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Drugs are adaptive molecules. They realize this peculiarity by generating different ensembles of

prototropic forms and conformers that depend on the environment. Among the impressive amount of

available computational drug discovery technologies, quantitative structure–activity relationship

approaches that rely on computational quantum chemistry descriptors are the most appropriate to

model adaptive drugs. Indeed, computational quantum chemistry descriptors are able to account for the

variation of the intramolecular interactions of the training compounds, which reflect their adaptive

intermolecular interaction propensities. This enables the development of causative, interpretive and

reasonably predictive quantitative structure–activity relationship models, and, hence, sound chemical

information finalized to drug design and discovery.
Ligand–protein and protein–protein interactions control any cel-

lular process and function by means of complex/dynamic

mechanisms, which involve sophisticated adaptive intramolecular

and intermolecular communication pathways. In this context, the

role of molecular recognition/communication between the inter-

acting partners and their quantitative description constitutes the

crucial point. Many computational approaches, at different levels

of complexity, have been developed and applied to different

ligand–target systems [1–4]. They essentially differ in the accuracy

and resolution level of structural description and in the derived

descriptors of ligand–target interactions.

Computational quantum chemistry (CQC) and correlation ana-

lysis are important tools for the mechanistic understanding and

prediction of chemical–biological interactions and drug discovery.

Among the available correlative approaches, quantitative struc-

ture–activity relationship (QSAR) and Quantitative Structure-

Property Relationship (QSPR) modeling is the most relevant in

chemistry. Moreover, CQC enables a deeper understanding of the

fundamental properties of effective drugs, anticipating potential

problems in developing new agents [5–7]. However, this scenario,

which usually depicts a static situation, becomes more compli-

cated when we consider the multidimensional dynamic nature of
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ligands, receptors and their interactions. The well-known confor-

mational equilibria and prototropic equilibria (acid–base and tau-

tomeric) are among the most relevant features in molecular

recognition [8]. In fact, ligands and target receptors are adaptive

flexible molecules, with acidic and/or basic functions, which can

induce tautomeric equilibria. Complex and interdependent pro-

totropic equilibria generate different prototropic forms, character-

ized by different conformations and stereo-electronic features.

Hence, an essential aspect of 3D pharmacophore generation is

the search for (i) the different energetically accessible prototropic

forms and their corresponding conformations (present in the

different biological contexts, in which the affinity and function

are measured), and (ii) the quantification, with the appropriate

descriptors, of the structure–affinity/function relationships (refer-

ring to QSAR studies). In spite of the recognized determinant

influence of the different prototropic forms in any step of drug

discovery, however, they are often ignored [8,9]. This is probably

due to the absence of experimental data [9] and to the inherent

complexity of simulating prototropic equilibria. However, there is

no substitute for CQC methods to characterize the adaptive pro-

pensity of drugs by their computational integration of energeti-

cally accessible ensembles of prototropic forms, conformers and

stereo-electronic structures [3,8]. Thus, CQC coupled with correla-

tion analysis is an invaluable tool to comparatively describe and
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predict the drug adaptive pharmacophoric features in terms of

simple and intuitive CQC-based causative molecular descriptors

and mechanistic QSAR. Moreover, this conceptually simple

scheme should overcome possible troubles in interpreting and

correctly predicting the physicochemical properties and bioactiv-

ity of new molecules [10–14].

In this article we illustrate, by means of appropriate examples,

the concepts of adaptive drugs and the role of CQC-derived

intermolecular interaction propensity descriptors of the ligands

in interpretative and predictive QSAR models.

Drugs as adaptive recognition and interacting systems
Ligand–receptor specificity relies on highly precise molecular

interactions involving the spatial, electronic and dynamic struc-

tures of both ligand-binding and target-binding site [15]. Such

interactions determine the activation or inhibition of receptors

and/or enzymes, by information transfer and/or biochemical reac-

tions [16]. The adaptive character of many drugs is essentially due

to their organization in ensembles of prototropic forms and con-

formations that, in turn, depend on the environment and the

stereo-electronic features of the bio-receptor binding site. In this
[(Scheme_1)TD$FIG]
SCHEME 1
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respect, the similarity/diversity classification of ligands should be

also based on the quantification of their adaptive molecular

recognition and interaction propensities [17–19]. Several model-

ing strategies are currently available, which describe the adaptive

molecular recognition with the goal of better understanding pro-

tein function and designing drugs [3,20]. They can be broadly

classified into ‘direct or structure-based’ and ‘indirect or ligand-

based’ [21]. The aims of both approaches are the determination of

the adaptive 3D stereo-electronic complementary features of the

ligand–target complexes [22].

Ligand–biomolecular receptor binding: QSAR modeling
QSAR analysis correlates information on molecular structure with

information on molecular properties. Hence, QSAR is essentially

dependent on the information content of the selected training set

(TS) of molecules (statistical sample) and on the ways this infor-

mation is analyzed, extracted, quantified and represented (Scheme

1). QSAR is based on the assumption that the molecular structure

must contain the features responsible for its physical, chemical

and biological properties. QSAR addresses the problem of generat-

ing correlative models between experimentally determined biolo-
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gical/pharmacological data values for the TS and their experimen-

tal and/or computational descriptors. The aims are to explain the

causative mechanisms of bioactivity in terms of molecular descrip-

tors of the ligands (and the target) and to predict the bioactivity of

new analogs. This implies that the variation of the biological

function/affinity of the studied TS needs to be translated into a

physicochemical formalism, which confers mechanistic interpret-

ability to the QSAR model. Attention should be paid, however, to

the selection of molecular/intermolecular descriptors and, above

all, to their variations. This selection should be also driven by

sound physical hypotheses on the adaptive interaction propensity

of the ligands toward the target receptor, rather than by iteratively

searching combinations of molecular descriptors, ultimately lead-

ing to the set that forces the best data onto an acceptable response

landscape. In this context, the statistical goodness is evaluated by a

fitness function that selects, among thousands of descriptors,

those descriptors that predict the bioactivity with the best statistics

[10]. This implies that if the number of molecular descriptors tends

towards infinity, the QSAR model tends towards statistical perfec-

tion. Recalling the two founding aspects of QSAR modeling (i.e.

the interpretative and the predictive ones), the former turns out to

be the most relevant in the context of causative QSAR.

Local, pharmacophore-based and global QSAR models
QSAR modeling can be schematically classified as local, pharma-

cophore-based and global. Local or substituent-based models,

which consider a limited chemical space (the TS is strictly con-

generic), are usually easily interpretable and predictive. Local

QSAR (2D-QSAR) is an extension of Hammett’s equation to bio-

logical systems (Hansch’s analysis). 2D-QSAR modeling can be

efficiently used in the lead optimization step, by modifying type

and position of small substituents on a large common chemical

scaffold recognized to bear a specific bioactivity. In this frame-

work, bioactivity is modulated by the different effects/properties

of the substituents (electronic, steric and lipophilic). Being 2D-

QSAR models based on the properties of substituents and their

additive mechanistic effects, however, no information can be

inferred about the mechanism of intramolecular interactions/

electronic perturbations induced by the variable substituents or

about the adaptive intermolecular interaction propensities of the

ligands and their derived electronic/reactivity descriptors.

By contrast, the pharmacophore-based QSAR models expand

the chemical and biological space explored on the basis of a

common mechanistic interpretation of drug interaction [23,24].

According to the IUPAC definition, ‘A pharmacophore is the

ensemble of steric and electronic features that is necessary to

ensure the optimal supramolecular interactions with a specific

biological target structure and to trigger (or to block) its biological

response. . .The pharmacophore can be considered as the largest

common denominator shared by a set of active molecules [23].’

This definition perfectly integrates the above outlined concepts on

conformational and prototropic ensembles. Thus, the concept of

pharmacophore can be considered as a derivation and extension of

the common biospecific molecular scaffold (parent compound)

shared by the TS in 2D-QSAR modeling. This extension reflects the

adaptive conformational/prototropic propensity and dynamic

nature of ligands and the target binding site. The common inter-

acting structural features of the TS that define the pharmacophore
are usually considered qualitative constant elements, however,

and their possible quantitative variations, in terms of ligand/

pharmacophore electronic structure, are frequently ignored.

Finally, the global models are heavily based on statistics and on

different similarity search algorithms (including 3D-pharmaco-

phore search) and consider a very large number of compounds

characterized by considerably different and (apparently) unrelated

chemical structure [4]. In this context, recent QSAR concepts have

been developed in a multi-dimensional ligand-property/descriptor

space (4D-6D/QSAR) [25]. Although these are useful QSAR

approaches, there seems to be a trade-off between statistically

rigorous and sophisticated models, which are hard to interpret,

and more simple visual models, which are less predictive but more

interpretative than the former and, hence, useful for drug design

[26].

On the interpretability, predictability, applicability and
validity of QSAR models
The dualistic aspect of any QSAR model (i.e. interpretative and

predictive [27]) is a sort of ‘uncertainty principle’ that governs its

performance. In fact, if we improve the predictive aspect, we

undermine (and complicate) the interpretative one and vice versa.

In our view, the employment of descriptors that can be reliably

interpreted and translated into chemical concepts and formalism,

useful for the design of new chemical entities, is an essential

requirement for any QSAR approach. In this respect, CQC methods

enable, through the employment of causative molecular descrip-

tors, to obtain mechanistic and self-explanatory QSAR models,

which do not require any further complex statistical elaboration

for the chemical interpretation of the obtained QSAR models, as

very recently proposed [28]. Indeed, CQC-based QSAR models

profit from a detailed description of the intermolecular interaction

propensity of the TS compounds in terms of quantum chemical

reactivity descriptors computed on all (in principle) the energeti-

cally accessible prototropic forms and conformers (Scheme 1). This

enables a complete and accurate analysis of the similarities and

differences among the components of the considered TS. Hence,

mechanistic information on drug–target interactions can be

inferred from ligand-based CQC–QSAR modeling. In this frame-

work, drug design and discovery are facilitated because the CQC

description of drugs and their metabolites can be easily translated

into new chemical entities (inverse QSAR problem). The following

selected examples of CQC–QSAR models attempt to illustrate the

above concepts. The employed CQC descriptors were computed by

semi-empirical CQC methods that, for correlative purposes, are

accurate enough and relatively fast [5,29,30].

Selected examples: ligand-based QSAR modeling of
enzyme–inhibitor interactions
The antibacterial sulfanilamides (SAs) and sulfones (SOs) are inhi-

bitors of dihydropteroate synthase (DHPS) (Fig. 1a), which cata-

lyzes the condensation of dihydropyridine pyrophosphate and 4-

aminobenzoate. This class of drugs has been the subject of exten-

sive QSAR modeling [31]. Very recently, Doweyko [11] compared

two different statistically valid QSAR models of the bacteriostatic

activity of SAs as an illustrative and contrasting example of corre-

lation-inferred causation. One of the two considered models, the

first to appear in the literature, correlated the activity of 50 SAs
www.drugdiscoverytoday.com 861
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FIGURE 1

Structural models of selected biosystems. Cartoons of the crystal structures are shown of (a) dihydropteroate synthase (PDB code: 1AJ0) in complex with

sulfanilamide (orange), drawing in sticks the active site R63; (b) dihydrofolate reductase (PDB code: 3FRE) in complex with trimethoprim (orange) and

nicotinamide adenine dinucleotide phosphate (NADPH, cyan), drawing in sticks the active site D27 and T111; cyan; (c) carbonic anhydrase (PDB code: 2WEJ) in
complex with benzensulfonamide (orange), drawing in sticks selected active site residues (E106 and T199) and the Zn2+ ion as a cyan sphere; and (d) b2-AR (PDB

code: 2RH1) in complex with carazolol (black), drawing in sticks the binding site aspartate (D113) conserved in the AMINE GPCRs.
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with measured pKa values, resulting in a parabolic relationship

[32]. By contrast, the second model was the result of 3D-QSAR

Comparative Molecular Field Analysis (CoMFA) analyses on the

same set of compounds. The conclusion drawn by Doweyko, based

upon the comparison of the two QSAR models, was that the

‘interaction fields explain the variation in the observed bacterio-

static activity without the need to consider pKa0. On these bases,

the author inferred that two fundamentally different potential

explanations for the biological variability of SAs were both statis-

tically valid [11]. The occurrence of statistically valid QSAR models
862 www.drugdiscoverytoday.com
with substantially different mechanistic implications is a frequent

situation. In our opinion, this is due to the jungle of computa-

tional descriptors, to the automatism of QSAR methods and to the

inadequate chemical knowledge of the correlative problem in

hand. The fundamentals of this judgment reside in the results

of CQC-based QSAR study of SA and SO inhibitors summarized

below, which prove that an adequate description of variations in

the electronic structure of congeneric series of compounds can

lead to unequivocal mechanistic inferences [33–36]. Remarkably,

according to the nature of the variable N-substituents (which
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TABLE 1

Selected QSAR models.

Eq. no. Equation Refs.

(1) �logMIC50 = �37.12qox � 22.18; n = 26, r = 0.94, s = 0.50, F = 40.5 [34]

(2) �logDHPS50 = �0.121(�0.016)Dqox + 13.57(�2.19); n = 23, r = 0.94, s = 0.169, F = 166.13 [35]

(3) logII50 = 106.8(�12.7)qO � 1.2(�0.15)I + 57.9(�6.6); n = 48, r = 0.945, s = 0.321, F = 183 [49]

(4) pK5HT1A = 0.036(�0.005)Vin � 6.6(�0.61); n = 31, r = 0.83, s = 0.65, F = 66.20 [57]

(5) pK5HT1A = 6.60 (�0.81)Vdif � 3.82(�0.30); n = 30, r = 0.83, s = 0.67, F = 62.67 [57]

(6) pKa1a = 6.24(�0.84)Vin/Vmol + 3.16(�0.76); n = 34, r = 0.79, s = 0.48, F = 55.19 [57]

(7) pKa1b = 5.87(�0.69)Vin/Vmol + 3.44(�0.53); n = 30, r = 0.84, s = 0.49, F = 71.50 [57]

(8) pKa1d = 7.14(�0.84)Vin/Vmol + 2.18(�0.67); n = 31, r = 0.84, s = 0.58, F = 71.99 [57]

(9) pKa1d = 9.74(�1.14)Vdif + 5.17(�0.33); n = 31, r = 0.84, s = 0.57, F = 72.86 [57]

(10) pKa1a = 5.74(�0.65)Vdif � 2.14(�0.44)f-Pp–p(C–O) + 8.61(�0.35); n = 34, r = 0.86, s = 0.41; F = 43.24 [57]

(11) pKa1b = 0.017(�0.0018)Vin � 0.0052(�0.00062)WPSA-1 + 5.59(�0.42); n = 30, r = 0.89, s = 0.43, F = 52.26 [57]

(12) pKa1d = 7.08(�0.68)Vin/Vmol + 52.18(�14.08)f-Ps–p(C–X); n = 31; r = 0.90; s = 0.48; F = 59.84 [57]

(13) log(NMS/OXO-M) = 0.027(�0.003)S2+4HOMO* + 0.3(�0.2); n = 29, r = 0.842, s = 0.614, F = 63.14 [8]

Correlated biological properties include:�logMIC50, SA bacteriostatic activity;�logDHPS50, SO DHPS inhibition index; logII50, sulfonamide CA inhibition index; pK5HT1A, pKa1a, pKa1b, pKa1d

binding affinities for the 5HT1A, as well as the three a1-AR subtypes; log(NMS/OXO-M) cortical muscarinic efficacy. Correlated size/shape and quantum chemical descriptors include: qox,

oxygen total net charge of the –SO2
� group; Dqox, oxygen total net charge of the –SO2

� group; qO, oxygen total net charge of the –SO2NH2 group; I, indicator variable; f-Pp–p(C–O), bond

order; f-Ps–p(C–X), s–p bond order (X signifies oxygen or nitrogen); WPSA-1, surface weighted charged partial surface area; S2+4 HOMO*, electrophilic superdelocalizability summed over

the last three highest occupied molecular orbitals (HOMO) of the heteroatoms at positions 2 and 4; Vin and Vout, inner and outer vdW volumes with respect to the vdW volume of the

supermolecule Vsup; Vdif = Vin � Vout/Vsup. Statistical parameters include n, number of compounds; r, correlation coefficient; s standard deviation; and F, Fisher’s ratio; the numbers in

parentheses are the 95% confidence intervals of regression coefficient and intercept.
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modulate the pKa values), in the test solution SAs can exist in

different prototropic ensembles: amidic (4-NH2–C6H4–SO2–NH–

R), imidic (4-NH2–C6H4–SO2–N RH) and anionic (4-NH2–C6H4–

SO2–N�–R). The studies indicated that these different molecular

forms show very different electronic features in their common

moiety 4-NH2–C6H4–SO2– (very similar to the substrate para-ami-

nobenzoate 4-NH2–C6H4–CO2
�) and, consequently, different

bioactivity [8]. On these bases, linear QSAR of large series of SAs

and SOs led to the conclusion that the electronic structure of their

common moiety – modulated by the variable prototropic forms,

molecular scaffolds and substituents – is the determinant factor of

the inhibitory potency (i.e. both bacteriostatic and enzymatic) of

these ligands [33–36]. In particular, the more electron-rich the

common moiety is, the more active the compounds are (Table 1,

Eqs. (1) and (2)). In this respect, the substrate 4-aminobenzoate

shows the best electronic features (i.e. the highest electron density

on both the COO� and 4-NH2 groups) [35]. Remarkably, the

ligand-based QSAR model led the authors to hypothesize a

sequence of events characterizing the interaction between SA/

SO and the DHPS active site [31]. The hypothesized interaction

model was such that initially, the negative oxygen atom of the SO2

group makes a charge-reinforced hydrogen bond (H-bond) with a

positively charged amino acid residue of the enzyme (Fig. 1a) and,

successively, an electron flow from the 4-NH2 group to the SO2

group becomes operative, thus increasing the H-bonding donor

propensity of the amino group for the subsequent formation of the

H-bond with an oxygen atom of dihydropyridine pyrophosphate.

According to this model, the variable molecular scaffolds of SAs

(substituted aryl and heteroaromatics) and SOs (multi-substituted

aryl) were assumed not to be directly involved in the interaction

with the enzyme’s binding site [31]. The interaction model

inferred from CQC-ligand-based QSAR was validated by recent

X-ray structure determinations of the SA–DHPS and SO–DHPS
complexes, thus supporting the interpretative potential of Quan-

tum Chemical (QC) descriptors [37–40].

Another interesting example of electronic/electrostatic interac-

tions is given by the 5-benzyl-2,4-diaminopyrimidines [29], which

are highly selective inhibitors for bacterial dihydrofolatereductase

(Fig. 1b). The conformational behavior of selected benzylpyrimi-

dines has been extensively investigated in several studies, which,

however, neglected the prototropic forms (i.e. protonated ligands)

deputed to enzyme recognition [41–44]. The importance of con-

sidering the proper prototropic form was demonstrated by a

computational study that showed the effects of protonation on

the CQC descriptors computed on the minimum energy confor-

mers of benzyl-pyrimidine [29]. Indeed, it was shown that proto-

nation of N1, although necessary for productive electrostatic

interaction with an active site aspartate, renders the adjacent 2-

amino and 4-amino groups 1588 and 247 times more efficient H-

bond donors (as evaluated by comparing the nucleophilic super-

delocalizabilities of the N1-protonated form with that of the

deprotonated one [29]) towards several active site amino acids,

namely the side chains of the conserved aspartate and threonine

(for the 2-amino group; Fig. 1b) and the backbone oxygen atom of

two hydrophobic amino acids (for the 4-amino) [45,46]. Remark-

ably, the computed minimum energy conformer of the N1-pro-

tonated benzyl-pyrimidine was found to be very similar that in the

crystal structure of the trimethoprim Escherichia coli dihydrofola-

tereductase binary and ternary (i.e. including NADPH) complexes

[46]. The results of these studies suggested that the N1-protonated

diaminopyrimidine framework has a central role in modulating

the adaptive conformation and the efficiency of the H-bond net-

work in the inhibitor–enzyme interaction.

Finally, another meaningful example of effectiveness of QC

descriptors concerns the carbonic anhydrase (CA) inhibitors

(Fig. 1c). The biological relevance of CA has been highlighted in
www.drugdiscoverytoday.com 863
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a recent review article, in which CA is considered as a model system

for protein studies [47]. This zinc enzyme catalyzes the reversible

hydration of carbon dioxide, recognizing both its regular substrate

CO2 and the product HCO3
�. Aromatic and heterocyclic sulfona-

midesare very specific inhibitors ofCAwhenthe sulfonamidogroup

(–SO2NH2) is unsubstituted. Such inhibitors bind as anions (as

�SO2NH� that is the deprotonated form of �SO2NH2 and a transi-

tion state analog of the substrate HCO3
�) to the active site of CA, the

sulfonamide nitrogen atom being involved in the coordination of

the Zn2+ ion. Moreover, the NH� group participates in an H-bond

with the oxygen atom of T199, which, in turn, is engaged in another

H-bond with the carboxylate group of E106 (Fig. 1c). One of the

oxygen atoms of the –SO2NH� moiety also participates in an H-

bond with the backbone NH group of T199. This interaction model

from X-ray crystallography determinations [47] is an exemplar of

the complex adaptive interdependencies between intramolecular

(e.g. between SO2NH� group and its bound substituted aromatic/

heteroaromatic ring) and intermolecular (e.g. between inhibitor

and CA binding site residues) interactions. QC studies on wide

series of aromatic and heterocyclic sulfonamides served to deter-

mine the stereo-electronic features of the protonated (neutral) and

deprotonated (anionic) forms of sulfonamides [48–50]. The most

representative ligand-based QSAR model that summarizes, by a

simple linear equation, the correlative behavior of 48 CA inhibitors

(i.e. 20 substituted aromatic and 28 heteroaromatic sulfonamides) is

represented by Eq. (3) in Table 1. This model suggests that the less

electron rich and the less nucleophilic the –SO2NH2 and –SO2NH�

groups are, the more active the inhibitors are [48,49]. This conclu-

sion is unusual. In fact, although the interacting species are oppo-

sitely charged, there exists an inverse proportionality between the

negative charge on the –SO2NH� group and the inhibitory activity

[48,49]. This apparent contradiction can be explained by recalling

the important role of proton exchange in the two-step mechanism

of CA inhibition by sulfonamides [47].

The information from ligand-based CQC–QSAR was also inte-

grated with that from intermolecular interaction descriptor-based

QSAR (i.e. based on molecular mechanics calculations on ligand–

enzyme complexes) providing meaningful interpretations of the

functioning mechanism of CA inhibitors [48–51].

Selected examples: ligand-based QSAR modeling of
G-protein-coupled receptor ligands
Although integral membrane proteins have essential roles in

numerous physiologic functions, structure-based drug design on

these systems is hampered by the slenderness of high-resolution

structural models of these systems [52]. The most privileged targets

of currently used drugs are G-protein-coupled receptors (GPCRs),

which constitute the largest superfamily of membrane proteins [3].

GPCRs are dynamic and flexible proteins that exist as conforma-

tional ensembles [3]. Thus, the ability to obtain good ligand-based

QSAR models by specific ligands showing large chemo-type varia-

bility (which reflects the adaptive/dynamic nature of the GPCR

binding site) depends primarily on the availability of descriptors

able to capture the strict ligand–receptor dynamic complementary

criteria, which determine the bio-effect [53,54]. It has been shown

that the supermolecule approach and the derived size and shape

descriptors defined on the ligand bioactive protonated form were

successful in deriving simple QSAR models for molecular series of
864 www.drugdiscoverytoday.com
very heterogeneous ligands of AMINE GPCRs [17,55–57]. In this

framework, CQC served to prime ligand conformations for sub-

sequent size/shape-based QSAR modeling. The first crystal struc-

ture of an AMINE GPCR, the b2-adrenergic receptor (b2-AR) in

complex with the partial inverse agonist carazolol, was released at

the end of 2007 [58]. The structure confirms the essential role of a

conserved aspartate in helix 3 as a fundamental recognition point

for the protonated nitrogen atom of the ligands, as predicted by

extensive computational modeling experiments both on isolated

ligands (using semi-empirical quantum chemical methods) and on

ligand–receptor complexes (obtained by molecular mechanics and

dynamic calculations) [57] (Fig. 1d). According to the ligand 3D

pharmacophore, the supermolecule approach assumes that the

vdW volume, obtained by superimposing the pharmacophoric

elements of the most structurally different ligands characterized

by the highest affinities for the same receptor (i.e. supermolecule),

might reflect the overall shape and conformational plasticity of

the high affinity state of the receptor binding site. With this

approach, size and shape descriptors are computed by comparing

the vdW volume of the CQC-energy minimized structure of each

protonated ligand with the vdW volume of a supermolecule cho-

sen as a template. For each subset of analogs, the ligand showing

the highest affinity for a given receptor is chosen as a component

of the reference supermolecule. The CQC-energy minimized

ligand(s) chosen for the construction of the supermolecule are

superimposed by a topologically rigid body fit procedure based

on given pharmacophoric criteria. To compute molecular descrip-

tors relative to the supermolecule, all other CQC-energy minimized

compounds constituting the TS are, thus, rigidly superimposed on

the analog compound present in the supermolecule or on its

structurally closest compound. Size and shape descriptors defined

within the supermolecule approach include Vin and Vout, which are,

respectively, the intersection and the outer vdW volume of the

considered ligand with respect to the volume of the reference

supermolecule, and Vdif = (Vin � Vout)/Vsup, where Vsup is the mole-

cular volume of the reference supermolecule. According to the

definition of these size and shape descriptors, higher affinities are

realized by maximizing Vin and by minimizing Vout. For its formula-

tion, Vdif is a normalized size and shape descriptor, which takes into

account the information content encoded by both Vin and Vout.

The good performance of the supermolecule approach, which

mimics short-range intermolecular interactions (long-range elec-

trostatic intermolecular interactions being mainly satisfied by the

charge-reinforced H-bond between the protonated nitrogen atom

of the ligand and the conserved aspartate of the receptor binding

site), was shown in several QSAR modeling studies (i.e. Table 1,

Eqs. (4)–(12)), in which the supermolecule concept characterizes

both the affinity and the selectivity profiles of the considered

receptors [17,55–57]. The approach demonstrated was useful as

a tool to describe both congeneric and non-congeneric series of

compounds in an extended chemical space, amenable of contin-

uous upgrading by new experimental bio-data. Moreover, the

approach enables systematic structural permutations of chemi-

cally different pharmacophores and scaffolds, which can aid de

novo design of high affinity compounds.

One of the first examples of CQC–QSAR useful for in silico func-

tional screening of GPCR ligands is represented by a study on

functionally different ligands (i.e. antagonists, partial and full ago-
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nists) of the M1 muscarinic receptor [8,59]. Indeed, it was possible to

obtain semi-empirical CQC descriptors, which correlated linearly

with the ligand cortical muscarinic efficacy (Table 1, Eq. (13)). The

study also emphasized the role of protonation of the tertiary amine

function on the H-bonding acceptor propensity (i.e. quantified by

the electrophilic superdelocalizability descriptor) of heteroatoms

(i.e. nitrogen and oxygen) at positions 2 and 4 [8,59]. Such propen-

sity increased on going from the deprotonated to the protonated

forms for agonists, whereas the opposite held for antagonists.

Finally, the most relevant structure–activity relationships on

novel potent AT1 angiotensin II receptor antagonists, based on

the 4-phenylquinoline structure, were rationalized by considering

the electrophilic superdelocalizability computed over the anionic

moiety of the antagonists [60]. This reactivity descriptor enabled the

classification of ligands with respect to their binding affinities, being

0.43 for subnanomolar ligands, between 0.36 and 0.40 for nano-

molar ligands, and approximately 0.32 for micromolar ligands [60].

Concluding remarks
Information/computation technologies provide an astonishing

amount of methods/approaches for drug discovery, of which

CQC methods are the most integrative and accurate, as well as
reasonably fast to calculate (at least at the semi-empirical level of

theory). Drug discovery, at the molecular level, is heavily based

on the understanding of the adaptive interplay between intra-

molecular and intermolecular interactions in ligand–drug-target

complexes. CQC methods, if focused on the study of the adapt-

ability of ligands/drugs, generate affordable reactivity descrip-

tors (at the atomic and electronic levels) based on the TS

variation of intramolecular interactions, thus generating

ligand-based adaptive interaction propensity descriptors that

produce causative/interpretive QSAR and, hence, sound infor-

mation for drug design. In conclusion, the enthalpic character-

ization of ligand interaction propensity for the receptor can be

more precisely determined using CQC computations. This

approach is even more useful for drug resistance [61], drug-target

residence time [62], computational multitarget screening drug

discovery [63] and covalent-directed drug discovery [64], in

which the correct control of adaptive propensity of ligands/drugs

is essential.
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