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Teaser To be able to predict chemical reactions is of the utmost importance for the
pharmaceutical industry. Recent trends and developments are reviewed for reaction mining,
computer-assisted synthesis planning, and QM methods, with an emphasis on collaborative

opportunities.
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Over the past few decades, various computational methods have become

increasingly important for discovering and developing novel drugs.

Computational prediction of chemical reactions is a key part of an efficient

drug discovery process. In this review, we discuss important parts of this

field, with a focus on utilizing reaction data to build predictive models, the

existing programs for synthesis prediction, and usage of quantum

mechanics and molecular mechanics (QM/MM) to explore chemical

reactions. We also outline potential future developments with an

emphasis on pre-competitive collaboration opportunities.

Introduction
Small organic molecules are the bread and butter of drug discovery. To synthesize these small

organic molecules, reaction predictions are practiced routinely by medicinal chemists, who make

diverse sets of molecules on a small scale to efficiently probe the structure–activity relationship

(SAR) through the design–make–test–analyze cycle, and by process chemists, who intend to

discover the most efficient, cost-effective, and environmentally green routes to synthesize late-

stage drug candidates in larger quantities. As such, the effectiveness of reaction prediction is a key

factor contributing to the efficiency and success of drug discovery and development. Therefore, it

is no surprise that there are many in silico tools available to assist chemists in reaction prediction

and that this area has remained active in terms of research and development, especially in recent

years. We have come together in a precompetitive fashion to further discussion of how the larger

community can drive additional development in this space through data sharing and collabora-

tion.
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There are several types of question to be addressed by reaction

predictions: (i) forward reaction prediction: given a set of reaction

building blocks, what could be the potential products? Which one

might be the major product? What might be the most favorable

reaction condition(s) for the putative major product? What is the

potential yield of the putative major product? (ii) Retrosynthetic

analysis: given a desired molecule, what are the possible synthetic

route(s) to make this molecule based on available reaction building

blocks on hand? How can we rank and filter these possible syn-

thetic routines according to user-defined criteria? (iii) Reaction

mechanism elucidation: given an overall reaction, what could the

fundamental mechanistic reaction steps be? What are the major

factors determining product yield or stereo- and regioselectivity?

Here, we discuss tools and methods to address these three types

of question, with a focus on: (i) the latest machine learning (ML)

approaches for both forward reaction prediction and retrosyn-

thetic analysis; (ii) the utility of retrosynthetic analysis tools in

the eyes of medicinal and process chemists; and (iii) the state of the

art and outstanding problems in the application of quantum

chemical calculations to elucidate reaction mechanisms, origins

of selectivity, and spectroscopic properties.

Reaction knowledge mining
Background
Here, we focus on recent development in cheminformatics to

better use historical reaction data for predicting synthetic path-

ways for novel molecules. With more sophisticated methods to

extract data from in-house and literature sources, reaction knowl-

edge mining is entering the ‘big-data’ era. This, in combination

with ML methods, is creating a step change in the application of

reaction knowledge mining.

Data sources, standardization, extraction, and reaction
classification
As depicted in Fig. 1a, reaction data already published in scientific

journals and patent literature are generally extracted, curated,

aggregated, and hosted by data vendors and made available for

users to access through vendors’ proprietary tools (e.g., SciFinder

from Chemical Abstracts Services and Reaxys from Elsevier). The

vendor-provided reaction databases are not discussed here, be-

cause they have been recently reviewed elsewhere [1]. In general,

end users do not have direct access to the full set of vendor reaction

data for reaction knowledge mining. Only recently have several

academic groups published reaction mining and predictive model-

ing works based on the reaction data content in Reaxys. Their work

is discussed in the section titled ‘Predictive reaction modeling’.

For proprietary reaction content generated by biotech, pharma,

and chemical companies, it is common to have corporate elec-

tronic laboratory notebooks (ELN) for data and intellectual prop-

erty (IP) capture (Fig. 1). Given that ELN applications are mainly

designed for data and IP capture, they are not ideal environments

for knowledge mining in general.

To perform in-depth reaction knowledge mining to address

specific scientific questions using cheminformatics tools, the re-

action data have to be hosted in an IT environment that is easy to

access and of high performance (Fig. 1). AstraZeneca reported the

successful extraction of its MedChem ELN pages and loaded them

into an internal reaction DataMart to support web searches and
1204 www.drugdiscoverytoday.com
other external applications [2]. In 2013, Roche reported that they

had collaborated with both Elsevier and NextMove to extract

reaction data content from more than ten internal reaction data-

bases and its corporate chemistry ELN, and combined them with

public reaction content from Elsevier to form an integrated reac-

tion DataMart hosted behind the Roche firewall. Roche scientists

can use a customized version of Reaxys to search and browse all of

these reaction data sources in an integrated and streamlined

manner. In addition, the integrated DataMart provides a larger

and richer set of reactions to enable more powerful and effective

knowledge mining [3].

The HazELNut suite of tools from NextMove Software is com-

monly used to extract reaction content from vendor-provided ELN

systems, perform format conversion and data curation to fix

common data entry issues seen in ELNs, and add additional

annotation, such as reaction classification (Fig. 1b, [4,5]). These

operations directly benefit downstream operations, such as knowl-

edge mining and predictive model building. In addition to com-

mercial software tools, there are open-source software tools

available for basic reaction analysis [6].

Once the corporate ELN content is extracted and stored in a

minable format, knowledge mining can be applied to address

questions such as: (i) how many syntheses have been attempted

using named reactions (e.g., Suzuki aryl C–N coupling reaction

and Buchwald–Hartwig aryl C–N coupling reactions)? (ii) What are

the distributions and trends observed in terms of success rate in

these reactions? And, (iii) how frequently has a reaction building

block been used for named reactions, and what were the associated

reaction success rates [2,5]? This type of information can be readily

used by chemists to make more-informed decisions during com-

pound design and building-block selection. More in-depth analy-

sis of knowledge mining has led to the publication of a set of most

robust and commonly used reactions by the medicinal chemistry

community [7] and extracted reaction rules to support either

retrosynthetic analysis or reaction-based virtual library enumera-

tion [8].

Scientific journals and patent literature are biased against nega-

tive data [9,10] and the same is expected to be true for the

published reaction content. By contrast, corporate ELNs do con-

tain negative data (failed reactions). Without such a bias against

negative data, ELN reaction content is expected to be more suited

for knowledge mining and predictive model building. However,

even with millions of reaction records inside a typical corporate

ELN system, the vast chemical reaction space (defined by reaction

type, reactants, products, and more variables in reaction condi-

tions) is still only sparsely explored [11]. Recent advances in

miniaturization (down to the nanomolar scale) and workflow

streamlining have demonstrated the potential to explore reaction

space in a more systematic and well-controlled way with higher

throughput [12]. The age of big-data might have finally arrived for

organic synthesis [13]. It is also encouraging that a nonproprietary

format has been developed (RInChI) for handling chemical reac-

tions [14].

Predictive reaction modeling: machine learning
Given the increased availability of reaction data, reflected both in

the number of different reactions and various successful condi-

tions for a specific reaction, it is not surprising that there have been
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FIGURE 1

Generation, processing, and consumption of chemical reaction data content. (a) Experimental reaction data are either published in scientific journals of patents
or captured by proprietary corporate electronic laboratory notebooks (ELNs). Rxn data go through various data extraction, curation, transformation,
aggregation, and integration procedures before they can be searched and browsed by the broader scientific community. Finally, Rxn data mining can be used to
address in-depth questions from scientists. Solid arrows represent the common practice, and dotted arrows represent more-advanced data flow with limited
adoption. (b) Corporate ELN data captured or extracted, cleaned, and annotated before being loaded into a Rxn DataMart to facilitate high-performance search/
browse/data mining and (c) exploitation.
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several publications during recent years applying ML models to

predict both which building blocks will react and under which

conditions. Here, we discuss ML approaches, whereas other meth-

ods, such as rule-based and QM methods, are discussed in other

sections. Besides setting up the input reaction data set and the ML

algorithm, an important choice is how to define the chemical

descriptors used to model the reaction. Both 2D reaction finger-

prints as well as 3D QM descriptors, and levels in between, have

been used. A difference between reaction prediction models and

normal quantitative (Q)SAR modeling is that, in many cases,

reactions are predicted in two steps, combining a feasibility pre-

diction with a ranking of the feasible reactions. Although ad-

vanced ML methods have been applied in retrosynthetic
analysis, good results have been obtained with similarity searches

based on reaction networks extracted from the Beilstein database

[15].

Baldi et al. used a two-step process combining molecular orbital

(MO) theory and ML [16–18]. However, it is not clear how MO

approaches will work for more complex reactions, such as metal-

catalyzed reactions. Similar methods have been used by other

groups [19,20].

Recently, deep learning methods have become popular outside

of the chemistry community. One impressive example is the

victory over a world champion in Go [21]. It is natural that deep

learning is applied in drug discovery and in predicting reactions.

Based on 15 000 reactions from granted US patents, Coley et al.
www.drugdiscoverytoday.com 1205
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applied a neural network model to prioritize reaction candidates to

predict products. In a fivefold cross-validation, the trained model

assigned the major product rank 1 in 71.8% of cases, rank �3 in

86.7% of cases, and rank �5 in 90.8% of cases [22].

Another recent study created reaction fingerprints by

concatenating the individual fingerprints of the reactants and

reagents. The reaction fingerprints were used to predict the most

likely reaction for a set of reactions derived from textbooks [23].

Segler et al. performed reaction modeling in a different way.

They used two sets of reactions (hand-coded and automatically

extracted) to classify reactions in Reaxys. With the hand-coded

reactions, they classified 3 million reactions and with the auto-

matically extracted reactions they classified almost 5 million

reactions. Classification models were trained with neural networks

and either the reactants or products were described with ECFP4

fingerprints depending on whether the models were used for

reaction modeling or retrosynthetic analysis. The results with

the neural networks were superior to those of rule-based methods,

reaching 95% and 97% top-ten accuracies, respectively for both

retrosynthesis and reaction prediction on a validation set of ap-

proximately 1 million reactions [24]. Although several publica-

tions have focused on predicting which the most likely product is

given a set of reactants, less emphasis has been placed on predict-

ing reaction conditions for well-known and established reactions.

An exception is the study of Michael-type reactions by Varnek and

co-workers [25]. Varnek et al. also assessed the reactivity of pro-

tecting groups [26]. Segler et al. showed that it is possible to invent

new reactions when access to a large set of reactions from literature

is available [27].

Reaction graphs for retrosynthetic analysis
Retrosynthetic analysis has been heavily dominated by rule-based

methods and only recently was an alternative ML method pre-

sented. Segler et al. developed a system inspired by the program

AlphaGo that beat a Go master [28]. As in Go (and different from

chess), there are no good heuristics available in retrosynthetic

analysis to estimate whether a specific reaction is useful. Thus, all

options in the reaction graph from the final molecule back to the

set of available building blocks need to be traversed. Starting from

the molecule, reaction paths were investigated using a Monte

Carlo Tree Search (MCTS) until a set of existing building blocks

was identified. MCTS outperformed Best-First Search with rule-

based heuristics, which have been used previously in retrosyn-

thetic analysis [28]. There are also other examples available else-

where [29].

Concluding remarks and outlook
The availability of big data sets, and ML to handle these data sets,

has enabled remarkable progress during recent years and has the

potential to transform society. Therefore, it is not surprising that

the same trend can be seen within drug discovery and fields such as

reaction knowledge mining. Recently, the number of relevant

articles has increased significantly and the use of both large data

sets and ML methods has been emphasized. Reaction knowledge

mining is a true big-data field: the more reactions that are used to

train the ML methods, the better the ML model will perform in

terms of reaction prediction, reaction condition prediction, and

retrosynthetic analysis.
1206 www.drugdiscoverytoday.com
To enable downstream reaction analytics and ML for predictive

reaction modeling, it is important to capture all relevant data

accurately. We envision the following: (i) future versions of chem-

istry ELNs will provide additional on-the-fly data checking/valida-

tion during the data entry stage to reduce and/or eliminate the

need for downstream data clean-up; (ii) better role assignment for

chemical samples used in reactions (e.g., reactants, reagents, acid/

base, solvent, etc.) during the ELN data entry stage; (iii) systematic

capture of reaction conditions and reaction steps in a machine-

minable format; and (iv) the vendors of published reaction con-

tents will be encouraged to allow their data content to be licensed

and integrated with the proprietary reaction content from their

customers. One need that has already been identified by the

research community to facilitate reaction data exchange and

integration is an open-source and standard reaction data exchange

format. A reaction data exchange format, called Unified Data

Model (UDM), is being actively worked on by Pistoia Alliance,

an industrial precompetitive consortium [30].

Despite the progress made over the past decade, there are still

several bottlenecks that should be addressed to progress the field

further. There is still a need for a proper high-quality set of

successful and failed reactions in the public domain that can be

used for benchmarking, and for different ways of describing reac-

tions and ML methods. If it were possible to share reaction data in a

secure way without compromising IP, this would be beneficial to

further improve predictions. We propose initiating the formation

of precompetitive collaborations or consortiums to pursue build-

ing out data sets and new tools.

Computer-assisted retrosynthetic analysis tools
Computer-assisted synthesis planning
The art of performing retrosynthesis can be best explained as an

iterative process of moving backwards from a particular target

molecule in a synthesis tree of possible reactions. The ultimate

goal is to identify viable chemical routes to available starting

materials or published compounds. Computers have had a pivotal

role in facilitating synthesis planning. There is a fundamental need

for access to database sources that store all published reactions

together with the available chemical matter and to make these

searchable by researchers.

Here, we look at three commercially available retrosynthetic

planning tools. Software tools, such as SciFinder and Reaxys, with

their modules SciPlanner [31] and Synthesis Planner [32], are not

considered as de novo retrosynthetic computer-assisted synthesis

planning (CASP) tools in the scope of this review, because both use

literature examples and do not attempt to identify reaction cen-

ters, and so on. Teaching a computer the expert knowledge of

experienced organic chemists and their decision-making has been

one of the major challenges in this field.

It is now almost 50 years ago since Corey and Wipke published

their pioneering work in 1969 [33], which led to the development

of Logic and Heuristics Applied to Synthetic Analysis (LHASA), the

first ‘true’ retrosynthetic planning tool. It was an expert system

and still needed manual input, but its general concepts are still

found in programs today [34]. These implemented modules

allowed the use of reaction transforms, mechanistic transforms,

overlapping structure goals, and topological, stereochemical, and

functional group-based strategies. Recent reviews summarizing
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the history and past developments in this field are recommended

for further reading [1,35–37].

Expectations of a retrosynthetic software tool
The ideal retrosynthesis tool

A small group of organic chemists from various companies and

different areas (e.g., process and research chemists) was asked to

define what their expectations would be of the ideal retrosynthetic

tool. Based on the results from a survey (13 chemists, two compa-

nies, middle of 2017), the consolidated most-important factors

required by a retrosynthetic program are that: (i) the program is

user friendly; (ii) literature examples are given for suggested routes;

(iii) the user can define single or multiple bond breaks and the

order in which they should be broken; (iv) routes lead to commer-

cially available building blocks; (v) unstable intermediates or

problematic functional groups should be recognized and, optimal-

ly, a protecting group or synthetic strategy suggested to overcome

these challenges; and (vi) a suitable scoring system is available to

prioritize the results.

Other desirable options for such a program mentioned were

that: (i) there is the possibility to capture in-house data and use

them in addition to data already in the system (reactions and

available building blocks); (ii) the user can define the starting

materials for the synthesis; (iii) published full syntheses of target

compounds should be shown as top scores; (iv) the program can

recognize and suggest ideas for stereochemical transformations

and isotope chemistry; (v) a diversity of routes is displayed; and (vi)

the program allows exclusion of technologies that are not available

on site (e.g., photochemistry).

The filtering and/or scoring options account for the largest

difference between the requirements of chemists using the pro-

gram. A process chemist, for example, might require a reliable

cost and yield-driven synthesis for multiple (kilo) grams of mate-

rial, whereas a research chemist might prefer a synthesis that is

short and has high flexibility, with as many diverse substitutions

as possible. Both groups of chemists might want to use complete-

ly different possibilities for filtering and/or scoring, which might

include: (i) likelihood of success (number of examples present,

literature yields for similar transformations); (ii) ease of chemistry

(based on reaction type, multiple products); (iii) number of steps;

(iv) green chemistry aspects; (v) availability of starting materials;

(vi) cost of starting materials/entire route with solvents, and so

on; and (vii) risk assessment of routes (toxicity, regulated sub-

stances).

Thus, an ‘ideal retrosynthesis tool’ will be difficult to develop

because every group of users has its specific requirements and

preferences. The ideal tool would be flexible, but address many of

the main points important to most users. Here, we focus on the

most important factors as defined above for all three retrosynthetic

programs discussed below, and the order of description follows

their commercial launch.

ICSYNTH
The computer-aided design tool ICSYNTH is a retrosynthesis soft-

ware developed by InfoChem [38] and commercialized since 2005.

The current version, 3.1, was launched in October 2017. The

retrosynthesis synthetic analysis performed by ICSYNTH is

founded on rule-based methods [39].
Data sources and how it works

The software is built around libraries of retrosynthetic transforma-

tions that have been generated from diverse literature and in-

house sources. An atom-mapping and reaction center identifica-

tion algorithm applied to reaction abstract data allows the creation

of chemical transformation rules (transform) describing the com-

bination of bond breaking and making in a given retroreaction.

Atom-centered stereochemical information is captured and

encoded in this data-processing step. All transforms generated

are grouped by source of origins to form libraries that can be

selected by the user while setting up a new search.

The largest transform libraries are derived from the 4.4 million

literature reactions extracted from scientific literature and patents,

covering the years 1974–2012 in the Speicherung und Recherche

Strukturchemischer Information database (SPRESI) [40]. The Fun-

damental Organic Reactions (FOR) collection contains a set of

210 000 well-known reliable reactions, extracted from books and

journals. Finally, the Name reaction transform library contains

transforms generated from the most common name-reactions

(5800 example reactions) selected from a variety of textbooks.

These transform libraries are integral part of the ICSYNTH license.

Additionally, transform libraries can be generated from any pro-

prietary and/or commercial reaction database, provided valid

licenses for the data are given.

InfoChem also provides software to customers for the in-house

generation of transform libraries based on their own confidential

reactions (e.g., from ELN data). These libraries of data can be

interfaced with ICSYNTH searches alongside the provided libraries

or as stand-alone searches.

Setting up a search

To prevent or favor certain disconnections, atoms and bonds can

be specifically tagged as remaining constant or as reacting areas of

the molecule. Once a structure is entered, it can be stored on the

server for repeat study or used as template.

With version 3.1, ICSYNTH offers a simplified query form for

beginners, but skilled users can use the expert form (Fig. 2) to

define different parameters when setting up a new query. The first

step involves choosing which transform libraries to use. Retro-

synthesis results in ICSYNTH are presented via a synthesis tree,

which requires, in a second step, the definition of dimensions of

that tree by selecting a number of retro-steps, between one and

ten, and a number of suggestions per step, between one and 5000.

The third step involves setting up the precision of the search to

low, medium, or high. A high-precision search will look for closely

matching templates in the transform libraries, whereas a low-

precision search will retrieve more fuzzy results but can generate

more innovative ideas and unexpected and/or speculative sugges-

tions. Finally, the last step entails selecting a disconnection strat-

egy, which defines search and postprocessing evaluation protocols

that determine the ranking of output suggestions.

Interpreting results

Suggestions returned with unacceptable structures, such as overly

strained ring systems and unstable substructures, are identified

and filtered out of the tree based on structural matches with

predefined unwanted substructures. The synthesis tree sum-

marizes all remaining plausible disconnections.

The display is interactive, any precursor can be blocked, and the

search for suggested precursors can be continued on the same tree
www.drugdiscoverytoday.com 1207
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FIGURE 2

Setting up the search in ICSYNTH.
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or selected to start a new one. Clicking on any of the molecules in

the tree produces a separate reaction window presenting the

suggested hypothetical forward reaction to the target or a sug-

gested precursor, along with details on published precedent reac-

tions and active links to the original literature.

The recently launched version 3.1 of ICSYNTH offers new

visualization possibilities. Users can now also work via a reaction

graph, where precursors, reactions, and final products appear as

linked nodes (Figs 2 and 3). The graph is completely interactive

and can self-reorganize to always provide the best possible view. A

side panel provides detailed information about reactions and

precursors when clicking on a node.

The new reaction graph visualization can be shared with team

members, who can annotate and comment directly in the web

application.

Applications

In 2015, InfoChem and AstraZeneca published the first compari-

son, conducted under controlled conditions, of organic chemists

with and without a CASP tool, tasked with the retrosynthesis

analyses of a series of target molecules [41]. A three-step workflow

was devised for the routine usage of ICSYNTH: idea generation via

the software; idea evaluation by chemists; and finally, detailed

quantitative route evaluation covering aspects such as cost and

greenness metrics. Through five case studies, it was demonstrated
1208 www.drugdiscoverytoday.com
that ICSYNTH could provide new ideas that had not been previ-

ously considered by synthetic chemistry experts. Non-intuitive

disconnections and nonobvious chemical reaction sequences were

highlighted and led to the development of new routes.

ICFRP

Forward Reaction Prediction 5 (ICFRP) is a newer tool that operates

in the opposite direction to ICSYNTH. It predicts reactions of a

user’s target molecule in the forward direction. The basic underly-

ing reaction databases and technology are the same as ICSYNTH,

with modifications to reflect intrinsic differences between retro-

synthesis and reactivity. The status of ICFRP is currently experi-

mental and is being developed in collaboration with the

pharmaceutical industry, where applications to medicinal chem-

istry molecular design are evolving [42].

Chematica
The computer-assisted software package of Chematica was devel-

oped and commercialized in 2013 by Grzybowski Scientific Inven-

tions [43], which recently became a part of the Merck KGaA

business. Chematica allows both efficient exploration and scoring

of reactions across the published chemical space using network

analysis. It further can carry out de novo retrosynthetic design in a

manual or fully automated mode based on expert-curated reaction

rules (Syntaurus) [44].
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FIGURE 3

Visualization of search results with dynamic reaction graph from ICSYNTH.
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Data sources and how it works

The proprietary knowledge base of the software, known as Net-

work of Organic Chemistry (NOC), currently contains approxi-

mately 10 million compounds and a similar number of connecting

reactions. Commercially available substances, along with their

properties, are extracted from vendor catalogs and matched to

NOC, which is, by default, connected to the Sigma-Aldrich collec-

tion, although other references can be easily added.

The core of Syntaurus is a collection of reaction rules that are

applied during the synthetic planning process. With the knowledge

of well-trained chemists involved during transform generation and

data curation, the development of the knowledge base of Syntaurus

culminated in more than 440 00+ so-called ‘expert’-coded trans-

forms reported as SMILES/SMARTS strings (SMILES: simplified mo-

lecular input line entry system; SMARTS: smiles arbitrary target

specification). Each reaction ID contains not only its underlying

synthetic fingerprint, but also information on functional groups

that require protection or are not tolerated under typical reaction

conditions and/or cause cross-reactivity conflicts. For each reaction

rule, literature references describing the corresponding type of

chemistry are included. Importantly, to overcome problems related

to tracking of stereochemical changes and to ultimately ascribe

proper reaction regiochemistry, two software modules, namely

stereofix and regiofix, have been developed and implemented.

Various sets of less reliable (i.e., machine-extracted) rules for hetero-

cycle (30 000) and arene chemistry (100 00+), as well as a so-called

‘specialized collection’ (1 200 00+) can also be found in the software.
Still, the vendor recommends that the users apply the auxiliary

databases only after they have worked with the default expert

database first. Moreover, the removal of structural inconsistencies

among its predictions and a rapid evaluation of electron density of

(hetero)arenes by simultaneous Hueckel calculations complete the

Syntaurus toolbox.

Setting up a search

Chematica uses the Marvin Sketch editing tool, which enables

drawing or uploading of structures from several commonly used

file formats. Furthermore, structures can be generated from

SMILES or automatically added by Beilstein Registry Number

(BRN), Chemical Abstracts Service REGISTRY Number (CAS RN),

or chemical name if known and indexed.

Having defined the target molecule, Chematica allows for two

entirely independent search options. The first retrieves exclusively

published reactions for experimentally synthesized molecules and

the second performs a de novo retrosynthesis either manually step-

by-step or fully automated. As a first step, the retrosynthetic rules

to be used are chosen. The second step defines more precisely how

Syntaurus evaluates synthetic choices and scores different path-

ways within the generated synthesis tree. Therefore, Chematica

uses two different scoring functions in each chemical step: a

chemical scoring function (CSF, ‘synthetic position’) and a reac-

tion scoring function (RSF, ‘synthetic move’). A lower total score

indicates a more favorable pathway according to the user’s pre-

defined criteria (i.e., the scores are designed to keep track of the

penalties). Both scoring functions are fully customizable to the
www.drugdiscoverytoday.com 1209
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desired search strategy, thus requiring more in-depth knowledge

of the syntax used. A slider bar allows further adjustment of the

degree of diversity of retrieved synthetic solutions. The final step

involves the definition of reasonable stop criteria. The retrosyn-

thetic pathway is terminated once commercially available frag-

ments below a certain size (molecular weight) or cost (price per

gram) are identified. NOC-known molecules below a certain size

and/or with a certain minimal popularity score (how many times

made) are further implemented as stop conditions. By default,

Syntaurus is not restricted regarding the number of retrosynthetic

steps or iterations, but both values can be limited (Fig. 4).

After the search is started, it can be paused at any time to review

the first-generation results as the search resumes in the back-

ground.

Interpreting results

Suggestions returned by Syntaurus are ranked according to their

overall score, which is the sum of CSF+RSF for all performed steps.

Pathways with the lowest (best) score are shown on top of the list

and thought to be most synergistic with the user’s search strategy.

For each list entry, a synthesis tree is generated (i.e., network graph

representation), which can be manually inspected (Fig. 5). Clus-

tering of search results ‘by family’ is useful to emphasize structur-

ally diverse results.

A legend and the color coding help to navigate through the

synthesis tree. The ‘i’-button releases detailed information on the

cost of commercially available starting materials and the popular-

ity score of known chemicals. Pathway export generates PDF

reports with all chemical information available, literature refer-

ences, the search strategy, and basic transform information.

Applications

The developers of Chematica report examples for both of its

synthesis modules [44]. A section devoted to synthesis optimiza-

tion with constraints (SOCS) demonstrates search applications for

‘optimal synthesis routes’ within the experimentally verified NOC

data. Depending on all the criteria imposed by the research

scientists, the software can combine reaction data from several

sources and propose an optimal route that, for instance could be

most cost effective, avoids use of regulated or toxic starting mate-

rials, or is selective for intermediates and the product. Further-

more, the ability of Chematica to design novel synthetic routes was

demonstrated both in the manual step-by-step mode and in the

fully automated mode.
1210 www.drugdiscoverytoday.com
ChemPlanner
ChemPlanner from Wiley has been on the market since 2015 and is

the successor of the previously known ARChem. It is a rule-based

software that uses the ChemInform Reaction Database (CIRX) as

its data source. In June 2017, Wiley licensed this technology and

related content to CAS as part of a collaboration that will integrate

ChemPlanner into SciFindern [45] and augment it with the larger

CAS reaction content collection in addition to the information in

CIRX [46].

Data sources and how it works

ChemPlanner generates its rule knowledge base through the use of

CIRX, which contains over 2 million reactions and covers

reaction data from 1990 to the present. Company reactions can

be added to the system as well as in-house compound collections.

Commercially available compounds are taken from several

sources.

Rules generation is fully automated and begins with the load-

ing of mapped reactions into the database. Molecular properties

are then perceived (e.g., aromaticity, functional groups) and

reaction cores are identified and extracted (bonds that change

or are made or broken during the reaction). An extended core is

then determined automatically as a third step. This includes the

surrounding atoms and functional groups that are important for

the reaction (e.g., where a carbonyl group is required for a

reaction to proceed). Reactions that are perceived to share the

same underlying chemistry are clustered together in a fourth step.

Electronic properties are taken into account and leaving groups

and functional groups on the reaction core are interchangeable as

long as their electronic properties are similar. Generic rules are

generated for each cluster and these are refined by selecting

representative functional groups to replace the generic ones

[39]. Further analysis allows the addition of more information

(e.g., regioselectivity) for certain classes of reactions, and manual

curation is carried out to compensate for any data and algorith-

mic limitations. By this procedure, the underlying database gives

rise to more than 100 000 rules, which can then be used to

propose syntheses for unknown molecules [47].

Setting up a search

ChemPlanner has multiple options for drawing and uploading

molecules for retrosynthesis. After the structure has been entered,

a known reaction search or the creation of a synthesis plan can be

initiated.
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FIGURE 5

Primary output of search results with synthesis tree (a) and the corresponding possible retrosynthetic steps (b) manually compiled based on each individual
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The ‘create a synthesis plan’ is the retrosynthetic part of the

program using the rules described above. Various parameters can

be set for the search (Fig. 6) and it is possible to define whether

rules should be used only where there are many examples, or

whether all transformations should be used, including reactions

that are rare and perhaps not as reliable. During the search,

functional groups are screened for incompatibility by comparing

with a list of compatible groups.

ChemPlanner is able to go back four synthetic steps, hence

keeping search time low, and aims for commercially available

starting materials. Where a molecule is more complex and this

is not possible in four steps, a further run can easily be initiated for

these precursors.

Interpreting results

Literature examples for exact or similar transformations are given

for every step suggested. Yields are predicted based on the average

yield for similar examples.

Each of the various routes suggested is ranked based on multiple

criteria, including yield, cost, and number of literature reactions

[47]. At first, only the top-scored route is shown, but the user can

easily see relevant literature information and other possibilities for

the synthesis, and switch to any of the possible synthesis sugges-

tions given (Fig. 7). There is the option to block a particular

precursor or transformation after the first prediction round and

the program can rerank the routes.

When looking at a particular set of literature examples associ-

ated with a predicted synthesis step, the chemist can filter based on

various criteria, such as reagent, solvent, or functional group, or

sort by similarity to the predicted transformation.
Applications

Previous work has demonstrated the usefulness of ChemPlanner for

predicting alternative routes for compounds as well as finding

those routes that would be chosen by a chemist [48]. It was shown

by one case study that the best retrosynthetic route of ChemPlanner

was similar to that of the chemist, except for an alternative

reaction for one step. This alerted the chemist to the availability

of a more advanced intermediate, which could shorten the syn-

thesis.

In addition, ChemPlanner almost always identified the chemist’s

favored routes, although the chemist’s route was often not the

most highly scored route suggested by ChemPlanner. Therefore, it is

valuable to look at the other routes suggested by ChemPlanner,

because they may be more suitable for the problem at hand.

Concluding remarks and outlook
Currently, there are approximately 130 million molecules in the

CAS REGISTRY database. However, the number of small molecules

possible is estimated to be somewhere around 1060 [49], which

means only a small percentage has been reported in the literature

so far. Taking this into account, one can also expect that the

possible number of reactions will much higher than that currently

captured in reaction databases. Therefore, a computer-assisted

synthesis design tool will help chemists to identify alternative

approaches to their target molecules, independent from the expe-

rience and educational background of individual chemists.

However, the success of commercially available software tools

will also be influenced by their user friendliness and fulfillment of

expectations. Depending on the area in which chemists work, such
www.drugdiscoverytoday.com 1211
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requirements might be different and a major challenge will be to

combine these in a single tool. The three systems presented are

already different in how they build up their rules, their search

functions, and the illustration of results. Therefore, it is recom-

mended to take the opportunity for trial periods offered by the
1212 www.drugdiscoverytoday.com
different vendors, which should involve representatives from

different areas who will be using the tool (e.g., research, process,

and radiochemists).

An overview of computational methods for predicting chemical

reactions have been presented. Current state-of-the-art have been
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FIGURE 8

Relationship between product selectivities observed in experiments and energies accessible by quantum chemical computations.
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described and improvement opportunities for the future

highlighted. The authors strongly believe that computational

prediction of chemical reactions will, with the increased amount

of reaction data and computational resources, be an important

area for the foreseeable future.

Quantitative modeling of reaction mechanisms
Introduction
Direct modeling of molecular structures and energetics is comple-

mentary to informatics-based methods and has attracted increas-

ing attention in the chemical industry in recent years [50]. The

generic reaction profile in Fig. 8, based on transition-state theory,

illustrates the connection between reaction selectivity observed in

experiment and the underlying reaction energetics provided by

computations, which directly provide atomistic details and ener-

getic information about reactants (A and B), products (P1 and P2) as

well as the intervening transition structures (TS1 and TS2). The

feasibility of a reaction can be predicted in terms of thermody-

namic parameters and activation barriers, such as Gibbs energies of

reaction (DGrxn) and Gibbs energies of activation (DGz). Compar-

ing the calculated DGrxn or DGz values for competing pathways

allows one to predict reaction selectivity. Knowledge of the 3D

structures of intermediates and TS then enables rational design of

reagents and catalysts. In addition, molecular structures and spec-

tra can be predicted with useful accuracies to facilitate structural

assignments in synthesis. Therefore, the success of quantum

chemistry in reaction prediction hinges on two crucial aspects:

(i) accurate energy evaluation of a molecular system at a given

geometry; and (ii) efficient geometry prediction of reactants,

products, and TS.

Among the various quantum chemical computational methods,

the most popular approaches are based on density functional

theory (DFT) methods, which provide a balance of accuracy and

speed that fits well with traditional pharmaceutical substrates.

Although substantial success has been reported [51–60], signifi-

cant hurdles remain for its wider adoption among both computa-

tional and experimental chemists. Here, we present a few recent
applications to reaction mechanism elucidation, selectivity pre-

diction, and the structural elucidation of organic molecules. Be-

yond QM/DFT reaction modeling, the application of QSAR

methodologies in the catalyst design space is gaining momentum

[61–72].

Recent advances in quantum chemical reaction modeling
Energy calculations

The B3LYP density functional [73–76] has dominated the study of

organic reactions because of its balanced performance in modeling

both minima and TS. However, early functionals were unable to

treat London dispersion, a problem that is magnified as larger

systems of more varying size are studied [77–79]. Modern func-

tionals are dispersion corrected [74,80–86]. Recent studies com-

monly use vB97X-D [87], M06-2X [88], or B3LYP-D3 [89] in

geometry optimizations, in conjunction with large (at least tri-

ple-zeta) basis sets for accurate energies [57]. A connectivity-based

correction scheme has been proposed to improve thermochemis-

try [90,91]. The entropic contribution to the free energy can be

hard to evaluate, but mitigating schemes have been proposed

[92,93]. For metal complexes, functional selection can be aided

by several benchmark studies [94–98].

Geometry prediction

For the prediction of ground states of organic molecules and TS,

modern density functionals generally give reliable predictions

when used with a modest basis set [99]. Open-source [100,101]

and commercial [100–102] software solutions are available for the

conversion of SMILES strings or even structural formulas into

reasonable geometries by molecular mechanics, which can be

conformationally diversified by built-in conformational search

routines if desired. The conformers can then be submitted to an

appropriate DFT method to obtain refined geometries and ener-

gies. The global minimum, or a Boltzmann population, computed

this way is typically reliable, so long as the conformational search

is exhaustive and the quantum calculation method is appropriate.

Indeed, Merck & Co. published a workflow for assigning absolute

configurations of complex organic molecules based on rules-based
www.drugdiscoverytoday.com 1213
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and force-field conformational searches combined with DFT cal-

culations [103].

TS modeling requires substantially more user intervention than

do minima calculations. One starts from a plausible hypothesis

about the reaction mechanism and proceeds to search for the TS

for each elementary step [57]. To obtain the TS with the correct

bonds formed or broken, chemically reasonable input geometries

are required. Moreover, it is necessary to visualize the results to

verify that the output TS corresponds to the correct bonds being

formed or broken. Some commercial software (e.g., Spartan [104])

features precomputed transition state libraries that aid in building

good guess geometries of a variety of elementary reaction steps

that can be elaborated into the reactants of interest for TS opti-

mizations, whereas other software [105–109] provides algorithms

that interpolate user-supplied reactant and product structures to a

TS. However, in general, preparing appropriate input for TS calcu-

lations requires chemical expertise and, for mechanisms that are

poorly understood, trial and error. Some progress has been made

towards full automation of TS calculations [e.g., Zimmerman’s

growing-string method (GSM) [110], the global reaction route

mapping (GRRM) strategy, developed by Maeda et al. [111], and

Wheeler’s automated reaction optimizer for new catalysts (AAR-

ON) [112]]. Another approach is to construct reaction-specific

force fields based on model DFT calculations (Q2MM), and use

the force fields for selectivity predictions [54]. The accuracy is

generally better than expected from direct applications of DFT

(mean unsigned error over several hundred examples is 2–3 kJ/mol

without fitting to experiment at any point), thanks to the accurate

dispersion in the force fields used, and complete conformational

searches for the TS.

Spectroscopy

Analytical chemistry has a key role in mechanism elucidation and

compound development in the pharmaceutical industry. QM soft-

ware packages can calculate spectra such as nuclear magnetic reso-

nance (NMR), infrared (IR), electronic circular dichroism (ECD/CD),

ultraviolet (UV), Raman, and vibrational circular dichroism (VCD)

[113–127]. One main use of predicted spectra is in structure deter-

mination, where NMR and IR can be used to match the experimental

spectra of unknown molecules to known computed chemical struc-

tures. Computed VCD [103,115,117,118,122,123,126] and TD-DFT

ECD spectra [75,128,129] also enable the assignment of absolute

configuration. Additionally, QM-calculated proton affinities and

solvation energies have been used in conjunction with molecular

structural descriptors to formulate QSAR models to predict mass

spectrometric response factors of drug-like molecules [130].

Outstanding challenges
Energy calculations

Although DFT will remain the method of choice in modeling

organic reactions in the foreseeable future, numerous challenges

need to be overcome before it can serve as a generally reliable

predictive tool. Even though DFT is successful in predicting the

relative rates for similar reaction pathways, such as competing

pathways for the formation of different stereoisomers [51–60],

current density functionals are incapable of predicting rate con-

stants of synthetic reactions accurately enough to be useful. At

room temperature, RT is about equal to 0.6 kcal/mol, whereas

current density functionals commonly have error bars larger than
1214 www.drugdiscoverytoday.com
this. As a result, errors in the computed rate constants can be

substantial. A universal density functional with chemical accuracy

has been named one of the ‘holy grails’ in computational chemis-

try [131]. The development of efficient density functionals that are

applicable to molecular systems of increasing size and more com-

plicated electronic structure is a vigorous area of research [132].

Impacting the accuracy of quantitative predictions are errors other

than those from the density functional, which include adequate

conformational sampling, three-body dispersion effects, anhar-

monicity, spurious imaginary frequencies, errors in the solvation

free energy of ions, and explicit solvent (and ion) effects that are

not well represented by continuum models [133–135].

Given that no known density functionals are universally accu-

rate, a bewildering plethora of density functionals has proliferated.

Although benchmarking data are critical to inform the choice of

density functional, not all areas relevant to reaction modeling

have been extensively benchmarked, including activation barriers

[136], especially stereocontrolling transition states [137] and orga-

notransition-metal systems [138].

These outstanding problems and gaps in understanding high-

light the need for continued innovations that should be driven not

only by theoretical chemists as developers of new methods, but

also by experimentalists who are the end users of such methods.

Industrial support of research in theoretical chemistry to develop

robust, effective methodology to model industrially relevant or-

ganic molecules and reactions will be beneficial. The large variety

of industrial reactions for which accurately measured thermody-

namics and kinetics parameters are available can serve as valuable

data sources against which computational methods can be bench-

marked.

Geometry calculations

Automated transition structure software solutions are promising

tools for studying reaction mechanisms, but some bottlenecks that

are unique to TS modeling need to be overcome before these tools

find wider popularity in industry. Besides the usual concerns of

time efficiency and accuracy, issues such as how well the software

tolerates an unreactive conformation (e.g., a global minimum

conformer) as input and how exhaustive the conformational

diversity is captured warrant testing by the wider communities

of computational and, especially, synthetic chemists. The user

interface of most of the available automated TS location software

is command line based rather than graphical, posing a somewhat

steep learning curve on the uninitiated. An ‘automatic transition

structure search’ workflow was recently made available within

Jaguar [105] that takes the structural formulas of reactants and

products, searches for a transition structure, and reports the reac-

tion thermochemistry and activation barrier. This is certainly a

welcome direction, although its scope in addressing conforma-

tional isomerism and stereoisomeric pathways automatically

remains to be seen.

Knowledge management

Besides the technical aspects in the generation of computational

data, knowledge management is becoming an increasingly press-

ing issue. Even though most journals require computed structures

(XYZ coordinates) and raw energies to be supplied as supporting

information, these data are usually found in the form of PDF files,

which has limited direct reusability from the computational

chemist’s point of view. Information frameworks analogous to
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electronic lab notebooks or online web databases that capture

these data and render them readily searchable and reusable will

be popular to both computational and experimental chemists.

Precompetitive collaborations to advance predictive tools
To be able to increase the productivity of drug discovery, there is a

need for better tools. This is relevant for medicinal chemistry from

lead generation to process chemistry. Here, we have discussed the

three most important approaches to synthesis prediction, with an

emphasis on how improvements can be made to drive increased

productivity. Starting with reaction mining, the field has changed

significantly in recent years with ML methods becoming more

popular and competing with, or even replacing, rule-based sys-

tems. There is an emerging trend to use larger data sets to increase

the predictivity. Considering the increasing amount of data avail-

able and progress in ML, especially deep learning, we foresee a

rapid future development in this area. We have reviewed three

commercially available synthesis prediction tools and discussed a

survey of medicinal chemist’s wishes for a desktop tool for syn-

thesis prediction. Finally, we have reviewed the state-of the-art

applications of QM and MM to dig deeper into reaction mecha-

nisms. Aligned with the general theme of this contribution cover-

ing computational prediction of chemical reactions, Maki et al.

stated that ‘while optimization of reaction conditions is inherently

empirical, (computational) studies point the way to a more sys-

tematic analysis and provide a more predictive approach’ [139].

Clearly, computational tools can be useful for computational,

medicinal, and process chemists. However, in all three areas, we

see the need for further improvements to fully embed computa-

tional tools in day-to-day work. Starting with reaction mining, the

field is behind the related field of bioactivity prediction, where a

public resource, such as ChEMBL provides a free and manually

curated resource of bioactivity data to benchmark new algorithms

on. Although a data set of reactions derived by text mining from

patents in the public domain exists [140], there is not a manually

curated large-scale set, although a small set has been published

[141]. We believe that the lack of such a set severely impedes new

algorithm and ML development. It would be of significant value to

have a set of failed reactions in the public domain, because failed

reactions are rarely reported in the literature.

There are precompetitive aspects of reaction mining and

modeling that are currently underutilized. Certain information

about chemical reactions can be shared to build better predic-

tive models without compromising the IP positions of individ-

ual consortium members. However, this will only be possible if

public standards are agreed and adhered to. Public standards

would improve public–private data integration and would need
to include reaction classification and consistent ways of describ-

ing reactions. Verras and co-workers from multiple pharma

companies, a hospital, and a European Union research institute

have published a malaria-related QSAR model as a consensus of

several QSAR models built by participating scientists based on

the proprietary experimental data in their own research orga-

nizations [142]. Roche and AstraZeneca formed the joint ven-

ture MedChemica to share data for building better predictive

tools based on matched molecular pairs without disclosing full

molecular structures or their experimental assay data [143]. As a

research community, it is worth the effort to investigate ways to

share certain aspects of reaction data at levels sufficient to build

better predictive models without impacting IP positions. For

example, statistics for success rates for named reactions (e.g.,

Suzuki coupling) and for publicly available reaction building

blocks used in those named reactions can be shared with no IP

consequences. To facilitate data exchange and sharing, a public

data exchange format and a set of terms and standards will need

to be developed, agreed upon, and adhered to by all partners

engaging in such data sharing (e.g., method/tool used for reac-

tion classification, ways of describing chemical reactions

through reaction fingerprints).

Although cheminformaticians might be comfortable with

accessing and manipulating reaction data and building predictive

models from the command-line user interface, medicinal che-

mists and process chemists will be dependent on graphic user

interfaces (GUI), which should be user friendly. The needs and

preferences of different chemists will be so variable that a single

interface is probably not achievable. Therefore, it is important to

have an environment in which different software solutions can

coexist and new features can be tested and evaluated by the user

community. It would be beneficial to have certain modularity

between the underlying reaction data and the user interface, so

that the end-users can license an optimal solution for their

needs. It would be desirable to have application programming

interface (API) access to the different tools, so that they can more

easily be integrated in IT environments within pharmaceutical

companies.

It remains beyond the horizon to model all chemical reactions

ab initio; therefore, modeling needs to be done with methods such

as DFT and MM. To make progress, funding for developing new

and more accurate methods that can be validated on pharmaceu-

tically relevant molecules is critical. Better knowledge manage-

ment and capture of published reaction data from QM calculations

in such a way that the calculations are reproducible is also desir-

able. An interesting way forward might be to merge QM methods

and ML [144].
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