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Computational data mining and visualization techniques play a central part in the extraction of

structure–activity relationship (SAR) information from compound sets including high-throughput

screening data. Standard statistical and classification techniques can be used to organize data sets and

evaluate the chemical neighborhood of potent hits; however, such methods are limited in their ability to

extract complex SAR patterns from data sets and make them readily accessible to medicinal chemists.

Therefore, new approaches and data structures are being developed that explicitly focus on molecular

structure and its relationship to biological activity across multiple targets. Here, we review standard

techniques for compound data analysis and describe new data structures and computational tools for

SAR mining of large compound data sets.
Advances in high-throughput screening (HTS) technology and

combinatorial chemistry have led to the fast accumulation of large

amounts of activity data for chemical compounds [1]. Extracting

SAR information from such data sets and making it available to

medicinal chemists are important tasks in hit selection and hit-to-

lead projects. To extract SAR information from HTS data or other

compound data sets, various computational data mining and

visualization approaches have been developed over the years.

These methods have in common that computer-readable mole-

cular representations must be used. To make chemical structure

accessible to computational approaches, molecules are repre-

sented, for example, as vectors of numerical descriptors or mole-

cular fingerprints that account for the presence of predefined or

calculated structural features. Given these inherently multi-

dimensional representations and the availability of large amounts

of activity and other biological data, successful chemical data

mining must ultimately find a balance between mathematical

complexity reduction and chemical interpretability. The primary

goal is to systematically extract interesting data set features and

present them in an intuitive way.
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Four conceptually different approaches to SAR extraction from

large data sets can be distinguished: dimensionality reduction,

clustering and partitioning, organization and annotation of com-

pound substructures, and relating structural similarity to activity

similarity. In the first part of this review, we provide an overview of

each of these approaches and give examples of the applied math-

ematical methods, data structures and computational tools. In the

second part, we describe in detail data structures that put strong

emphasis on integrating structural and activity similarity with a

focus on methods recently developed in our group.

Data preprocessing
Before an in-depth analysis, it is usually required to curate and

combine data from distinct sources, which makes preprocessing an

important step in SAR information extraction. This is especially

true for HTS data, which – owing to the high level of automation –

require careful control and analysis to reliably identify hits for

further evaluation. A detailed discussion of these issues is outside

the scope of this article but has been presented elsewhere [2,3].

For the recurrent tasks of data preprocessing, pipelining

programs such as Pipeline Pilot (http://accelrys.com/products/

pipeline-pilot/) and KNIME [4] (http://www.knime.org) are useful

and versatile tools. Protocols for standard processing tasks can be

implemented quickly and existing workflows easily adapted to
ee front matter � 2010 Elsevier Ltd. All rights reserved. doi:10.1016/j.drudis.2010.06.004
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new requirements, which has made these tools widely used in

chemoinformatics.

Dimensionality reduction
To efficiently mine and recognize patterns in multi-dimensional

data, the data must be represented in a human-accessible format.

To this end, one possibility is to reduce high-dimensional data

representations to a readily interpretable two- or three-dimen-

sional reference space that can be intuitively navigated. These

low-dimensional reference spaces can be visualized using stan-

dard techniques such as scatter plots in which each data point

corresponds to a molecule. Annotation of data points according

to activity or other molecular properties enables the identifica-

tion of regions in reduced chemical space that are predominantly

populated by active compounds. Using computer programs such

as Spotfire [5], the data can be projected onto multiple plots repre-

senting chemical and activity space. Series of compounds that

provide SAR information are then identified by comparing the data

points in different diagrams; however, compound structures must

be separately compared and interpreted to extract meaningful SAR

information. Thus, in such situations, chemical experience and

intuition are of cardinal importance for data analysis.

Various mathematical methods can be applied to facilitate

dimensionality reduction. For more detailed information concern-

ing dimension reduction techniques, interested readers are

referred to Refs. [6–8].

Dimension reduction is generally accompanied by some loss of

the original information content and feature variance of high-

dimensional representations of a data set. For example, principal

component analysis (PCA) generates linear combinations of ori-

ginal descriptors, and a small number of these linear combina-

tions, utilized as new variables, often explain a large fraction of the

data set variance. The web service ChemGPS uses a predefined

principal components space that has been established on the basis

of bioactive compounds [9,10]. A related approach uses Bayesian

modeling to define a low-dimensional bioactivity space into

which compounds can be projected. For this purpose, the so-called

‘Bayesian affinity fingerprints’ are generated by predicting targets

of compounds based on their structure and properties. Principal

components of the prediction scores ultimately constitute a low-

dimensional bioactivity space [11].

Multi-dimensional scaling aims to retain high-dimensional

pairwise similarity relationships in low-dimensional space repre-

sentations. This has the advantage that close similarity relation-

ships are often better represented than by PCA; however, a

computed mapping cannot be transferred to another data set

because it derives coordinates based on relative compound dis-

tances for a given data set.

Kohonen networks or self-organizing maps represent a complex

methodology for dimension reduction [12]. Network training

generates a two-dimensional map containing regions populated

with structurally related compounds. Activity information can be

projected by coloring individual cells on this map. Feed-forward

neural networks are supervised learning algorithms that can be

trained to reduce dimensionality in a favorable way (e.g. by

distinguishing active from inactive compounds).

All of these dimension reduction methods have in common

that molecules corresponding to interesting data points in low-
dimensional representations need to be compared manually to

extract chemically interpretable SAR information.

Clustering and partitioning
The general aim of clustering and partitioning methods in com-

pound data analysis is to group structurally similar compounds

together. Often, clusters contain analogs representing the same

chemotype. The biological activities of analogs or compounds

representing similar chemotypes can then be compared

(Fig. 1b). These data analysis techniques typically operate in

high-dimensional chemical reference spaces; however, partition-

ing can be elegantly combined with dimension reduction [13]. In

general, clustered structures must also be visually inspected and

compared to recognize SAR patterns. Agglomerative hierarchical

clustering uses pairwise compound similarity in a high-dimen-

sional chemical space to organize compounds based on common

structural elements. Most often, the clustering is visualized as a

dendrogram where each node corresponds to a particular cluster at

a defined similarity level. The program Molecular Property

eXplorer [14] uses this type of clustering in combination with

the so-called ‘tree maps’ to visualize the global structure of the data

set. In tree maps, hierarchical clustering is represented as a rec-

tangular map that is sub-divided according to the grouping of

compounds. An advantage of tree maps over dendrograms is that

distances between compounds in different clusters are also visua-

lized [14]. Each sub-rectangle represents a cluster, and the rectan-

gles are colored according to bioactivity. To incorporate more than

one property, Molecular Property eXplorer uses heatmaps that

combine clustering of compounds with clustering of properties.

Each cell is colored according to the property of the given com-

pounds. This enables straightforward visual identification of com-

pound clusters that share a common activity or are heterogeneous

with respect to a certain property.

Whereas clustering requires pairwise comparison of all com-

pounds in high-dimensional chemical space, partitioning meth-

ods separate the data set based on individual property ranges or

the presence of selected structural features. For example, in

decision trees the data set is first split according to a single

property so that the separation into actives and inactives is best

at that stage [15,16]. The process is then repeated for each

compound subset. Rules concerning structural features and che-

mical properties that are markers of activity can then be derived

from decision trees.

A grouping of compounds by their chemical features and topol-

ogy can also be obtained using reduced graphs [17,18]. These

graph-based descriptions can be evolved to capture characteristic

features of active molecules that yield interpretable SAR patterns.

We can only give an overview of clustering and partitioning

methods in this review. For further information, useful publica-

tions about standard data mining techniques can be consulted

[8,19,20].

Organization and annotation of substructures
Substructure-centric approaches aim to reveal structural rules that

govern bioactivity to guide compound design. Therefore, substruc-

tures are either predefined or generated in a systematic manner

from a compound data set. Each substructure is then annotated

with the activity of the compounds it represents (Fig. 1c).
www.drugdiscoverytoday.com 631
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LeadScope [21] uses a library of predefined substructures that

often occur in drug-like compounds. The program permits the

selection of substructures that occur in compounds with defined

activity and property ranges. This makes it possible to visualize

SAR information in terms of chemically intuitive structural fea-

tures.

Another program, Enhanced SAR Maps, uses heatmap represen-

tations to visualize the distribution of activity and other properties

such as toxicity or bioavailability for analog series representing a

particular chemotype [22,23]. These heatmap views enable the

visual identification of activity patterns that are associated with

different chemical substitutions. This approach is closely related to

SAR tables that are commonly used by medicinal chemists to

summarize SARs, but the analysis is limited to one common core

structure at a time.

Scaffold Hunter [24] uses a data structure called scaffold tree [25]

in which molecules are systematically and iteratively decomposed

into substructures. Each substructure is annotated with the bioac-

tivities of compounds it was generated from. The organization of

compound data sets into molecular building blocks of system-

atically varying size provides a structural hierarchy for activity

annotation. The scaffold tree enables the identification of scaffolds

that are characteristic of active compounds. It has been shown
FIGURE 1

Method for extracting and organizing SAR information. Four conceptually different
shown. (a) Dimension reduction. Neural networks can be trained to reduce dime

compounds are projected onto a two-dimensional map (and colored according to

reduce the dimensionality of descriptor spaces by constructing composite descri

clustering separates compounds into groups of similar structures. The cluster orga
clustering of properties and compounds. Decision trees derive rules to enrich act

substructures. The scaffold tree represents an iterative hierarchical fragmentation an

the activity of molecules they represent. SAR maps report activity in relation to co

Structural vs. activity similarity. SAS maps report the structural and activity similarity
cliff markers. Network-like similarity graphs (NSGs) visualize both structural and a
that utilizing activity-prevalent substructures as scaffolds for

newly synthesized molecules can yield novel active compounds

[24].

The structure–activity report that is part of the Molecular Oper-

ating Environment (http://www.chemcomp.com) combines a

scaffold-tree-based grouping of compounds with SAR table fea-

tures similar to SAR Maps, as well as other graphical representa-

tions. It enables the automatic identification of scaffolds and

provides a detailed graphical view of the distribution of one or

multiple properties among a set of compounds [26].

Structural vs. activity similarity
In contrast to the methods described thus far, the approaches

discussed in the following paragraphs are designed to integrate

structural similarity and activity similarity and provide a consis-

tent framework for the extraction and interpretation of SAR infor-

mation (Fig. 1d). Two basic SAR categories can be distinguished:

continuous and discontinuous SARs. Discontinuity is introduced

when structurally similar molecules have very different potency;

pairs or groups of such compounds form ‘activity cliffs’. By con-

trast, increasingly dissimilar molecules with comparable potency

form a continuous SAR relationship. Importantly, these SAR cate-

gories are not mutually exclusive and SARs combining continuous
approaches to SAR information extraction from compound and HTS data are
nsionality in a well-defined manner. Using self-organizing maps (SOMs),

potency or other properties). Principal component analysis (PCA) is used to

ptors from the original ones. (b) Clustering and partitioning. Hierarchical

nization can be visualized as a dendrogram or tree map. Heatmaps combine
ive compounds in terminal nodes. (c) Organization and annotation of

d organization scheme of compounds. Individual scaffolds are annotated with

mbinations of functional groups attached to a common core structure. (d)
of compound pairs in a scatter plot. This enables the identification of activity
ctivity similarity for an entire data set.
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TABLE 1

SAR information extraction methods.

Approach Data structures and methods Software tools

Dimensionality reduction Principal component analysis

Self-organizing mapsNeural

networks

Spotfire

Clustering and partitioning Dendrograms
Tree mapsHeatmaps

Decision trees

Molecular Property eXplorer

Substructure annotation Scaffold treeSAR Maps LeadScope

Scaffold Hunter

Third Dimension Explorer (3DX)

Similarity comparison Spiral viewsSALI, SARI

Network-like similarity graphs

Combinatorial analog graphs

Spiral View

Saranea
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and discontinuous components are classified as heterogeneous.

The designation of these categories originates from the concept of

an ‘activity landscape’ that describes the potency distribution of a

compound set with reference to the distance of its members in

chemical space. When chemical space is projected onto a two-

dimensional plane where inter-compound distances reflect struc-

tural similarity, potency can be added as a third dimension to

create a surface with smooth (continuous) and cliffy (discontin-

uous) regions, akin to a real geographical landscape. The distinc-

tion of these SAR categories promotes a more systematic approach

to the description of SARs and their relevance for different appli-

cations. Discontinuous behavior, for example, is often exploited in

lead optimization when high gains in potency are achieved by

small structural modifications. By contrast, continuous SAR char-

acter is thought to be a prerequisite for the applicability of virtual

screening, lead hopping or QSAR techniques [27].

Fundamental to all SAR analysis methods that employ this SAR

categorization are pairwise comparisons of molecules. Structure–

activity similarity (SAS) maps [27,28] depict all possible compound

pairs of a data set in a scatter plot that reflects the relationship

between structure and potency similarity. These two-dimensional

representations permit the identification of pairs or groups of

compounds that exhibit either continuous or discontinuous beha-

vior and provide an overview of their distribution over an entire

data set. More detailed analysis can be difficult, however, because

the basic units of representation in SAS maps are compound pairs

(i.e. each data point corresponds to a pair). No immediate visual

access is possible to individual molecules or pair relationships (for

example, the set of all pairs formed by a particular compound).

The latter aspect, the exploration of the structural neighbor-

hood of a given compound, is the focus of a highly interactive

method termed spiral view (SV) [29] that was originally conceived

for the analysis of activity cliffs. Around a manually selected

compound of interest, chemical neighbors are positioned accord-

ing to their similarity to the central compound. Links between

compound depictions indicate to what extent these compounds

differ in activity or other properties. The user can also select a

neighbor compound of interest to generate a new SV around it.

Thus, property changes related to structural changes of varying

degrees can be explored; however, this methodology is not capable

of representing a large data set.
634 www.drugdiscoverytoday.com
Two numerical SAR analysis functions have been developed for

the quantitative description of SAR continuity and discontinuity

that combine structural and activity similarity in one metric.

Analogous to SVs and SAS maps, these functions focus on different

characteristics of an activity landscape. The structure–activity

landscape index (SALI) [30] quantifies the extent of discontinuity

for individual compound pairs. Contiguous activity cliffs can be

visualized in a graph in which molecules (represented as nodes) are

connected if they have similar structures but significantly different

potency. Structural transitions between individual molecules are

also captured by the concept of matched molecular pairs [31] and

similar approaches [32] that aim to identify substructural differ-

ences between similar molecules. Such approaches can thus also be

used to identify transitions that are associated with activity cliffs.

By contrast, the SAR index (SARI) function [33] characterizes the

SAR phenotype of an entire data set. SARI values range from 0

(purely discontinuous) to 1 (purely continuous), and intermediate

values indicate varying degrees of SAR heterogeneity.

Network-like similarity graphs (NSGs) [34] combine the repre-

sentation of pairwise molecular relationships in a graph (as in SVs

or the SALI graphs) with a holistic view of a data set (as in SAS maps

or SARI analysis). In the following paragraphs, we will focus on the

evolution of data structures for SAR analysis that we have derived

from NSGs to highlight several features that might also be useful

for the design of other SAR data visualization techniques. Table 1

lists methods and software tools representing the four principal

approaches to SAR-relevant compound data mining.

Evolution of SAR data structures
A primary aim of visualization in data mining is to provide an

unbiased representation of the underlying data while reducing

the complexity of the data representation. This can be achieved

bygraphically emphasizing selectedcharacteristicsofa data set orby

showing only parts of the data. The decision about feature signifi-

cance ultimately depends on the specific goals of the analysis and

determines the quality of the resulting visualization. The primary

purpose of SAR analysis is to elucidate how structural features of

small molecules are related to their biological activity. Accordingly,

the SAR analysis techniques described in the following paragraphs

are based on systematic comparisons of compound structure and

potency. Crucial aspects for the design of graphical SAR analysis
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FIGURE 2

Graph-based methods for SAR information extraction. Examples of an NSG and NSG-derived data structures are shown for a data set of cytochrome P450 isoform

2C19 inhibitors taken from PubChem. (a) On the left, an NSG is shown that represents the complete data set. A pathway of compounds is highlighted and shown

in detail in the top right corner. Below the pathway plot, a SAR tree is presented and the selected pathway is traced using thick lines. The compounds in the lower

part of the figure correspond to the nodes forming the pathway. Their positions in the three data structures are indicated using a letter code. (b) An exemplary
Chemical Neighborhood Graph (CNG) and selected compounds are shown. Compound labeling is consistent for parts (a) and (b) so that compounds that occur in

several data structures are identified.
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tools include which molecules to select and how to compare them.

The data structures discussed in the next section have in common

that they are based on pairwise molecular comparisons and simi-

larity-based graph or network representations.
Network-like similarity graphs
Network-like similarity graphs, mentioned above, represent a

compound data set by showing all molecules and their similarity

relationships (Fig. 2a). NSGs are formal graphs in which nodes
www.drugdiscoverytoday.com 635
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FIGURE 3

Multi-target SAR analysis. (a) NSGs. Three NSGs with identical layout are shown that visualize the same set of cathepsin inhibitors. On the left and in the center,

nodes are color coded by compound potency for two different targets: cathepsin L (left) and cathepsin B (center). In these potency-based NSGs, node size reflects

compound discontinuity scores calculated for potency values. By contrast, the right graph captures selectivity of inhibitors for cathepsin L over cathepsin B. In this

selectivity-based NSG, red nodes correspond to compounds that are selective for cathepsin L and green nodes to those selective for cathepsin B. Yellow nodes
correspond to non-selective inhibitors. In this case, node size reflects compound discontinuity scores for selectivity values (i.e. logarithmic potency differences).

Four compounds with different selectivity behavior have been selected from the highlighted sections of the graphs and are shown at the bottom of the figure.

Inhibitor selectivity for cathepsin L increases from the left to right and halogen atoms of increasing size and electronegativity become apparent selectivity
determinants. (b) Combinatorial analog graphs. A CAG representation is shown for a factor Xa inhibitor analog series with three substitution sites. Nodes are

colored according to compound subset discontinuity scores from green (low SAR discontinuity) to red (high discontinuity). Site 3 is identified as a ‘SAR hotspot’

where different substituents have dramatic influence on compound potency. The analysis of pharmacophore feature replacements for compound pairs that differ

636 www.drugdiscoverytoday.com
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correspond to molecules. Pairwise similarity relationships are

represented by edges that connect individual nodes. Only mole-

cule pairs that exceed a predefined similarity threshold are con-

nected by an edge. To visualize the potency distribution, nodes are

color coded by potency, applying a continuous spectrum from

green (lowest potency in the data set) to red (highest potency).

Accordingly, similarity relationships determine the structure of

the graph, whereas potency is used as an annotation of nodes. In

contrast to the methods belonging to the first three categories, as

discussed above, the NSG data structure has been specifically

designed to enable both global and local data set analysis and

compound comparisons. A graphical layout algorithm is applied

to arrange sets of similar molecules as separated clusters, which

enables the analysis of the interplay between global and local SAR

features (Fig. 2a). NSGs contain multiple annotations representing

different layers of information. To support the interpretation of

SARs, the diagrams are annotated with three numerical scores that

reflect SAR characteristics of the entire data set, compound clusters

(subsets) and individual molecules. The SARI function is used to

categorize the global SAR type formed by all compounds in a data

set as continuous, discontinuous or heterogeneous. SARI cluster

scores are calculated to quantify the level of discontinuity in

different subsets of similar molecules; high cluster scores indicate

the presence of multiple activity cliffs. The compound disconti-

nuity score is represented by node scaling and reflects the potency

deviation of a compound from its structural neighbors. Thus, it

identifies molecules that introduce SAR discontinuity and activity

cliffs. In NSGs, combinations of large red and green nodes con-

nected by an edge are activity cliff markers that can be easily

identified. NSGs enable the selection of compounds that deter-

mine both local and global SAR features or compounds that are

prime candidates for chemical exploration or optimization efforts

because they bridge between continuous and discontinuous local

SAR environments. However, NSGs are generally too complex for

the extraction of detailed SAR rules or derivation of specific

hypotheses for compound design. For these purposes, three data

structures that mine the information contained in NSGs in dif-

ferent ways have been developed. All of them are subgraphs of

these networks (i.e. they contain only a subset of the nodes and

edges in an NSG but use the same elements to convey information

– nodes, edges, node color and node size). Thus, NSGs and their

derivatives are designed for consistent data representation and

interpretation.

SAR pathways and trees
The first in this series of data structures are the so-called ‘SAR

pathways’ [35]. They were conceptualized to capture potency

effects accompanying stepwise structural changes and consist of

sequences of pairwise similar compounds (nodes). Consequently,

they correspond to a path through contiguous edges in an NSG

(Fig. 2a). Evaluating all possible pathways in an NSG is not feasible

and thus a model was defined for preselection of favorable path-

ways. Given two nodes within an NSG, only the best pathway

connecting them according to the underlying model is evaluated.
at site three reveals that the introduction of acyclic substituents (Ac) significantly d
preference order for this substitution site.
This model identifies regions where structural similarity is

reflected by potency similarity (i.e. where gradual changes in

potency along a series of similar molecules occur). Essentially,

this pathway model reflects SAR continuity, and pathways best

fitting these criteria are automatically extracted. From preferred

pathways, interesting compound series can quickly be identified

(at the expense of a comprehensive view of the underlying SAR,

however). Importantly, activity cliffs are by design not covered by

the pathway model; however, all pathways leading to a particular

activity cliff can be selected and compared, which connects

regions of local SAR continuity and discontinuity. Furthermore,

pathways might include scaffold hops because they are formed by

pairwise similar compounds, which makes structural transition

along a pathway possible.

SAR pathways that originate or end at the same compound can

be arranged as branches of the so-called ‘SAR trees’ (Fig. 2a) that

share the SAR model dependency of individual pathways. The

common start or end point forms the tree root and identical

sections of different paths are fused into the same branch. SAR

trees provide a structural context for individual pathways and

compare alternative routes to compound modification.

Chemical neighborhood graphs
The third data structure derived from NSGs departs from analyz-

ing consecutive compound modifications and promotes a com-

pound-centric view of SARs. Chemical neighborhood graphs

(CNG) [36] visualize the similarity and potency distribution in

the structural neighborhood of a given compound (Fig. 2b). The

neighborhood of a reference compound is defined as the set of

compounds that exceed a predefined similarity threshold to the

reference compound and populate a similarity radius around it.

Although developed independently, CNGs are reminiscent of

SVs. Different from the other NSG-derived data structures, CNGs

do not contain edges and are thus a set of nodes rather than a

graph, but the meaning of node color and size remains

unchanged. Although similarity relationships are not explicitly

represented by edges, they are fundamental to the construction of

CNGs. In the graphical representation, all nodes of a neighbor-

hood are arranged on concentric circles around a central node

corresponding to the reference molecule. Each circle represents a

unique range of similarity values and the radii of circles reflect the

order of value ranges. The structurally most similar molecules are

placed closest to the center on the smallest circle, whereas com-

pounds close to the similarity threshold are located on the outer

(and largest) circle.

CNGs provide a detailed overview of the potency distribution

in a compound’s structural neighborhood and are particularly

easy to interpret, given their similarity-based design. In contrast

to SAR pathways and trees, no predefined SAR model is used for

their construction. CNGs are systematically computed for

each compound in a data set and ranked by simple parameters

to identify the most information-rich and interpretable neigh-

borhoods. CNGs present overlapping compound neighbor-

hoods, which often helps to view local SAR information from
ecreases potency. Acyclic substituents would hence obtain low priority in the

www.drugdiscoverytoday.com 637
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different perspectives (relative to different reference com-

pounds) and substantially aids in the interpretation of complex

SAR features.

A common feature of the graphical analysis methods derived

from NSGs is that they are amenable to multi-parametric data

visualization. Therefore, we present in the following paragraphs

examples of advanced applications addressing the analysis of

multi-target SARs (mtSARs).

Selectivity NSGs
There is increasing notion of polypharmacological drug behavior

[37] and accumulating evidence that target selectivity often results

from differences in compound potency against multiple targets,

rather than from specific single-target interactions [38]. Accord-

ingly, the study of mtSARs is expected to become increasingly

relevant in the future because it provides a basis for the identifica-

tion of molecular selectivity determinants. As a first attempt to

explore compound selectivity in a systematic and quantitative

manner, the SARI scoring scheme and NSGs were adapted to

analyze compound data sets annotated with potency information

for two or more targets [39]. Initially, potency-centric NSGs are

generated for the individual targets. Furthermore, to enable dual-

target SAR or ‘structure–selectivity relationship’ (SSR) analysis,

selectivity values of active compounds are calculated as the dif-

ference between their logarithmic potency values for two targets,

then global and local SARI scores are calculated on the basis of

selectivity values and a selectivity-centric NSG is generated. In

selectivity NSGs, the color code of nodes reflects selectivity values.

In addition, high compound discontinuity scores (reflected by

large node sizes) identify molecules that display notable differ-

ences in target selectivity compared to their structural neighbors

and hence form ‘selectivity cliffs’. Because the topology of NSGs is

only determined by similarity relationships between the com-

pounds in the data set, it is conserved in the selectivity- and

potency-centric graph representations (Fig. 3a), which makes it

possible to directly compare corresponding compounds. Hence, by

side-by-side comparison of corresponding regions in the potency

and selectivity NSGs, key compounds that influence SSR and

single-target SARs in similar or different ways can easily be identi-

fied. This makes it possible to prioritize compounds based on their

SAR and SSR features (Fig. 3a).

Saranea
To make NSG-based data mining techniques publicly available to

the scientific community, we have recently released the Saranea

program [40] (SAR/Araneae; i.e. the scientific order of spiders,

reminding us of spider webs and networks). Saranea provides a

graphical user interface to NSGs and NSG-based data structures

and accepts customized molecular fingerprint representations and

potency data as input. The central feature of Saranea is the simul-

taneous interactive exploration of multiple NSGs. Compound

selection in one (potency or selectivity) NSG representation can

be automatically synchronized with all other NSG views, making it

possible to compare multiple SARs and SSRs for different targets.

The program also integrates user-defined descriptors and depicts

molecules, providing immediate interactive access to the mole-

cular structures represented by nodes in the graphs. SAR and SSR

trees, pathways, and chemical neighborhood graphs are integrated
638 www.drugdiscoverytoday.com
for interactive tool editing of pathways using information pro-

vided by CNGs.

The program is freely available, together with its source code,

providing opportunities for others to use, extend and, we hope,

further develop SAR visualization techniques on the basis of NSGs

and related data structures [40].

Combinatorial analog graphs
Although the inspection of the environments of key compounds

in selectivity NSGs provides a sound basis for the identification of

selectivity determinants, for lead optimization purposes, a data

structure specifically designed to focus on analog series is also

desirable. To this end, combinatorial analog graphs (CAGs) [41]

have been developed that analyze SARs at the level of individual

substitution sites and their combinations. CAG analysis was

recently extended to the study of mtSARs [42]. Following this

approach, the maximum common subgraph of an analog series is

determined and used as a core structure for R-group decomposi-

tion of individual analogs such that substituents are assigned to

consistently numbered substitution sites. SARI discontinuity

scores are then calculated for subsets of compounds that only

differ at a defined substitution site or combinations of up to three

sites. These subsets correspond to nodes in CAG representations,

which sets this data structure conceptually apart from NSG-based

structures in which nodes correspond to individual compounds

(Fig. 3b). Accordingly, edges in CAGs connect subsets and indicate

that compounds in these subsets share modifications at the same

substitution sites. Furthermore, nodes are color coded according to

discontinuity scores and not according to potency. High discon-

tinuity scores highlight SAR hotspots (i.e. substitution sites where

the modification of functional groups leads to significant differ-

ences in potency and the introduction of SAR discontinuity)

(Fig. 3b). Compound subsets of key sites and SAR hotspots are

selected for further analysis. To gain a better understanding of

structural features that are responsible for significant changes in

potency, substituents are encoded as predefined pharmacophore

features and compound pairs are grouped according to the phar-

macophore feature replacements required to convert one com-

pound into the other. All potency changes associated with specific

pharmacophore feature exchanges are recorded and enable the

derivation of ‘preference orders’ for given substitution sites. For

the same analog series, this analysis can be carried out for multiple

targets and preference orders can be compared across these targets,

leading to the identification of differences in preferred substitu-

tions at given sites or site combinations. These differences identify

pharmacophore features that can serve as selectivity determinants

and can be exploited to increase compound selectivity for one

target over one or more others. Hence, on the basis of comparative

CAG analysis, simple and intuitive rules can often be formulated

to guide the design of target-selective compounds.

Concluding remarks
The extraction of SAR information from large compound data sets

has a crucial role during the early stages of drug discovery. Herein,

we have reviewed conventional and newly developed approaches

to search for and rationalize SAR information and aid in the

selection of active compounds for further chemical exploration.

New approaches to large-scale SAR analysis employ data mining
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methods and emphasize two aspects: systematic analysis and

intuitive graphical representation of SAR features. The methodo-

logical framework presented herein provides a basis for the inte-

gration of data mining approaches and graphical analysis

techniques to complement chemical knowledge and experience

and formulate SAR hypothesis for experimental design. It is antici-

pated that recently introduced approaches focusing on systematic
comparison of chemical and activity similarity with emphasis on

graphical accessibility will catalyze further development in the

SAR analysis field that has evolved at the interface between com-

putational and medicinal chemistry.

Acknowledgement
The authors thank Lisa Peltason for help with Fig. 3.
M
A
T
IC
S

References
R
ev
ie
w
s
�
IN
F
O
R
1 Mayr, L.M. and Bojanic, D. (2009) Novel trends in high-throughput screening. Curr.

Opin. Pharmacol. 9, 580–588

2 Malo, N. et al. (2006) Statistical practice in high-throughput screening data analysis.

Nat. Biotechnol. 24, 167–175

3 Harper, G. and Pickett, S.D. (2006) Methods for mining HTS data. Drug Discov. Today

11, 694–699

4 Berthold, M.R. et al. (2008) Knime: the konstanz information miner. In Data

Analysis, Machine Learning and Applications (Preisach, C. et al. eds), pp. 319–326,

Springer

5 Ahlberg, C. (1999) Visual exploration of HTS databases: bridging the gap between

chemistry and biology. Drug Discov. Today 4, 370–376

6 Ivanenkov, Y.A. et al. (2009) Computational mapping tools for drug discovery. Drug

Discov. Today 14, 767–775

7 Agrafiotis, D. and Lobanov, V.S. (2000) Nonlinear mapping networks. J. Chem. Inf.

Comput. Sci. 40, 1356–1362

8 Hair, J.F. et al. eds (1998) Multivariate Data Analysis, Prentice-Hall

9 Oprea, T.I. and Gottfries, J. (2001) Chemography: the art of navigating in chemical

space. J. Comb. Chem. 3, 157–166

10 Larsson, J. et al. (2005) Expanding the ChemGPS chemical space with natural

products. J. Nat. Prod. 68, 985–991

11 Bender, A. et al. (2006) ‘Bayes affinity fingerprints’ improve retrieval rates in virtual

screening and define orthogonal bioactivity space: when are multitarget drugs a

feasible concept? J Chem. Inf. Model. 46, 2445–2456

12 Yan, A. (2006) Application of self-organizing maps in compounds pattern

recognition and combinatorial library design. Comb. Chem. High Throughput Screen

9, 473–480

13 Bajorath, J. (2002) Integration of virtual and high-throughput screening. Nat. Rev.

Drug Discov. 1, 882–894

14 Kibbey, C. and Calvet, A. (2005) Molecular property eXplorer: a novel approach

to visualizing SAR using tree-maps and heatmaps. J. Chem. Inf. Model. 45,

523–532

15 Cross, K.P. et al. (2003) Finding discriminating structural features by reassembling

common building blocks. J. Med. Chem. 46, 4770–4775

16 Miller, D.W. (2003) A chemical class-based approach to predictive model

generation. J. Chem. Inf. Comput. Sci. 43, 568–578

17 Birchall, K. et al. (2008) Evolving interpretable structure–activity relationships. 1.

Reduced graph queries. J. Chem. Inf. Model. 48, 1543–1557

18 Birchall, K. et al. (2008) Evolving interpretable structure–activity relationship

models. 2. Using multiobjective optimization to derive multiple models. J. Chem.

Inf. Model. 48, 1558–1570

19 Jain, A.K. et al. (1999) Data clustering: a review. ACM Comput. Surv. 31,

264–323

20 Tan, P. et al. (2005) Clustering analysis: basic concepts and algorithms. In

Introduction to Data Mining (Tan, P. et al. eds), pp. 487–568, Addison-Wesley

21 Richon, A. (2000) LeadScope: data visualization for large volumes of chemical and

biological screening data. J. Mol. Graph. Model. 18, 76–79

22 Agrafiotis, D.K. et al. (2007) SAR maps: a new SAR visualization technique for

medicinal chemists. J. Med. Chem. 50, 5926–5937
23 Kolpak, J. et al. (2009) Enhanced SAR maps: expanding the data rendering

capabilities of a popular medicinal chemistry tool. J. Chem. Inf. Model. 49,

2221–2230

24 Renner, S. et al. (2009) Bioactivity-guided mapping and navigation of chemical

space. Nat. Chem. Biol. 5, 585–592

25 Schuffenhauer, A. et al. (2007) The scaffold tree–visualization of the scaffold

universe by hierarchical scaffold classification. J. Chem. Inf. Model. 47, 47–58

26 Clark, A.M. and Labute, P. (2009) Detection and assignment of common scaffolds in

project databases of lead molecules. J. Med. Chem. 52, 469–483

27 Bajorath, J. et al. (2009) Navigating structure–activity landscapes. Drug Discov. Today

14, 698–705

28 Shanmugasundaram, V. and Maggiora, G.M. (2001) Characterizing property and

activity landscapes using an information-theoretic approach. Abstract no. 77, 222nd

American Chemical Society National Meeting Division of Chemical Information

29 Smellie, A. (2007) General purpose interactive physico-chemical property

exploration. J. Chem. Inf. Model. 47, 1182–1187

30 Guha, R. and Van Drie, J.H. (2008) Structure–activity landscape index: identifying

and quantifying activity cliffs. J. Chem. Inf. Model. 48, 646–658

31 Leach, A.G. et al. (2006) Matched molecular pairs as a guide in the optimization of

pharmaceutical properties; a study of aqueous solubility, plasma protein binding

and oral exposure. J. Med. Chem. 49, 6672–6682

32 Sheridan, R.P. et al. (2006) Molecular transformations as a way of finding and

exploiting consistent local QSAR. J. Chem. Inf. Model. 46, 180–192

33 Peltason, L. and Bajorath, J. (2007) SAR index: quantifying the nature of structure–

activity relationships. J. Med. Chem. 50, 5571–5578

34 Wawer, M. et al. (2008) Structure–activity relationship anatomy by network-like

similarity graphs and local structure–activity relationship indices. J. Med. Chem. 51,

6075–6084

35 Wawer, M. and Bajorath, J. (2009) Systematic extraction of structure–activity

relationship information from biological screening data. ChemMedChem 4,

1431–1438

36 Wawer, M. et al. (2010) Computational characterization of SAR microenvironments

in high-throughput screening data. Intl. J. High Throughput Screen 1, 15–27

37 Paolini, G.V. et al. (2006) Global mapping of pharmacological space. Nat. Biotechnol.

24, 805–815

38 Hopkins, A.L. (2008) Network pharmacology: the next paradigm in drug discovery.

Nat. Chem. Biol. 4, 682–690

39 Peltason, L. et al. (2009) From structure–activity to structure–selectivity

relationships: quantitative assessment, selectivity cliffs, and key compounds.

ChemMedChem 4, 1864–1873

40 Lounkine, E. et al. (2010) SARANEA: a freely available program to mine structure–

activity and structure–selectivity relationship information in compound data sets. J.

Chem. Inf. Model. 50, 68–78

41 Peltason, L. et al. (2009) Exploration of structure–activity relationship determinants

in analogue series. J. Med. Chem. 52, 3212–3224

42 Wassermann, A.M. et al. (2010) Computational analysis of multi-target structure–

activity relationships to derive preference orders for chemical modifications

towards target selectivity. ChemMedChem 5, 847–858
www.drugdiscoverytoday.com 639


	Data structures and computational tools for the extraction of SAR information from large compound sets
	Data preprocessing
	Dimensionality reduction
	Clustering and partitioning
	Organization and annotation of substructures
	Structural vs. activity similarity
	Evolution of SAR data structures
	Network-like similarity graphs
	SAR pathways and trees
	Chemical neighborhood graphs
	Selectivity NSGs
	Saranea
	Combinatorial analog graphs
	Concluding remarks
	Acknowledgement
	References


