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Chemoinformatics is an established discipline focusing on extracting, processing and extrapolating

meaningful data from chemical structures. With the rapid explosion of chemical ‘big’ data from HTS and

combinatorial synthesis, machine learning has become an indispensable tool for drug designers to mine

chemical information from large compound databases to design drugs with important biological

properties. To process the chemical data, we first reviewed multiple processing layers in the

chemoinformatics pipeline followed by the introduction of commonly used machine learning models in

drug discovery and QSAR analysis. Here, we present basic principles and recent case studies to

demonstrate the utility of machine learning techniques in chemoinformatics analyses; and we discuss

limitations and future directions to guide further development in this evolving field.
Introduction
Machine learning is currently one of the most important and

rapidly evolving topics in computer-aided drug discovery [1]. In

contrast to physical models that rely on explicit physical equations

like quantum chemistry or molecular dynamics simulations, ma-

chine learning approaches use pattern recognition algorithms to

discern mathematical relationships between empirical observa-

tions of small molecules and extrapolate them to predict chemical,

biological and physical properties of novel compounds. Also, in

comparison to physical models, machine learning techniques are

more efficient and can easily be scaled to big datasets without the

need for extensive computational resources. One of the primary

application areas for machine learning in drug discovery is helping

researchers understand and exploit relationships between chemi-

cal structures and their biological activities or SAR [2]. For instance,

given a hit compound from a drug screening campaign, we might

wish to know how its chemical structure can be optimized to

improve its binding affinity, biological responses or physiochem-

ical properties. Fifty years ago, this type of problem could only be

addressed through numerous costly, time-consuming, labor-in-

tensive cycles of medicinal chemistry synthesis and analysis.

Today, modern machine learning techniques can be used to model
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QSAR, or quantitative structure–property relationships (QSPR),

and develop artificial intelligence programs that accurately predict

in silico how chemical modifications might influence biological

behavior [3]. Many physiochemical properties of drugs, such as

toxicity, metabolism, drug–drug interactions and carcinogenesis,

have been effectively modeled by QSAR techniques [3]. Early QSAR

models, such as Hansch and Free–Wilson analysis, used simple

multivariate regression models to correlate potency (logIC50) with

substructure motifs and chemical properties like solubility (logP),

hydrophobicity, substituent pattern and electronic factors [4].

Although groundbreaking and successful, these approaches were

ultimately limited by unavailability of experimental data and the

linearity assumption made in modeling. Therefore, advanced

chemoinformatics and machine learning techniques capable of

modeling nonlinear datasets, as well as big data of increasing

depth and complexity, are needed.

Overview of chemoinformatics
Chemoinformatics is a broad field that encompasses computer

science and chemistry with the goal of utilizing computer infor-

mation technology to solve problems in the field of chemistry

such as chemical information retrieval and extraction, com-

pound database searching and molecular graph mining [5,6].

Other areas of chemoinformatics related to drug discovery also
. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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include computer-aided drug synthesis (a very broad field with

>50 years’ history), chemical space exploration, pharmacophore

and scaffold analysis, library design, among others [7,8]. Con-

verting a compound structure into chemical information

applicable for machine learning tasks requires multilayer compu-

tational processing from chemical graph retrieval, descriptor

generation, fingerprint construction to similarity analysis, in

which each layer is built upon the successful development of

previous layers and often has a substantial impact on the quality

of the chemical data for machine learning (Fig. 1).

Chemical graph theory
To understand how the structures of chemicals influence their

biological activities, it is imperative to review the foundations of

chemical graph theory [9]. A chemical graph, also known as a

‘molecular graph’ or ‘structural graph’, is a mathematical construct

comprising an ordered pair G = (V,E), where V is a set of vertices

(atoms) connected by a set of edges (bonds) E. Chemical graph

theory maintains that, because chemical structures are fully speci-

fied by their graph representations, they contain the information

necessary to model and provide insight into a wide range of

biological phenomena. Several variations of chemical graphs have

been proposed [10]. Weighted chemical graphs assign values to

edges and vertices to indicate bond lengths and other atomic

properties [11]. Chemical pseudographs or reduced graphs use

multiple edges and self-loops to capture detailed bond valence

information [7]. Regardless of flavor, chemical graphs represent

atomic connectivity using a bond adjacency matrix, or topological

distance matrix, which supports the computation of several topo-

logical indices useful for chemoinformatics modeling [12]. Garcia-

Domenech et al. demonstrated the application of chemical graphs

for chemometric analysis. In their study, they proposed an equa-

tion that combined pseudograph vertex degree derived from the

adjacency matrix with two key parameters from the complete

graph to model the electronegativity of 30 elements from the

main group of the periodic table [10]. More recently, Fourches

and Tropsha developed the advanced dataset graph analysis

(ADDAGRA) approach. In this work, they combined multiple

graph indices from bond connectivity matrices to compare and

quantify chemical diversity for large compound sets using chemi-

cal space networks in high-dimensional space. The study showed

that the ADDAGRA approach could uncover shared chemical

space between chemical databases to improve SAR analysis [13].

Chemical descriptors
Chemical descriptors are numerical features extracted from chem-

ical structures for molecular data mining, compound diversity

analysis and compound activity prediction [14–16]. Chemical

descriptors can be one-dimensional (0D or 1D), 2D, 3D or 4D

(Table 1) [17]. One-dimensional descriptors are scalars that de-

scribe aggregate information such as atom counts, bond counts,

molecular weight, sums of atomic properties or fragment counts

[18]. Although simple to compute, 1D descriptors suffer from

degeneracy problems where distinct compounds are mapped to

identical descriptor values for a given descriptor. Thus, 1D descrip-

tors are usually used in concert with higher-dimensional descrip-

tors or expressed as a vector of multiple 1D descriptors. 2D

chemical descriptors are the most frequent descriptor type
reported in the literature, and include topological indices, molec-

ular profiles and 2D autocorrelation descriptors [18]. An important

feature of 2D descriptors, which makes them useful for structure

differentiation, is graph invariance where descriptor values are

unaffected by the renumbering of graph nodes (vertices). To

facilitate analysis of the large space of 2D descriptors, Hong

et al. reported the Mol2 system that rapidly generates up to 200

types of 2D descriptors for large compound datasets [19]. Other

commercial software packages commonly used in the descriptor

generation include the DRAGON system, which can generate up to

5000 types of descriptors as part of several QSAR studies [20,21].

3D chemical descriptors extract chemical features from 3D coor-

dinate representations and are considered the most sensitive to

structural variations [22–25]. Well-known 3D descriptors include

autocorrelation descriptors, substituent constants, surface:volume

descriptors and quantum–chemical descriptors [18]. 3D chemical

descriptors are useful for identifying ‘scaffold hops’ – distinct chem-

ical scaffolds with similar binding activities [26]. A key limitation of

3D chemical descriptors in QSAR analysis is the computational

complexity of conformer generation and structure alignments;

which are absent of any guarantees that predicted conformations

correspond to relevant bioactive conformations. 4D chemical

descriptors are an extension of 3D chemical descriptors that simul-

taneously consider multiple structural conformations [27]. Ash and

Fourches applied molecular dynamics simulation on ERK2 kinase to

compute 3D descriptorsover a grid box basedon the 20 ns trajectory,

and showed that such 4D chemical descriptors can effectively dif-

ferentiate the most active ERK2 inhibitors from the inactive ones

with superior enrichment rates [28].

Chemical fingerprints
Chemical fingerprints are high-dimensional vectors, commonly

used in chemometric analysis and similarity-based virtual screen-

ing applications, the elements of which are chemical descriptor

values [29]. Molecular ACCess System (MACCS) substructure fin-

gerprints are 2D binary fingerprints (0 and 1), with each of 166 bits

indicating the presence or absence of particular substructure keys

[30]. Daylight fingerprints and extended connectivity fingerprints

(ECFP) extract chemical patterns of up to a specified length or

diameter from a chemical graph. In comparison to the predefined

substructure keys of MACCS, these fingerprints can dynamically

index features using hash functions and often yield higher speci-

ficity when searching complex structures [31]. The latest develop-

ment in 2D fingerprints are continuous kernel and neural

embedded fingerprints – internal representations learned by sup-

port vector machines (SVMs) and neural networks. Duvenaud et al.

extended the convolution concept to molecules represented as 2D

molecular graphs for extracting molecular representation [32]. The

architecture generalizes the fingerprint computation such that the

representation can be learned via backpropagation in a data-driven

manner, and improves predictions of solubility, drug efficacy and

organic photovoltaic efficiency.

3D fingerprints commonly used in 3D-QSAR studies include

chemical features based on pharmacophoric patterns, surface

properties, molecular volumes or molecular interaction fields

[24,33]. One of the best known 3D fingerprints is molecular

interaction field (MIF), as implemented in the GRID program by

Goodford [34]. The MIF-based fingerprint places the ligand in a
www.drugdiscoverytoday.com 1539
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Chemical feature extraction
Compounds retrieved from
database were characterized by
the chemical substructure 
fragments or other methods  

Chemical fingerprint creation
The presence and absence of
particular substructure fragments
were used to create a chemical
fingerprint for similarity comparison   

QSAR/QSPR modeling
Given known compound properties,
the chemical features can be used
to train machine learning models
(instance-based or model-based) for
compound property predictions   
 

Instance-based learning Model-based learning

Compound database
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FIGURE 1

Computational workflow for chemoinformatics analysis using machine learning. The first step of chemoinformatics analysis is feature extraction, through which
the compound is characterized by substructure fragments or other chemical descriptors (first box). The chemical features of the compound are represented by
chemical fingerprints and applied for compound similarity comparison based on the presence and absence of shared chemical features. The chemical fingerprint
can be used for predicting other chemical and physiochemical properties in QSAR/QSPR analysis using diverse machine learning models including making
inference from the training data by comparison (instance-based learning) or from the trained statistical model (model-based learning) (second box).
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TABLE 1

Common chemical descriptors for QSAR/QSPR analysis

Chemical descriptors Based on Examples

Theoretical descriptors
0D Molecular formula Molecular weights, atom counts, bond counts
1D Chemical graph Fragment counts, functional group counts
2D Structural topology Weiner index, Balaban index, Randic index, BCUTS
3D Structural geometry WHIM, autocorrelation, 3D-MORSE, GETAWAY
4D Chemical conformation Volsurf, GRID, Raptor

Experimental descriptors
Hydrophobic parameters Hydrophobicity Partition coefficents (logP), hydrohobic substituent constant (p)
Electronic parameters Electronic properties Acid dissociation constant, Hammett constant
Steric parameters Steric properties Taft steric constant, Charton's constant
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rectangular grid with a fixed interval and calculates the electronic,

steric and hydrophobic contribution independently at each grid

point. The resulting MIF-based fingerprints can then be used in

comparative molecular field analysis (CoMFA) by deriving rela-

tionships between 3D grid points and compound activities [35].

The dependency upon the relative orientation of the molecules

within the grid box is a major limitation of 3D-QSAR techniques

such as CoMFA analysis. To remove the dependency of ligand

orientation in 3D-QSAR analysis, Baskin and Zhokhova recently

introduced the continuous molecular field (CMF) approach which

replaced grid points with continuous function to represent mo-

lecular fields and showed that its simplest form provides either

comparable or enhanced predictive performance in comparison

with state-of-the-art CoMFA methods [36].

Chemical similarity analysis
Chemical similarity search is a fundamental technique for ligand-

based drug discovery [37]. Its objective is to identify and return

database compounds with structures and bioactivities similar to

query compounds [38]. The chemical similarity principle, which

states that compounds with similar structures will probably have

similar bioactivities, is an underlying assumption of similarity-

based virtual screening [39]. However, this assumption might not

always be valid. For example, ‘activity cliffs’ where minor modifi-

cation of functional groups causes an abrupt change in activity

violate this principle and can cause failure of QSAR models [40,41].

The structural similarity of two molecules is most commonly

evaluated by computing the Tanimoto coefficient (Tc) of their

chemical fingerprints. The Tc, also known as the Jaccard index, is a

measure of similarity between sets that compute a similarity score

as the fraction of bits shared by two feature vectors. High Tc values

indicate two compounds are similar but do not provide informa-

tion dimensions of similarity, such as which specific chemical

groups they share.

Chemical similarity can also be evaluated based on 3D structural

features of compounds. The 3D Tc is a common 3D similarity

metric that computes the fraction of shared molecular volumes

between two comparing ligands [42]. Examples of volume-based

similarity implementation include the rapid overlap of chemical

structures (ROCS) program – the most popular shape similarity

approach in drug discovery based on Gaussian representation of

molecular shape [43]. An alternative 3D similarity metric is the

pharmacophoric similarity, which considers only the volume
overlap between crucial functional groups. Lo et al. developed

the ShapeAlign program that combines 2D and 3D metrics based

on the Obabel PF2 fingerprint, shapes and pharmacophoric points

for unsupervised 3D chemical similarity clustering [44,45]. The

validation study using 20 known drug classes retrieved from the

directory of useful decoys (DUD) showed that the combined

metrics outperformed either 2D or 3D metrics and successfully

detected shared 3D features between several structural distinct HIV

reverse transcriptase (HIVRT) inhibitors. A similar concept related

to pharmacophoric similarity is molecular field similarity as imple-

mented in the FieldAlign tool (by the CRESSET company), which

uses energetic probes to identify similar ligands that might not

have explicit structural overlap [46]. Recently, Ferreira and Couto

developed a new similarity measure called chemical sematic simi-

larity to classify chemical compounds based on their semantic

characterization such as drug annotation in the ChEMBL database

[47]. The study showed that comparing compounds by their

functional roles improved predictions of several drug properties

by complementing existing compound classification systems.

Analog analysis seeks to characterize chemical transformations,

which are defined over pairs of molecules. Recently, the matched

molecular pairs (MMP) formalism has emerged as a way to define a

specific type of transformation or relationship, non-ring single-

bond substitutions and facilitate the development of methods for

indexing and searching analog relationships [48]. The fragment-

indexing algorithm developed by Hussain and Rea [48] is currently

the most widely used MMP search method but does not support a

similarity search. Rensi and Altman developed a method for

computing the similarity of chemical transformations using Tani-

moto kernel embedded fingerprints and extended a fuzzy search

capability to the MMP framework [49]. They demonstrated the

capability to query MMP relationships at multiple levels of con-

textual abstraction with stable results over a range of dataset sizes

of over four orders of magnitude from 103 high-impact pharma-

cological targets.

Machine learning models in QSAR
Machine learning techniques can be broadly classified as super-

vised or unsupervised learning [50] (Table 2). For the supervised

learning, labels are assigned to the training data and, once trained,

the model can predict labels for given data inputs. Supervised

machine learning models include regression analysis, k-nearest

neighbor (kNN), Bayesian probabilistic learning, SVMs, random
www.drugdiscoverytoday.com 1541
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TABLE 2

Summary of machine learning methods

Methods Descriptions Refs

Supervised learning
Multiple regression analysis A statistical process to find relationships between dependent variables and one or more independent

variables
[61]

k-nearest neighbor An instance-based learning where an object is classified by the majority rule among its k nearest neighbor,
where k is an integer

[72]

Naive bayes A probablistic approach that uses probability prior and Bayes rule to predict membership by assuming
feature independency

[58]

Random forest A classification technique based on the essemble of multiple decision trees and majority voting rules [76]
Neural network and deep learning A model-based learning method that learns from input data based on layers of connected neurons consisting

of input layers, multiple hidden layers (for deep learning) and output layers
[85]

Support vector machine A statistical method that maps data into high-dimensional space to identify a lower dimensional hyperplane
that maximizes the data separation using a nonlinear kernel. This is achieved by maximizing the margins
between hyperplanes known as support vectors

[77]

Unsupervised learning
k-means clustering A classsification method that classifies data into k groups by minimizing within-group distances to the

centroid
[54]

Hierarchical clustering A classification method that builds a hierachy of clusters by agglomerative clustering e.g., merging smaller
clusters or divisive clustering e.g., splitting a large cluster to smaller ones

[54]

Principal component analysis A statistical method that uses orthogonal procedure to transform a set of correlated features to new
independent variables called principal components

[55]

Independent component analysis A statistical method that separates a multivariable output into statistical independent additive components [52]
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forests and neural networks. Unsupervised machine learning tech-

niques learn underlying patterns of molecular features directly

from unlabeled data. A special case of supervised learning is semi-

supervised learning or tranductive learning, in which a small

amount of labeled data is mixed with labeled data in the training

process to improve the learning accuracy for modeling a small and

unbalanced dataset [51]. Unsupervised methods include di-

mensionality reduction techniques such as principal components

analysis (PCA), independent components analysis (ICA) and sev-

eral supervised methods that can also support unsupervised learn-

ing, such as SVMs, probabilistic graphical models and neural

networks [52–55]. Clustering algorithms represent another family

of unsupervised algorithms, where the dataset is first divided by

predefined distance metrics in high-dimensional space and the

labels are later assigned based on the number of observed catego-

ries. Modern machine learning techniques offer a powerful suite of

techniques to explore nonlinear SAR relationships with high

accuracy and precision.

Naive Bayes
Naive Bayes classifiers are probabilistic models based on Bayes’ rule

[56–58]. They estimate the probability that a given item of data is

correctly assigned to a certain label based on the prior probability

distribution (priors) representing the relative proportions of labels in

training sets. If multiple labels are presented, then the probability

associated with each label is conditionally independent. A well-

known example of this approach is the PASS program for predicting

drug activities [59]. In the PASS program, the priors are first estab-

lished for a set of biological active compounds based on the propor-

tionsof chemical substructures in the active and inactive class. Then,

a variant of Naive Bayes is used to estimate the drug activity based on

the query structures using the prior probability distribution. Chen

et al. demonstrated their efficiency in large-scale virtual screens for

important pharmacological properties such as cytochrome P450
1542 www.drugdiscoverytoday.com
inhibition, human plasma protein binding and bioavailability in

animal models (rattus norvegicus) [60].

Regression analysis
Regression analysis can refer to linear regression modeling for

continuous data or logistic regression analysis modeling for cate-

gorical data [61]. Given a set of training data points, the goal of

linear regression analysis is to find a linear function of a set of

predictor variables, such that the fitted line minimizes the dis-

tances to the data points along the dimensions of a set of outcome

variables. Early QSAR techniques like Hansch and Free–Wilson

analysis make extensive use of multivariate linear regression. How-

ever, correlations between features and high-dimensional feature

spaces present challenges for the application of linear regression

models in QSAR. Several techniques such as regularization, di-

mensionality reduction and genetic algorithms are available to

combat the twin curses of dimensionality and collinearity, which

result in model overfitting and coefficient coupling which con-

found accuracy and interpretability [62]. L1 regularization meth-

ods and evolutionary algorithms shrink the number of variables

explicitly by selecting small subsets that are most relevant to the

outcome being predicted by the QSAR model [63]. By contrast, L2

regularization methods like Gaussian processes and ridge regres-

sion reduce the ‘effective’ number of variables (VC-dimensionality)

without changing their actual number [64,65]. Recently, Algamal

et al. demonstrated the utility of an adaptive least absolute shrink-

age and selection operator (LASSO) variable selection approach for

predicting the anticancer potency of imidazo-pyridine derivatives

[66]. In another study, Helguera et al. used evolutionary variable

selection to model the activity and selectivity of monoamine

oxidase inhibitors [67]. By contrast, dimensionality reduction

techniques such as principal components analysis (PCA) transform

large sets of correlated variables into smaller sets of uncorrelated

features [68]. In a seminal study on QSAR classification, Gao et al.
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used PCA to decorrelate features for prediction of estrogen receptor

binding [69]. More recently, Rensi and Altman demonstrated

performance improvements over LASSO regression for predicting

activity against a broad set of pharmacological protein targets using

kernel principal components analysis, and nonlinear variant of

PCA [70]. Another popular regression method is partial least

squares (PLS), which couples dimensionality reduction with mul-

tivariate regression to transform predictors into uncorrelated vari-

ables that are maximally correlated with the activity or property of

interest. Erikkson et al. recommend PLS as a first-line approach to

QSAR modeling for its superior efficiency and accuracy relative to

explicitly combing unsupervised dimensionality with multivariate

regression, and PLS is used extensively in 3D-QSAR [5,71]. Howev-

er, tight coupling of dimensionality reduction and model fitting

can limit utility in unsupervised or semi-supervised problems

where knowledge of the outcome variable is missing or incomplete.

Although linear regression analysis has been successfully applied in

many drug optimization problems, underlying linearity and vector

space assumptions which are not valid for most QSAR problems are

a significant limitation. Thus, careful selection of the features and

modeled system, although crucial, is sometimes insufficient to

ensure the success of linear regression models.

k-Nearest neighbors
In kNN, the data containing labeled and unlabeled nodes are

represented in a high-dimensional feature space and the labels

from the closest nodes are transferred to the query using a majori-

ty-voting rule [72,73]. Here, the value k specifies the number of

closest neighbors participating in the voting system. kNN in

ligand-based virtual screening can be thought of as an extension

of chemical similarity search to supervised learning, where a

chemical similarity metric such as Tc is used as a measure of

distance between compounds, and bioactivities are predicted from

the top search results.

However, there is no principled way of choosing the number

of nearest neighbors to use, and values of k that are too high or

low can yield unfavorable false-positive or false-negative rates.

This was addressed by the similarity ensemble approach (SEA),

which compares chemical similarity values to a randomized

background score similar to that used in a BLAST sequence

similarity search [74]. Lo et al. proposed another approach for

large-scale compound drug-target profiling called chemical sim-

ilarity network analysis pull-down (CSNAP) [75]. Instead of

defining nearest neighbor values, the CSNAP approach used a

threshold network to cluster compounds based on a predefined

Tc cut-off. After an initial clustering step, query compounds

were assigned the most probable drug targets by ranking the

shared targets among the first-order neighbors. Recently, Huang

et al. developed the most-similar ligand-based target inference

(MOST) approach which utilizes explicit bioactivity of the most-

similar ligands to predict targets of the query compound [76].

They showed that the MOST approach could alleviate false-

positive predictions associated with the common nearest neigh-

bor similarity search.

Random forest
Random forest is an ensemble learning method where multiple

decision trees are built based on the training data and a majority-
voting scheme similar to kNN is used to make classification or

regression predictions for new inputs [57]. Svetnik et al. demon-

strated the utility of random forest models in QSAR classification

and regression for a number of important pharmacological trans-

porters, targets and properties such as P-glycoprotein (PGP),

cyclooxegenase-2 (COX2) and blood–brain barrier permeability

[77]. They achieved accuracy comparable to SVMs and neural

networks with superior interpretability.

Support vector machines
SVMs solve the classification problem by using nonlinear kernel

functions to map data into high-dimensional space by finding an

optimally separating hyperplane [78]. The hyperplane is fit to

maximize the margin between support vectors, points nearest to

the decision boundary and is expressed as a linear combination of

data points. Liu et al. used SVMs in a QSAR study of transcription

factors activator protein (AP)-1 and nuclear factor (NF)-kB by

ethyl 2-[(3-methyl-2,5-dioxo(3-pyrrolinyl))amino]-4-(trifluoro-

methyl)pyrimidine-5-carboxylate derivatives [79]. More recently,

Nekoei et al. combined a genetic variable selection approach with

SVMs to identify a number of structural features of aminopyr-

imidine-5-carbaldehyde oxime derivatives that are responsible

for strong vascular endothelial growth factor (VEGF)-2 inhibition

activity [80].

Neural networks and deep learning
Artificial neural networks (ANNs) are a family of machine learning

algorithms, inspired by the operations of neurons in the brain [81].

Each neuron in an ANN receives numerous input signals (analo-

gous to dendrites), performs a weighted sum of the inputs, gen-

erates an activation response through a nonlinear activation

function (analogous to cell body) and passes the output signals

to subsequent connected neurons (analogous to axons). Multilay-

er ANNs can be constructed by organizing neurons into different

layers and connecting neurons in consecutive layers. The combi-

nation of nonlinear units enables ANNs to learn highly complex

functions of the inputs. ANNs have been widely applied to all

branches of chemoinformatics, including modeling QSAR/QSPR

properties of small molecules as well as performing pharmacoki-

netic and pharmacodynamic analysis [82–84]. We refer the readers

to the work by Baskin et al. for a latest comprehensive review of

ANN-based methods in chemoinformatics [85].

Deep learning networks are a recent extension of ANNs, which

utilize deep and specialized architectures to learn useful features

from raw data [86]. The recent success of deep learning provides an

opportunity to develop tools for automatically extracting task-

specific representations of chemical structures. Deep convolu-

tional neural networks (CNNs) comprise a subclass of deep learn-

ing networks [87,88]. In CNNs, local filters scan through the input

space to search for recurring local spatial patterns that are useful

for the classification performance. Owing to unique local spatial

properties of images, CNNs have achieved great success in the

computer vision community [88,89], and have recently been

applied to the biomedical field. For example, Torng and Altman

viewed protein structures as ‘3D images’ with four different atom-

type channels, and used 3D-CNNs to analyze amino acid micro-

environment similarities and to predict effects of mutations in

proteins [90].
www.drugdiscoverytoday.com 1543
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Graph convolutional networks (GCNs) are variants of CNNs

that have been commonly applied to 2D molecular graph analysis.

GCNs employ similar concepts of local spatial filters, but operate

on graphs, to learn features from graph neighborhoods. Following

the first application of GCNs in QSAR analysis by Baskin et al. [91],

different graph convolutional architectures for learning small

molecule representations have also been proposed, each defining

local graph neighborhoods and convolution operations in differ-

ent ways. For example, Duvenaud et al. used different ‘degree

filters’ to learn features for nodes with different degrees [32].

Kearns et al. employed ‘Weave modules’, that integrate informa-

tion from all atoms and atom pairs to learn molecular features [92].

More recently, Hechtlinger et al. used random walks to define the

local neighborhood of each node in a graph [93].

Recurrent neural networks (RNNs) are another major family of

deep neural networks that have been widely used in natural

language processing [94]. Long-short-term-memory (LSTM) net-

works are a subclass of RNNs that use gated units and memory cells

to capture long- and short-term temporal dependencies within

input sequences [95]. LSTM networks have been applied to de novo

drug design, where the LSTM model is trained to learn

‘grammatical structures’ within SMILES strings and to output

novel molecules following the learned rules [96]. Variational

autoencoders (VAEs) [97], generative adversarial networks (GANs)

[98] and deep reinforcement learning [99] have also been applied

to learning latent representations of molecules [100] and to gen-

erating new compounds with desired molecular properties

[101,102].

QSAR modeling
The general protocol for constructing QSAR models for drug

discovery has been systematized and consists of several modular

steps involving the chemoinformatics and machine learning tech-

niques previously discussed. The first step is ‘molecular encoding’

where the chemical features and properties are derived from

chemical structures or lookup of experimental results. Second, a

feature selection step is performed where unsupervised learning

techniques are used to identify the most relevant properties and

reduce the dimensionality of the feature vector. Finally, in the

learning phase, a supervised machine learning model is applied to

discover an empirical function (either explicitly or implicitly) that

can achieve an optimal mapping between the input feature vectors

and the biological responses. Building an accurate QSAR model

also requires careful consideration and selection of the SAR data-

sets used for training and model validation [103]. This includes

strict separation of training and test sets for initial model creation
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and the test sets for final model performance evaluation. The

performances of the QSAR models are commonly evaluated by

standard metrics such as sensitivity, specificity, precision and

recall. For unbalanced datasets, area-under-curve (AUC) derived

from receiver-operating-characteristics (ROC) curves can be used.

Although 3D-QSAR methods like CoMFA consider structural con-

formation, the approach necessitates substantial computation

resource and is subject to uncertainty generated from conforma-

tion prediction, ligand orientation and structural alignment.

Thus, the 2D-QSAR model can be competitive and sometimes

even superior to 3D-QSAR approaches [42,104].

Concluding remarks and future directions
Machine learning techniques have been widely applied in the field

of chemoinformatics to discover and design new drugs with super-

ior biological activities. Mathematical mining of chemical graphs

enables the derivation of a constellation of 2D or 3D chemical

descriptors, which are packaged as chemical fingerprints in a

diverse array of machine learning models and predictive tasks.

A key area of innovation in the field is the marriage of big data and

machine learning to predict wider ranges of biological phenome-

na. Traditional drug design methods based on simple ligand–

protein interactions are no longer sufficient for meeting clinical

drug safety criteria. High drug attrition rates from severe side

effects often involve biological pathways and systematic responses

at higher levels. Consequently, incorporating multiple data types

and sources, also known as ‘data fusion’ techniques, that aggregate

structural, genetic and pharmacological data from the molecular

to organism level, will be crucial for the discovery of safer and

more-effective drugs [105]. Likewise, novel machine learning

models capable of processing big data at high volume, velocity

and veracity with great versatility are also needed. Recent evolu-

tion in deep learning networks has proven to be a promising

architecture for efficient learning from massive datasets for mod-

ern drug discovery campaigns [106]. Other aspects of machine

learning techniques such as increased data interpretability to

prove mechanistic hypothesis as well as methods preventing over-

fitting are also important topics that warrant further development

in the field of machine-learning-based drug discovery.
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