis of

ubiquitinated H2A, thus activating transcription [54]. It also

influences the Hedgehog signaling pathway by stabilizing glio-

ma-associated oncogene 1 (GLI1) [55]. USP21 binds to the pro-

moter region of IL-8 and mediates the transcriptional initiation

required for stem cell-like properties in human renal cell carcino-

ma [56]. In addition, USP21 deubiquitinates Nanog and its absence

affects the efficiency of somatic cell reprogramming [57].

USP22
USP22 positively regulates the histone deacetylase Sirt1, resulting

in suppression of p53 function by reducing p53 acetylation [58].

Histone 2A (H2A) and histone 2B (H2B) complexes that are im-

portant in gene activation or silencing are regulated by USP22 in a

similar manner to USP12 and USP46 [59]. USP22 directly influ-

ences the transcription of Sox2, which is essential for ESC differ-

entiation, by binding to the Sox2 promoter region and promoting

the lineage-specific differentiation of ESCs [60]. In addition, USP22

regulates LSD1/KDM1A in CSCs [35] and c-myc in breast cancer

[61], thus augmenting its tumorigenic function. USP22 also has an

important role in the EMT of pancreatic cancers [62].

USP28
USP28 has a crucial role in regulating Chk2-p53-PUMA signaling

pathways and is involved in DNA damage-induced apoptosis in

response to double-strand breaks [63,64]. USP28 also regulates

cancer signaling; for example, USP28 stabilizes the oncogenic

transcription factor c-myc by counteracting the action of a Skp1-

–Cullin-1–F-box complex containing Fbw7 as the F-box protein,

the (SCFFbw7) Ub ligase complex [65]. USP28 antagonizes the Ub-

dependent degradation of c-myc, as well as c-Jun and Notch, by

targeting the Ub ligase Fbw7, thereby stabilizing the HIF-1a
www.drugdiscoverytoday.com 1977
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transcription factor [66]. USP28 also stabilizes and regulates LSD1/

KDM1A by preventing the ubiquitination of LSD1 [67].

USP44
USP44 is an important mitotic spindle checkpoint regulator that

stabilizes the APC inhibitor Mad2-Cdc20 complex, thereby pre-

venting the premature activation of APC [68]. Cells with high

levels of USP44 tend to undergo aneuploidization and exhibit

errors in chromosome separation [69]. Additionally, USP44 deu-

biquitinates H2B, which is essential for ESC differentiation [70].

USP44 expression in ESCs was found to be associated with the POU

domain class 5 transcription factor 1 (Pou5f1), Nanog, and Sox2

genes through complex interactions between several different

epigenetic factors [71].

USP54
USP54 is overexpressed in intestinal stem cells and colorectal CSCs

[72]. Silencing of USP54 in colorectal cancer cells decreases their

proliferation, invasiveness, and colony-forming capacity, as well

as their tumorigenicity, when injected into immunodeficient mice

[72].

A20
A20 exhibits both DUB and E3 ligase activity [73]. It is also known

as TNFa-induced protein 3 (TNFAIP3), and was shown to be

responsible for negative regulation of the NF-kB transcription

factor by removing K-63 linked polyubiquitin chains on RIP1

[74] and TRAF6 [73]. Through its inhibitory role in the NF-kB
pathway, A20 acts as a tumor suppressor in lymphoid malignan-

cies [74,75].

UCHL1
UCHL1 is overexpressed in lung adenocarcinomas linked to smok-

ers compared with nonsmokers and was speculated to be an early

marker of the transformation process of normal lung epithelium

[76]. By contrast, the UCHL1 gene was found to be silenced

through methylation of CpG islands in the gene promoter in

giant cell tumors in bone [77]. UCHL1 has an important role in

the EMT of prostate cancers [78].

UCHL5
UCHL5 forms a reversible association with the proteasome by

binding to the 26S proteasome via the Admr1 receptor in the

19S RP base complex; this enhances the isopeptidase activity of the

enzyme [79] and displaces the crossover loop at the UCH-domain

active site, allowing substrate entry [80]. Rpn11/POH1 is another

important DUB associated with the 19S regulatory particle of the

proteasome (Note S4 in the supplemental information online).

UCHL5 expression has been proposed as a novel prognostic marker

in lymph node-positive rectal cancer [81]. UCHL5 also promotes

the degradation of specific substrates, such as nitric oxide synthase

(NOS) and IkBa [82].

OTUB1
OTUB1 belongs to a family of DUBs that contain the ovarian

tumor-OTU domain [83]. Overexpression of OTUB1 stabilizes

and activates p53 by suppressing MDM2-mediated p53 ubiquiti-

nation [84]. Monoubiquitination of OTUB1 was found to suppress
1978 www.drugdiscoverytoday.com
UbcH5 activity, thereby stabilizing p53 [85]. OTUB1 negatively

regulates estrogen receptor (ER)-a-mediated transcription through

deubiquitination of ERa [86], virus-induced type I IFN induction,

and antiviral responses by deubiquitinating TRAF3 and TRAF6

[87]. OTUB1 has also been found to have an important role during

the EMT of colorectal cancer [88].

CYLD
CYLD germline mutation is associated with the development of

multiple skin tumors of the head and neck that occur in familial

cylindromatosis [89]. CYLD mutant human cylindroma tumors

demonstrate a hyperactive Wnt signaling pathway resulting from

enhanced K-63 linked ubiquitination of the Wnt pathway protein,

Dvl [90]. CYLD deubiquitinates K-63 linked polyubiquitin chains

on Bcl-3, a proto-oncogene [91]. CYLD is also involved in the

regulation of NF-kB activation by inhibiting NF-kB-mediated

activation and deubiquitinating TNF receptors, such as TRAF2

and TRAF6 [92].

DUB inhibitors
DUBs have been proposed as an advantageous therapeutic target

for cancer and other diseases because they have the ability to

modulate protein fate in a specific and selective manner; they can

alter a key aspect in the pathological fate of a cell, for example

directing the cell toward recovery or death [93]. DUBs that regulate

oncogenic proteins can be targeted by compounds that inhibit

their activity via UPS degradation, whereas DUBs that regulate

tumor suppressor proteins could be targeted for activation by

decreasing their UPS degradation, thereby inhibiting oncogenic

processes. Extensive research has been carried out to design DUB

inhibitors because they are easier to design and develop than are

enzyme activators using competitive inhibition and substrate

modeling [93], as summarized in Table 1.

DUB inhibitors in CSC-targeted therapy
Multiple strategies have been proposed to target CSCs and their

niche, including targeting specific surface markers, inhibition of

drug-efflux pumps, manipulating miRNA expression, adjusting

micro-environmental signaling, induction of apoptosis, differen-

tiation of CSCs and, more lately, targeting DUBs using inhibitors.

Reactive oxygen species (ROS) levels in CSCs are low compared

with other cell types and studies have shown an inverse relation-

ship between ROS levels and DUB activity in CSCs; therefore,

targeting the hyperactivated DUBs in CSCs will be valuable in

the treatment of tumors. Multiple DUBs, including Psmd14,

USP16, and USP44 in ESCs [70,94] and USP3 and CYLD in HSCs

[95,96], are potential targets for DUB inhibitors.

Studies have shown that downregulation of A20 expression in

germline stem cells impairs their survival and growth in vitro and

decreases tumorigenicity in mice bearing human glioma xeno-

grafts [97]. Several DUBs have been shown to regulate the EMT

pathway in cancer cells [98] and, because of its relationship with

cancer stemness, these DUBs should also be regarded as candidates

for CSC-targeted therapy. Several DUB inhibitors that are being

considered as potential candidates for CSC-targeted therapy are

described below.

Pimozide (an antipsychotic drug) is a USP1-specific inhibitor

and has been used to target radiation resistance and CSC-mediated



Drug Discovery Today �Volume 23, Number 12 �December 2018 REVIEWS

TABLE 1

Summary of DUB inhibitorsa

Compound Activity

Pimozide USP1
ML323 USP1
VLX1570 USP14, UCHL5
LDN-57444 UCHL1
TCID UCHL3, UCHL1
GW7647 USP1/UAF1
EOAI3402143 (G9) USP9X, USP5, USP24
Vialinin A USP5/IsoT, USP4
P5091 USP7, USP47
Cpd 14 USP7 and USP47
P22077 USP7/USP47
HBX 41,108 USP7
HBX-19,818 USP7
HBX-28,258 USP7
HBX 90,397 USP8
IU1 USP14
Isatin O-acyl oxime derivatives UCHL1
LDN91946 UCHL1
LS1 UCHL3
NSC112200, NSC267309 TRABID/ZRANB1
PR-619 Broad-spectrum DUB inhibitor

12D-PGJ2 UCHL3

15-Deoxy-D12,14-prostaglandin J2 UCHL1

G5 Inhibition of cellular Ub-AMC
cleavage

F6 (NSC 632839) Inhibition of cellular Ub-AMC
cleavage, USP2, USP7, SENP2
deSUMOylase

WP-1130 USP5/USP9x/USP14/UCHL1/UCHL5
b-AP15 (WO2013058691) USP14/UCHL5
AM146, RA-9,and RA-14 USP2a/USP2b/USP5/USP8
Eeyarestatin 1 Ataxin-3
Curcumin Accumulation of polyubiquitin,

contains a,b unsaturated ketones
AC17 (curcumin analog) USP14, UCH-L5
Betulinic acid Broad-spectrum DUB inhibition
Gambogic acid Accumulation of polyubiquitin,

contains a, b unsaturated ketones
WO2013030218 USP7
Auranofin USP14
PX-478 (WO/2005/007828) DUBs associated to HIF-1a
Tricyclic heterocyclics (WO2011094545) USP14
Azepan-4-ones (US20140370528A1) UCHL5, USP14
6-Amino-pyrimidines (WO201405952A3) USP1/UAF1
a References to DUB inhibitors can be found in Table S2 in the supplemental information
online.
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tumor resistance. Pimozide targets USP1 in osteosarcoma and

glioblastoma cells [99,100].

ML323 is an inhibitor of the USP1/UAF1 deubiquitinase com-

plex. ML323 has been shown to potentiate cisplatin cytotoxicity in

NSCLC and osteosarcoma cells [101].

PX-478 or melphalan N-oxide {S-2-amino-3-[40-N,N-bis(2-chlor-

oethyl)amino] phenyl propionic acid N-oxide dihydrochloride} is a

small-molecular-weight anticancer agent that inhibits DUBs associ-

ated with HIF-1a [102]. PX-478 also decreases the expression of

downstream targets genes, such as vascular endothelial growth factor

(VEGF), and inhibits HIF-1a transactivation in several cancerous cell

lines [103]. PX-478 has been described as a valuable CSC-targeted

therapeutic drug for its downregulation of HIF-1a signaling, which is

often hyperactivated in the hypoxic niche of CSCs [104].
C527 was identified as a USP1 inhibitor that promotes the

degradation of the ID1 protein, which has a central role in keeping

cells in an immature state. C527 is also responsible for the con-

current upregulation of p21 in mouse osteosarcoma cells, thereby

increasing erythroid differentiation of leukemic cells [105].

PR619 is a small-molecule DUB inhibitor that acts as a non-

selective reversible inhibitor of DUBs. PR619 is a cell-permeable

pyridinamine class broad-spectrum DUB inhibitor the known

targets of which include ATXN3, BAP1, JOSD2, OTUD5, UCH-

L1, UCH-L3, UCH-L5/UCH37, and USPs – 1, 2, 4, 5, 7, 8, 9X, 10, 14,

15, 16, 19, 20, 22, 24, 28, 47, and 48. PR619 treatment results in the

upregulation of K-48- and K-63-linked polyUb chains [106].

P5091 has been shown to inhibit tumor growth by inhibiting

USP7 and USP47 and is well tolerated in animals [107]. P5091

induces apoptosis of multiple myeloma cells that are resistant to

bortezomib, a 20S proteasome inhibitor. It targets USP7 and USP47

of neural, glioblastoma, and multiple myeloma cells [34,35,108].

P22077, an analog of the recently discovered DUB inhibitor P5091,

is an inhibitor of USP7 and its closely related DUB USP47. It inhibits

neuroblastoma growth by inducing p53-mediated apoptosis [109].

WP-1130 is a small-molecule compound with Janus-activated

kinase 2 (JAK2) kinase inhibitory activity that inhibits several

DUBs of USP and UCH subclasses, such as USP5, USP9X, USP14,

USP15, USP37, and UCHL1, in several CSC types, including liver

and breast cancer [110,111]. WP-1130 rapidly induces ubiquitina-

tion of Bcr-Abl, resulting in its relocalization from the cytoplasm

into aggresomes and resulting in the loss of Bcr-Abl oncogenic

signaling [112]. Exposure of cells to WP-1130 results in the down-

regulation of the anti-apoptotic protein MCL1. This is expected to

be because of inhibition of USP9X expression in many tumors,

including hematological malignancies [113]. WP-1130 combined

with bortezomib showed antitumor activity in a mantle cell

lymphoma animal model [114].

b-AP15 (WO2013058691) is an inhibitor of USP14 and UCHL5

associated with 19S RP that has been found to inhibit the progres-

sion of tumors in certain human cancers as well as mouse cancer

models of lung, colon, breast, and head and neck carcinomas

[115]. b-AP15 was identified together with cathepsin-D and p53

in a cell-based screen of compounds that induce apoptosis [116].

Studies have shown that co-inhibition of both USP14 and UCHL5

using RNA interference leads to strong accumulation of proteaso-

mal substrates and loss of cell viability [117]. Studies in animal

models showed that b-AP15 has considerable activity against

multiple myelomas and solid tumors [117].

VLX1570 is an analog of b-AP15 that shows higher potency and

improved solubility. VLX1570 is an inhibitor of USP14 and UCHL5

with apoptosis-inducing and antineoplastic activities [117]. In-

creased expression of USP14 in multiple myeloma cells was asso-

ciated with elevated sensitivity to proteasome DUB inhibition by

VLX1570 [118]. VLX1570 was approved in a Phase 1/2 clinical trial

in combination with dexamethasone (NCT02372240) by the US

Food and Drug Administration (FDA) in 2017 [118].

LDN-57444 is an isatin O-acyl oxime reported to selectively, com-

petitively,and reversibly inhibit UCHL1 [119]. LDN-57444 isan active

site directed inhibitor that has been shown to increase proliferation of

the H1299 lung tumor cell line expressing UCHL1 [119]. Studies

conducted in SK-N-SH neuroblastoma cells showed that LDN-

57444 caused an increase in the levels of polyubiquitinated proteins
www.drugdiscoverytoday.com 1979
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FIGURE 3

Cancer therapy strategies. (a) Conventional therapies, such as radiation and chemotherapy, target only the cancerous cells and not the cancer stem cells (CSCs)
that lead to relapse. (b) CSC-targeted therapies, similar to conventional therapy plus deubiquitination enzyme (DUB) inhibitors, lead to tumor regression.
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and induced endoplasmic reticulum stress-related apoptosis [120].

LDN-57444 also targets UCHL3 in prostate cancer [121].

TCID is a potent, selective, and cell-permeable inhibitor of

UCHL3 that is responsible for the removal of Ub from polypeptides

and the regulation of cellular Ub levels [119]. TCID targets UCHL3

and UCHL5 of multiple myeloma cells [117].

Concluding remarks
Targeting enzymes upstream of the proteasome in the UPS system is

known to have adverse effects; targeting E1 leads to cell cycle arrest

and targeting E2 impairs development [122]. By contrast, DUBs have

sparring functions; they prevent substrate proteins from being

degraded by the proteasome and might be responsible for protecting

the stemness of CSCs as well as NSCs; in addition, they are key

regulators of processes such as signal transduction, proliferation,

and apoptosis. DUB inhibitors are an important part of the pharma-

ceutical armamentarium by targeting the most obstreperous DUBs

that regulate diverse CSC-related proteins. This approach to target-

ing cancer can counter the inevitable problems faced in cancer

therapy such as drug resistance and disease recurrence (Fig. 3).

Further research should be undertaken to understand the natural

regulatory mechanisms in cells to identify candidate pathways and

targets required for the regulation of DUB activity and expression

that could be pharmacologically modified.
1980 www.drugdiscoverytoday.com
DUBs represent a complex system for regulating cellular activi-

ties and the outcome of targeting these DUBs in combination with

conventional cancer therapies is currently being investigated by

companies such as Progenra [123]. Therefore, further research to

better understand the roles of the DUBs being targeted should be

undertaken so that intelligently crafted targeted clinical regimens

can be designed for different cancers. The ability of DUB-targeted

therapies to benefit other diseases and conditions in addition to

cancers might also be worthy of further research.
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