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Can molecular biomarker-based patient
selection in Phase I trials accelerate
anticancer drug development?
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Anticancer drug development remains slow, costly and inefficient. One

way of addressing this might be the use of predictive biomarkers to select

patients for Phase I/II trials. Such biomarkers, which predict response to

molecular-targeted agents, have the potential to enrich these trials with

patients more likely to benefit. Doing so could maximize the efficiency of

anticancer drug development by facilitating earlier clinical qualification

of predictive biomarkers and generating valuable information on cancer

biology. In this review, we suggest a new model of early clinical trial

design, which incorporates patient selection through predictive molecular

biomarkers for selected targeted agents.
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Problems with the anticancer drug discovery pipeline
Increased knowledge of the molecular pathways of oncogenesis has led to a new paradigm of

targeted therapies against individual molecules in these pathways [1–5]. These new agents have

the potential to result in greater efficacy and less toxicity than conventional cytotoxic agents

through more specific targeting of cancer cells. Critical dependence of some tumours on the

dysfunction of a single oncogene for their continued growth and proliferation is termed

‘oncogene addiction’ [6]. Therapeutic targeting of such critical oncogenes has found clinical

application in the use of imatinib for BCR-ABL-driven chronic myeloid leukaemia and KIT-driven

gastrointestinal stromal tumours and the use of trastuzumab for HER2-amplified breast cancer [7–

9]. However, the majority of solid tumours are unlikely to have dysfunction of a single critical

oncogene. Rather, a large number of oncogenic changes, which together with substantial

molecular heterogeneity, abnormalities of metabolism and response to stress, are likely to

contribute to key characteristics of the malignancy and its response to treatment [10–14].

prostate cancer.
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BOX 1

Factors used in the Drug Development Unit at the Royal
Marsden Hospital to predict a possible response to
targeted agent

� Known preclinical data on probable mutations for that particular

cancer

� In vitro and in vivo preclinical antitumour activity data on the novel

agent in question

� Preclinical data identifying and validating (potential) pharmacody-

namic and predictive biomarkers

� Clinical data on responses in cancers from previous trials of agents

with similar mechanisms of action

� Previous exposure to chemotherapy and targeted agents – scope for

strategies targeting resistance to either

� Any other existing standard treatment options
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Nevertheless, the identification of the deregulated oncogenic

processes that maintain the malignant phenotype in individual

cancers remains critically important, as these are likely to pro-

vide the best targets for gaining clinical benefit from treatment

with rationally designed novel agents [15]. A recent high-profile

example supporting this approach has been the identification of

the presence of wild-type, non-mutated KRAS in predicting

clinical benefit to colorectal cancer patients treated with epi-

dermal growth factor receptor (EGFR)-targeting agents, as com-

pared with patients with KRAS mutations who are resistant

[16–23].

Despite the elegance of the concept of molecular-targeted

treatments, their development and incorporation into clinical

practice remains slow and expensive. Although it has been

suggested that targeted agents might have more successful

development rates than conventional cytotoxic chemothera-

pies, attrition rates are still unacceptably high [24–26]. More-

over, the cost of developing an anticancer drug are typically US$

700–1700 million, figures that are strongly influenced by the

high rate of failure of evaluated agents and the length of time

the process typically takes (eight to ten years from discovery to

registration) [27]. Only 1 in 20 cancer drugs entering clinical

trials gains regulatory approval: of the agents tested at each

stage, 70% fail at Phase II, 59% fail at Phase III and 30% fail at

the registration stage. The major causes for failure are inade-

quate therapeutic activity (30%) and toxicity (30%) [24]. While

the primary aims of Phase I trials are to define toxicity and

maximum tolerated dose and to use pharmacodynamic (PD)

and pharmacokinetic (PK) assessments to assess optimal dose

and schedule, objective response rates within these trials remain

low. Earlier analyses of tumour responses in unselected patients

recruited to Phase I trials indicate a response rate of 3.8%, with a

risk of toxic death of 0.54% [28]. More recent information from

European Phase I units focusing on targeted agents seems to

show little improvement in objective responses (5% [29] or 7.2%

[30]), although potential clinical benefit, as assessed by disease

stabilization for more than three months, is more common. In

the context of an inefficient drug development process, there is

a clear scientific, ethical and financial imperative to improve

Phase I trial design.

Most Phase I trials do not select patients for targeted antic-

ancer drug administration based on tumour molecular biomar-

kers. In our institution, and in most other drug development

units, empirical clinical and practical factors have, in general,

been the primary determinants in selecting patients for specific

trials (Box 1). Evolving beyond this empirical approach to

specific analyses of the molecular characteristics of each

patient’s individual tumour has much promise in improving

patient selection for Phase I trials. Such an approach could

potentially be crucial for accelerating drug development by

enabling predictive biomarker studies to identify the cancer

patient subpopulations most likely to respond to a therapy.

For anticancer drug development to provide maximum value

to the community, in terms of both benefit to patients and cost-

effectiveness, a more rational and targeted deployment of

agents (or combinations of agents) to molecularly defined sub-

populations is warranted. In this article, we propose that opti-

mizing biomarker development, validation and implementation
is crucial throughout the clinical drug development process,

from Phase I to Phase III studies and beyond. Moreover, deploy-

ing biomarkers to guide patient selection in information-rich,

hypothesis-driven early-phase clinical trials might facilitate

the use of these biomarkers in subsequent wider studies, provid-

ing exciting opportunities for their efficient and informative

use.

Biomarkers and the regulatory pathway
In recognition of the pressing need for the more appropriate

development of biomarkers for the development and approval

of molecularly targeted agents, the US Federal Drug Administra-

tion (FDA) created the ‘Critical Path Initiative to New Medical

Products’ [31] under the auspices of both the FDA and the Amer-

ican Association for Cancer Research (AACR). In addition, both the

National Cancer Institute/FDA/AACR Cancer Biomarkers Colla-

borative in the United States and the Cancer Research UK Initiative

on Biomarkers aim to develop strategies and guidance on end-

points in specific clinical situations [32].

Crucial to novel biomarker development is rigorous scientific

and analytical validation, followed by clinical validation or qua-

lification [33,34]. We have proposed a biomarker-based framework

for rational decision making in clinical trials known as the ‘phar-

macologic audit trail’ [33–38]. This links various biomarkers

together and provides a logical framework for decision making

in drug development. There are different types of biomarkers [33].

Risk biomarkers identify predisposition to a tumour; prognostic

biomarkers indicate the probable course of disease and associate

with outcome measures, such as overall survival; and intermediate

endpoint or surrogate biomarkers attempt to replace clinical end-

points and would expedite regulatory drug approval. Phase I

studies generally require pharmacological PK–PD biomarkers to

measure the effects of a drug treatment on a specific target, path-

way or biological feature of tumour biology. The use of these is

increasing in Phase I trials [39]. Predictive biomarkers, which are

under-utilized in Phase I trials, identify patient subpopulations

that are most likely to respond to a therapy. Although PK–PD

biomarkers remain crucial to the successful conduct of Phase I

studies, the focus of this present article is on the emerging use of

predictive biomarkers.
www.drugdiscoverytoday.com 89
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BOX 2

Steps in the successful development of a new PI3K
inhibitor: questions that must be addressed by
hypothesis-testing early-phase clinical trials

� Can the drug inhibit PI3K at safe and tolerable doses?

� What is the extent and duration of PI3K inhibiton in tumour?

� What is the consequence of PI3K inhibition (e.g. apoptosis, reduction

in cell proliferation or angiogenesis inhibition)?

� What is the variability in PI3K inhibition in the target population?

� What is the impact of PI3K inhibition on tumour cell growth in patients

with a non-activated pathway versus those with molecular evidence

for PI3K pathway addiction (e.g. p110a mutation or PTEN loss, or

evidenceof upstreampathway activation such asHER2 amplification)?

� How does clinical experience correlate with preclinical validation of

potential predictive biomarkers?

� What is the impact of crosstalk with other signalling pathways in

leading to resistance of the PI3K inhibitor (e.g. consequence of

activated RAS/RAF signalling and impact of dual inhibition with both

a PI3K and MEK inhibitor)?
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In an FDA guidance document, biomarkers have been described

as ‘exploratory’, ‘probably valid’ and ‘known valid’ [31]. This

document defines a ‘valid biomarker’ as ‘a biomarker that is

measured in an analytical test system with well-established per-

formance characteristics and for which there is an established

scientific framework or body of evidence that elucidates the phy-

siological, toxicological, pharmacological, or clinical significance

of the test results’ [31]. To date, many of the biomarkers used in

clinical trials of novel agents have been exploratory and not well

validated, leading to inefficient or unsuccessful deployment.

Furthermore, biomarkers are also often introduced too late to

have an impact on early clinical trials.

An important lesson on predictive biomarker validation can be

learnt from the development of HER2 testing for trastuzumab use.

Quality of assay performance was a major issue in later stage

randomized clinical trials of trastuzumab using HER2 testing to

select patients for treatment. Importantly, there was poor con-

cordance for HER2 testing between reference and community-

based laboratories [40]. In addition, immunohistochemistry

(IHC) assays showed a poor concordance with fluorescence in situ

hybridisation (FISH). This might have been related to technical

procedures, tissue quality, type of antibody used and subjective

biases between operators [41].

Validation and qualification maps for biomarkers now

need to be developed by consortia involving the regulatory

authorities, academic research groups and industry. These

must facilitate biomarker approval for successful drug develop-

ment and accelerate the implementation of novel assays

[42,43].

Biomarker utilization: early or late in drug
development?
There has been some debate about the role of biomarkers early

in the drug development process after the publication of a meta-

analysis on the use of biomarkers in 2458 Phase I trial abstracts

in the period 1991–2002 [39,44,45]. This article concluded that

biomarkers supported dose selection for Phase II studies in only

13% of the trials, with little evidence of these biomarkers

making a substantial contribution towards establishing dose

and schedule or understanding of antitumour effects [39]. Some

investigators have raised concerns that the use of biomarkers in

early clinical trials is subject to imprecise assays, excessive cost,

ethical issues surrounding tumour biopsies and, most impor-

tantly, the potential to abandon effective drugs on the basis of

incorrect patient selection. Sorafenib, for example, was initially

developed as a RAF kinase inhibitor but was subsequently

recognized to be a weak RAF inhibitor and a more potent

vascular endothelial growth factor receptor 2 tyrosine kinase

inhibitor (TKI), leading to its development and successful FDA

approval for clear cell renal carcinoma [46]. In retrospect, a

clearer understanding of the mechanisms of action of sorafenib

preclinically should have impacted the clinical drug develop-

ment process, particularly biomarker and patient selection. Such

preclinical understanding, combined with the careful selection

of PD and predictive biomarkers in early drug clinical trials,

might be crucial to accelerating successful drug development.

Such preclinical studies are also a key to the early clinical

qualification of analytically validated predictive biomarker
90 www.drugdiscoverytoday.com
assays. In addition, substantial insights into the mechanisms

of clinical response and primary and acquired drug resistance

can result from such early studies. Importantly, biomarkers also

provide a valuable means of interrogating disease biology in the

context of human patients.

There are multiple examples of biomarker development lagging

behind the drug development process. The EGFR TKIs erlotinib

and gefitinib have been in the clinic for several years for the

treatment of non-small cell lung cancer (NSCLC). Optimal pre-

dictive biomarkers for these drugs, however, are still being eval-

uated. Importantly, with respect to overexpression of EGFR, there

is no clear correlation with drug sensitivity, and there are impor-

tant discrepancies between the results of several studies [47–49]. By

contrast, EGFR mutations in NSCLC have been strongly associated

with sensitivity to gefitinib and erlotinib; there is a higher rate of

clinical benefit to treatment with EGFR TKIs seen in patients with

EGFR mutations than in those without such mutations [50,51].

Furthermore, mechanisms of resistance have not been sufficiently

explored in early studies of EGFR TKIs. A recent study has shown

overexpression of c-MET as a mechanism of resistance to erlotinib

in 22% of NSCLC cell lines studied, supporting the potential role of

c-MET inhibitors in the treatment of erlotinib-resistant disease and

the testing of c-MET expression before treatment with these

agents, rather than unselected patient recruitment into such

programmes [52].

Overall, it is important that Phase I trial designs increasingly

consider incorporating the use of scientifically and analytically

validated predictive biomarkers to question and answer key bio-

logical issues and to provide information about underlying disease

biology, such as mechanisms of resistance (Box 2). Such studies, as

demonstrated in the examples discussed below, might provide

vital information that could decrease late and expensive drug

attrition, accelerate drug development and reduce the overall cost

of this process.
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Biomarker use as key components of early-phase
studies: some examples
PARP inhibition in BRCA mutation carrier cancer patients
We recently completed a Phase I study of the poly-ADP-ribose

polymerase (PARP) inhibitor olaparib (KuDOS/AstraZeneca; KU-

0059436, AZD2281), in which the concept of synthetic lethality

was studied in patients with BRCA1 or BRCA2 mutations [53]. As

indicated by preclinical data from PARP inhibitors from the

same chemical series as olaparib [54], our a priori hypothesis

was that olaparib would have therapeutic activity in tumours

with homologous recombination (HR) repair defects. The dose-

escalation phase of the study was initially enriched with BRCA

mutation carriers, whereas the maximum tolerated dose expan-

sion cohort only included patients with known BRCA muta-

tions. Treatment induced PARP inhibition in mononuclear cells

and tumour biopsies was demonstrated. The formation of

gH2AX foci, a marker of DNA double strand breaks, on plucked

eyebrow hair follicles was also shown [53]. The trial demon-

strated a clinical response rate of 46% in patients with BRCA-

mutated ovarian cancer but little antitumour activity in patients

with unknown BRCA status. This experience has shown that

specific targeting of a selected patient subpopulation through

the use of a defined predictive biomarker, such as BRCA muta-

tion status, can provide a strong early signal of antitumour

activity that might benefit specific patient cohorts and accel-

erate drug development.

Importantly, this PARP inhibitor ‘proof of concept’ trial has

shed much light on disease biology and has now led us to rapidly

address several further key issues, including: how do we best

identify sporadic cancer patients with HR repair deficiency? What

is the incidence of HR repair defects in patients with sporadic or

familial cancers? Does resistance to PARP inhibitors occur as a

result of a secondary mutation of BRCA, and how can this be

overcome? Do different forms of BRCA mutations result in varying

sensitivities to PARP inhibitors by causing differing degrees of HR

repair defects?

CYP17 blockade in CRPC
Abiraterone acetate is a potent and highly selective irreversible

inhibitor of CYP17 that blocks androgen and oestrogen synth-

esis [55]. Phase I and II clinical trials of abiraterone acetate

conducted at our institution and other centres have reported

disease regression in 50–70% of patients resistant to multiple

hormonal, cytotoxic and experimental agents [56–58]. How-

ever, because up to 40% of castration-resistant prostate cancer

(CRPC) patients do not demonstrate clinical benefit, a study of

predictive biomarkers could prove important to the future suc-

cessful development of this agent, increasing the likelihood of

its approval in randomized trials. We have measured the levels

of those steroid precursors that we predicted would be sup-

pressed by abiraterone acetate and have confirmed that abira-

terone acetate suppressed steroids downstream of CYP17,

reporting a association between clinical benefit and pretreat-

ment hormone levels [56].

We have also investigated assays that could stratify patients

with CRPC based on underlying molecular biology and select

those most suitable for hormone therapies. Approximately 40–

70% of prostate cancers have an ERG gene rearrangement that
can be detected by FISH studies [59,60]. We used archival

tumour biopsies and circulating tumour cells (CTCs) (see section

‘Analysing predictive biomarkers’) isolated from blood collected

from patients in Phase I/II studies of abiraterone acetate to

molecularly characterize patients by FISH [61], as demonstrated

in Fig. 2. These studies reported that the presence of an ERG

rearrangement was associated with magnitude of PSA decline on

abiraterone acetate (P = 0.007). This association is undergoing

further evaluation in an ongoing international randomized

double-blind Phase III trial of abiraterone acetate and predni-

sone versus prednisone and placebo (NCT00638690) and could

inform the design of future abiraterone acetate clinical studies.

These studies have provided important insights into the mole-

cular biology of CRPC and the mechanism of action of abir-

aterone acetate and give an example of how biomarker

evaluation in early clinical studies can inform later trial

design.

Inhibition of ALK in patients with ALK rearrangements
Chimeric fusion proteins of the ALK gene produce constitutively

active tyrosine kinases and increased activation of downstream

pathways, including the PI3-kinase and Janus kinase/signal trans-

ducer and activator of transcription (JAK/STAT) pathways [62,63].

ALK fusion proteins have been found in NSCLC (4% of cases,

predominantly those of adenocarcinoma histology), anaplastic

large-cell lymphoma and other malignancies. A Phase I trial of

PF02341066, an oral MET and ALK inhibitor, was designed to have

both a dose-escalation phase and a ‘molecularly selected cohort’

at the recommended Phase II dose of patients with MET or ALK

activation. Clinical activity in a patient with an inflammatory

myoblastic tumour (a rare sarcoma known to be driven by ALK

fusion proteins) led to enrolment in a molecularly selected cohort

of 27 patients with NSCLC demonstrated by FISH break-apart

assay to have an EML4–ALK fusion protein. Of 19 evaluable

patients, 10 achieved partial response and a further 5 had stable

disease for>8 weeks with a clinical benefit rate of 79%. Although

patients with MET amplification or mutation will also be enrolled

in a further expansion at the recommended Phase II dose in this

Phase I trial, a Phase III trial is now planned in the EML4-ALK

fusion gene associated NSCLC population based on these Phase I

data. Using such an adaptive trial design and a robust predictive

biomarker, a clear signal of antitumour activity has been demon-

strated, with facilitation of rapid transition to subsequent phase

trials, which is hoped will further validate the utility of this

biomarker.

Inhibition of V600E BRAF in melanoma
Activating mutations of BRAF have been identified in up to 60%

of cutaneous melanomas [64]. The majority of these are point

mutations resulting in substitution of valine with glutamate at

the 600 position (V600E). Proof of concept that inhibition of

V600E BRAF was a valid target for drug development was pro-

vided by small interfering RNA experiments, which resulted in

the inhibition of proliferation and induction of apoptosis [65].

PLX4032 is a rationally designed small-molecule inhibitor of

BRAF V600E that has impressive selectivity over wild-type BRAF,

CRAF and other kinases. PLX4032 has been evaluated in Phase I

clinical trials [66] with promising antitumour activity reported
www.drugdiscoverytoday.com 91
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in patients with cancers that carry the BRAF V600E mutation

[67]. In total, 16 patients with the mutation were treated at last

reporting on this Phase I study; 9 of these patients have had a

partial response, with a further 7 patients having stable disease.

Five patients with BRAF wild-type disease all showed evidence of

progressive disease, further supporting the concept that BRAF

mutations are predictive of response to selective mutant BRAF

inhibitors.

A range of PD biomarkers were conducted in this study: IHC

showed a reduction in both Ki-67 and phosphorylated extra-

cellular signal-regulated kinase (ERK) levels in tumour samples

after drug administration, as well as a reduction in fludeoxy-

glucose (FDG) uptake in selected patients having positron emis-

sion tomography (PET) scans [68]. These observations have

confirmed that V600E BRAF is a valid therapeutic target

and suggest that the development of a BRAF-V600E-specific

inhibitor might potentially lead to new treatment options for

melanoma.

In contrast to this is clinical data acquired to date with mitogen-

activated protein/extracellular signal-regulated kinase (MEK) inhi-

bitors. Preclinical data reported that BRAF mutation predicts anti-

tumour activity after inhibition of MEK signalling [69]. Despite

this, clinical studies of several MEK inhibitors have had infrequent

responses in Phase I trials employing no process of molecular

selection, resulting in a difficult transition to latter stage trials.

It is not yet clear whether this is due to inadequate MEK blockade

by these agents or to signalling pathway crosstalk bypassing the

MEK blockade.

Overall, the examples discussed illustrate how predictive bio-

markers can be used successfully in Phase I clinical trials. Adaptive

designs using such biomarkers can increase the likelihood of

patient benefit, generate important information on disease biol-

ogy and impact the drug development process. More sophisticated

Bayesian designs warrant further evaluation in this setting to guide

molecular patient selection [70].

Analysing predictive biomarkers
Technologies for tumour acquisition and molecular assessment

are evolving in parallel with developments in drug discovery.

Optimization of the incorporation of these developments into

early-phase trials is a profound challenge and important oppor-

tunity. Acquisition of tissue at different stages of disease and

treatment is being facilitated by these new technologies.

Plasma, CTCs and whole blood are being interrogated by mole-

cular technologies to provide potential minimally invasive read-

outs of tumour biology and response to treatment, for both

predictive and PD biomarkers. CTCs have been isolated and

studied in a range of common malignancies, including lung,

breast, colorectal and prostate cancers [71–73]. Molecular char-

acterization of CTCs by multicolour FISH, mutation analyses by

sequencing (Fig. 2) and protein expression by immunofluores-

cence (Fig. 2) hold promise for selecting patients for targeted

treatments, monitoring efficacy and studying mechanisms of

resistance [74–76]. Small volumes of tumour tissue can now be

used to provide increasingly complex information that can be

analysed by high-throughput methods. Such technologies

include DNA, RNA and protein analyses and functional assess-

ments of tumour activity.
92 www.drugdiscoverytoday.com
DNA-based predictive biomarkers

Comparative genomic hybridisation (CGH) detects loss, gain and

amplification of gene copy number at the level of chromosomes

and enables the analysis of the whole genome at increasingly high

definition [77]. Mass-spectroscopy-based technology can also be

used to identify such changes, as well as multiplex evaluation of

gene mutations, and is now increasingly affordable. Comprehen-

sive sequencing of the entire genome of an individual’s cancer

using Solexa technology is also becoming increasingly feasible

[78,79]. These studies will become more affordable, which – along

with the ability to sequence smaller volumes of tissue, including

single-cell studies – will generate many important opportunities.

It is envisioned that these analyses will be used for patient selec-

tion in early-phase trials, but they might be limited by the

challenges of intratumoural cellular molecular heterogeneity

[61].

RNA-based predictive biomarkers: gene expression microarrays
Gene expression microarrays have the ability to define tumour

signatures with powerful prognostic capability so that patients

can be classified into good and poor outcomes, and one such

gene signature (MammaPrint, Agendia) has been cleared by the

FDA for patients under 61 years of age who have node-negative

stage I or II disease with a tumour size of 5 cm or less [80]. Such

studies might provide predictive information related to activa-

tion of oncogenic pathways and, ultimately, define sensitivity

to molecularly targeted agents. A gene expression signature for

PTEN protein loss has been reported from human breast cancer

biopsies [81]. This was then validated in independent datasets

for other tumour types, and prediction by the gene expression

signature of pathway activity correlated significantly with poor

patient prognosis [81]. Studies of microRNA expression might

also have clinical relevance in predictive biomarker analyses

[82].

Protein-based predictive biomarkers
Although CGH, sequencing and transcriptional profiling pro-

vide data on DNA and RNA status and levels, they cannot assess

the functional effects that these changes have on cancer cell

biology [83]. Assessment of mRNA levels by expression arrays

can generate a signature of functional activity but does not

directly measure, for example, the level of expression, post-

translational modification and functional activity of key pro-

teins. Proteomic studies have the potential to assess relative

activity of multiple pathways. Reverse-phase protein microarray

can quantitate phosphorylated and total protein expression [83]

and is promising in the identification of multiplex predictors of

response to PI3-kinase and MEK inhibition in breast cancer

[84,85].

A functional readout of a cancer’s molecular activity might lead

to a more accurate signature of cancer drivers and lead to the

targeting of both oncogene and ‘non-oncogene’ addictions [14].

Phosphopeptide arrays can evaluate tyrosine and serine threonine

kinase peptide substrates covering a high proportion of the

kinome. These can determine the functional activity of kinases

from tumour lysates determining pathway activation status [86].

Such arrays can simultaneously analyse the reversible phosphor-
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ylation of multiple protein residues central to various oncogenic

signalling pathways.

Molecular imaging
Further functional information can be provided by modern mole-

cular imaging techniques [87]. Positron emission tomography (PET)

technology can detect HER2 positivity [88] and markers of hypoxia

(18-fluoromisonidazole (FMISO)), [89] and angiogenesis (integrin

anb3 and VEGF) [90,91]. Specific molecular pathways might also be

analysed, for example, for abnormal PI3K/AKT activity, by measur-

ing the accumulation of 11C acetate by PET and that of the RAS/RAF/

MEK/ERK pathway by changes in labelled choline [92]. Changes in

PET parameters might provide earlier information about treatment

response than conventional imaging does, potentially enabling

earlier decisions about stopping an ineffective therapy, and might

also delineate changes in metabolic activity of tumours in the

absence of changes in their size [93]. Dynamic contrast-enhanced

MRI uses transverse relaxation time (T2) captured images immedi-

ately after contrast injection (evaluating perfusion) and longitudi-

nal relaxation time (T1) images over a few minutes to examine

extravasation of contrast (evaluating blood volume within tumour

and microvascular permeability) [94]. Measurable changes in

tumour perfusion or vascular permeability provide PD evidence

of antiangiogenic effect and information early in a treatment course

about probable response to such therapies [95].

Pharmacogenomics
Identifying host somatic cell single-nucleotide polymorphisms

that associate with treatment benefit and/or drug toxicity also

has the potential to provide crucially important data on selecting

treatment and its dosing [96]. These pharmacogenomic markers

are now increasingly available but remain poorly utilized [96,97].

An important example is the identification of allelic variations in

CYP2D6 as predictors of response to tamoxifen. Tamoxifen is

metabolised by CYP2D6 to 4-hydroxy-tamoxifen and endoxifen,

which have approximately 100� greater affinity for ERa [98].

Patients homozygous for the null allele CYP2D6*4 have shorter

disease-free survival than those heterozygous or homozygous for

the wild-type allele [99]. The FDA has approved technology for the

identification of these CYP2D6 genotypes, although this has not

been routinely incorporated into clinical practice to date.

Another important example is the hepatic glucuronidation by

UGT1A1 of the major metabolite of irinotecan, SN-38, to the

inactive SN-38-G. This is a major pathway for irinotecan metabo-

lism. Genetic variants of UGT1A1 are found in 10–20% of the

population and can lead to increased exposure to SN-38 and

severe, late-onset irinotecan toxicity [100–103]. The most com-

mon polymorphism (UGT1A1*28) has seven TA repeats in the

gene promotor, rather than the more common six repeats. A rapid

testing kit for the homozygous seven-repeat genotype (Invader

UGT1A1, Third Wave Technologies, Madison, WI) has been

approved by the FDA, although this assay does not evaluate other

UGT1A1 variants, and its predictive capacity is poor [104]. Con-

sequently, to maximize the early recognition of such pharmaco-

genetic variants in the development of novel agents, we

recommend that all patients treated on early clinical trials should

have somatic cell DNA collected from a blood sample to support

such studies.
Concluding remarks: developing a new model of Phase
I patient selection
Overall, new models of Phase I study design that incorporate

patient selection based on predictive biomarkers have the poten-

tial to accelerate anticancer drug development for many molecu-

lar-targeted novel agents (Fig. 1). Indeed, it is probable that the

early identification of such predictive biomarkers will improve the

odds of eventual drug registration. This might not, however, be

applicable for all novel agents. Compounds with unknown

mechanisms of action, multiple targets or targets that are generic

to all cancers (e.g. antiangiogenics) might not merit such predic-

tive biomarker evaluation. Using such biomarker studies, however,

can facilitate the development of information-rich, hypothesis-

testing, adaptive trials directed by disease biology. Such trials

might support the molecular subclassification of diseases through

the use of robust and analytically validated predictive biomarkers.

Most importantly, in doing so, they might improve the likelihood

of benefit for patients accrued to these early trials.

Although much of the exploration and full validation of ‘poten-

tial predictive’ biomarkers will still occur in the context of sub-

sequent Phase II and III trials, we believe that the use of molecular

strategies to enrich Phase I trials with patient populations that

have a higher chance of response should now be pursued. Such

studies are conducted under the auspices of Clinical Laboratory

Improvement Amendments (CLIA) in the USA, and Good Labora-

tory Practice (GLP) in the UK. Careful analytical validation of such

biomarkers remain crucially important to increase the possibility

of patient benefit, which can then lead to increasing confidence in

the drug under evaluation and its target(s) and provide early

clinical qualification of the predictive biomarker.

Conducting Phase I trials in this manner will require a signifi-

cant infrastructure to support the acquisition of tumour material

including archival tissue, fresh tumour biopsies and CTCs, as well

as early radiology reviews to gauge the feasibility of safe tumour

biopsies in suitable patients. Considerable education and provi-

sion of information for patients on the rationale for the process

will be key, as will consent for histology review, tissue retrieval,

pathological analyses of archival tissue and fresh tumour or CTC

acquisition. These analyses must be streamlined to decrease the

time required for this selection process, which must be expedited

to reduce treatment delay. Such a biomarker-driven drug devel-

opment process requires a detailed understanding of available

technologies and drug mechanism of action and an accurate

definition of the probable molecular oncogenic abnormalities

for each cancer, so that the appropriate selection of the optimal

modality of testing is made. The large data sets of predictive

biomarker analysis will require bioinformatics expertise and the

rapid evolution of hospital molecular pathology departments.

Crucially, thorough preclinical validation of predictive biomarkers

must be performed as early as possible before Phase I trials com-

mence, so that these biomarkers can be incorporated into the

early-phase trial programme of a new drug.

Finally, defining patient populations by molecular methods

might enable drug application across the traditional boundaries

of anatomical disease site and histological appearance typical of

Phase II studies into defined populations across multiple histolo-

gies based primarily on molecular characterization. We envision

patient selection for such studies based on tumour RAS/RAF
www.drugdiscoverytoday.com 93
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FIGURE 1

Potential Phase I trial selection process incorporating predictive and on-treatment biomarker assessment. Current Phase I trials select patients for particular trials
based on the clinical factors listed in Box 1. We propose a restructuring of the patient selection process to incorporate predictive biomarker assessment as part of

the initial workup of the patient before entry into the trial. This assessment might involve molecular evaluation of archival tissue, serum markers, fresh tumour

biopsies, circulating tumour cells or functional imaging. Should a biomarker based decision not be feasible or not appropriate, the patient is allocated empirically

to a Phase I trial in the usual way. If the patient and available trials warrant a biomarker-based approach, the relevant biomarker testing would be carried out, with
entry onto a Phase I trial targeted towards the matched molecular abnormality. Early post-treatment biomarker testing would then be performed and repeated

should the patient develop resistance to therapy. By evaluating tumour biology before trial entry, we propose that the patient will have a higher chance of

receiving an effective treatment.
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mutant status, PI3K pathway activation or BRCA, PTEN or TP53

functional status for the appropriate molecular agents. Rather

than unselected recruitment of patients into phase I trials of,

for example, drugs targeting the PI3K/AKT pathway, these studies

could recruit patients wiith PIK3CA mutation or amplification,

PTEN loss, or receptor tyrosine kinase overexpression. This might
94 www.drugdiscoverytoday.com
ultimately impact the design of later stage trials, shifting our focus

from developing drugs for geographical tumour types to the

treatment of diseases based on specific molecular drivers. This

could decrease attrition of drugs in later phase trials, reduce cost,

accelerate anticancer drug development and fix the broken antic-

ancer drug pipeline.
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FIGURE 2

Potential methods of predictive biomarker analyses. (a) Immunohistochemistry (IHC). PTEN IHC is demonstrated in panel (i), which is from a prostate cancer

biopsy specimen that was PTEN negative on fluorescence in situ hybridisation (FISH), in contrast to the prostate cancer biopsy specimen in panel (ii), which was
PTEN positive on FISH. Panel (iii) shows the quantitative image analysis (Aperio ScanScope imaging and software, CA, USA) of the corresponding PRAS40 IHC

staining from the biopsy specimen used in panel (i), indicating strong positivity. (b) Immunofluorescence and FISH on malignant cells. Panel (i) shows four LNCaP
cells spiked in blood and photographed using the Ikonisys system (Ikonisys, CT, USA). These cells were demonstrated to be DAPI positive (blue nuclear staining)

and cytokeratin positive (orange cytoplasmic staining). FISH probes show the androgen receptor (green signal) and ERG genes (red and aqua nuclear probes).
Panel (ii) shows a further example of malignant cells, illustrating the utility of the same FISH probes in demonstrating diploid androgen receptor copy number but

ERG amplification. (c) Meso Scale Discovery (MSD, MD, USA) 96 well AKT multiplex plate. Each well shown in (c) provides a quantitative readout of the

phosphorylated forms of AKT, p70S6K and GSK3b. Standard curves are shown in the top two rows and right three columns. (d) Sequenom DNA sequencing
(Sequenom, CA, USA). This demonstrates a BRAF V600Emutation as analyzed inmelanoma cell line SK-MEL-28. This mass-spectroscopy-based technology enables

multiple common mutations to be analysed in small volumes of tissue. Images courtesy of Ruth Riisnaes, Joanna Moreira, Mateus Crespo, Jeremy Clark, Geraldine

Perkins, Christophe Massard and Juliet Dukes.
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