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Relevance of a drug target for a disease is often
inferred with strong belief but fragile evidence. Here, a
program for early identification of human disease-
specific drug targets using high-throughput genetic
associations is described. Large numbers of well-
characterized patients (>1000) and matched controls
are screened for genetic associations using several
thousand (>7000) single nucleotide polymorphisms
from more than 1500 genes. The genes were selected
because they are members of target classes for which
there are precedents for high-throughput chemical
screening technology. This review summarizes the
methods and intensive data analyses leading to target
gene identification for type 2 diabetes mellitus,
including the statistical permutation methodology
used to correct for many variables.

Discussions of target identification for drug discovery have become
technically oriented and complicated over the past decade [1,2], a pe-
riod of time that coincides with decreases in productivity across the
pharmaceutical industry [3–6]. The latest technologies for selecting
targets can be fascinating and imaginative, but are these targets rele-
vant to treating human diseases [7,8]? Although methods for high-
throughput chemical screening and for optimizing lead molecules
have undoubtedly made major advances, target selection remains a
crucial step [9]. Currently, there is no strategy of equally high-through-
put for the selection of targets that are directly associated with human
diseases. This need becomes even clearer when animal models are con-
sidered the ultimate target validation [7,10].

The drug discovery process should be clear-cut – identify the best
molecule, for the most effective treatment, as fast and efficiently as
possible. Although high-throughput molecular methods have pro-
gressed, matching the molecule to the appropriate clinical indication
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for development is still an arduous task: disease-relevant
target identification can now be an important criterion
for determining the correlation between molecule and 
indication. The foundation of the successful reputation
of the 1980s and early 1990s, when newly discovered bi-
ological pathways and receptors were selected as targets,
was a rich biological literature identifying the ‘low-hang-
ing fruit’ [11]. Biology has continued to direct targets to
a small extent, which is probably best illustrated by bio-
pharmaceuticals [12]. For small-molecule screening over
the past decade, the selection of targets using animal mod-
els, simple organism genomics and genetically manipu-
lated animals has a less than successful track record
[13,14] – why not return to patients to select targets for
their diseases?

If the speed and efficiency of identifying targets that
are relevant to human diseases were improved, then the
technical advances for lead validation, high-throughput
chemical screening and lead optimization could be ap-
plied to molecules with a greater probability of success.
For example, polymorphic variants of target genes might
have different interactions with lead molecules. Studies
of mechanism, chemical lead validation and on- or off-
target effects can be conducted in directed mouse mod-
els [15]. Although leads from mouse model targets are 
frequently ineffective in human clinical trials (this is 
particularly true in cancer and CNS diseases [2]), for most
discovery research, animal models set a gold standard for
target selection [7,16,17]. A complimentary approach
would be to identify first those targets that are genetically
associated with human diseases and then create appro-
priate knockout and conditional knockin models with 
target gene variants. This suggestion differs significantly
in the scope and depth of human phenotyping from pro-
posals to phenotype a broad catalogue of knockout mice
to suggest targets [10].

Here, early (but not preliminary) data are presented from
the application of a high-throughput human disease-specific

target program (called HiTDIP within GlaxoSmithKline)
that focuses on the association of tractable targets with
specific patient groups. The principles of complex gene
association studies and disease susceptibility will be ad-
dressed, particularly with respect to matching targets with
clinical indications. Several reviews have recently been
published that cover genetic association studies [18–26],
and these broad, complex, and sometimes esoteric, disci-
plines are not discussed here. Rather, the focus of this 
article is the strategy and process of genetic association
studies to match pharmaceutical targets with clinical 
indications related to several human diseases.

The pharmaceutical industry and its business analysts
track attrition at various stages in the drug discovery and
development pipeline. For example, 95% of candidate
quality leads fail to produce a medicine. Of the molecules
that enter Phase I clinical trials after surviving preclinical
testing, only 21.5% reach the market [27]. Furthermore,
the number of new molecular entities (NMEs) – drugs
with a novel chemical structure – submitted to the FDA
over the past decade has decreased (Figure 1) [13].

Candidate leads evaluated at Phase IIA for efficacy rep-
resent products of target selection generated during the
past ten years, generally before the possible contributive
effects of the completion of the human genome sequence
could be realized. The major sources of attrition after en-
tering Phase I trials are toxicity and lack of efficacy. One
method of decreasing attrition at an early clinical stage is
to apply prospective efficacy pharmacogenetics (PGx) at
Phase IIA [3]. Another strategy is to select the right target
initially.

The pharmaceutical applications of HiTDIP method-
ologies were adopted as a response to the apparent in-
creased failure rate of clinical development that has
plagued the industry over the past decade. A basic hy-
pothesis for this attrition might be stated simply as: 
‘A reason that many molecules are ineffective in clinical
trials is that the selection of the originally screened tar-

get was based on data and rationale that
are actually irrelevant to the etiology or
pathogenesis of the human disease’. For a
drug to be successful in treating a disease,
two variables must be matched – the tar-
get and the right therapeutic indications.
The success rate of discovery of molecules
from screens is therefore directly related
to target choice, and targets identified
using animal models and sophisticated 
genomic analyses have so far provided
fewer molecules for NME submission than
anticipated [28,29].

A critical view of genomic applications
for target identification
Analysis of the human genome sequence
promised to bring a flood of new targets,

FIGURE 1

NCE success ratios: probability of progressing through each phase. Only one in 25 NCE candidate
compounds is approved by the regulators (Table 1). Note that only 25% of those molecules that survive
Phase II successfully pass into Phase III. Molecules derived from genetically-associated targets could
increase the success rate. A small increase would have a significant effect on approvals.The addition of
safety pharmacogenetics can also contribute to decreased attrition during development [60;
http://csdd.tufts.edu/NewsEvents/RecentNews.asp?newsid=4].
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and therefore increase the potential throughput of the
pharmaceutical pipeline [28–31]. This scenario has also
proved disappointing in not reaching the projected goals.
What factors have limited target selection and drug dis-
covery productivity? Although HTS technologies were
successfully implemented and spectacular advances in
mining chemical space have been made, the universe for
selecting targets expanded, and in turn almost exploded
with an inundation of information. Perhaps the best ex-
planation for the initial modest success observed was the
dramatic increase in the ‘noise-to-signal’ ratio, which led
to a rise in the rate of attrition at considerable expense.
The difficulty in making the translation from the identi-
fication of all genes to selecting specific disease-relevant
targets for drug discovery was not realistically appreci-
ated. There was certainly a large pharmaceutical industry
investment in the intellectual property speculation sur-
rounding the sequencing of all possible genes, with the
hope that a stream of new targets for drug discovery
would result. Senior R&D scientists recently recognized
the need for a ‘quantal step-up in discovery’ [32]. To feed
a high-throughput pipeline, a high volume flow of spe-
cific, disease-relevant targets is necessary. Whether or not
individual researchers believe in a particular disease hy-
pothesis, in the specific relevance of a target class to some
aspect of human disease pathogenesis or in particular 
animal models of human disease, the evidence that ‘val-
idates’ (substitute believe in, consensus view or champion,
among others) the choice of a target molecule for a po-
tential therapeutic strategy in humans is crucial to starting
down the right road.

Target validation is one of those terms that scientists
use in multiple ways. With respect to target identification

and selection in the pharmaceutical industry, validation
is interpreted as providing increased confidence to initi-
ate expensive chemical screens and subsequent discovery
programs. On occasion, support of possible relevance
comes from the sheer weight of ‘potentially’ (substitute
believed in, validated, rational or accepted, among others)
relevant information. For example, a target gene could be
determined to be expressed in the tissue that is affected
pathologically by a particular disease, differentially ex-
pressed in disease-relevant tissues or have a visible effect
in animal models when manipulated [33]. These data
might provide modest human disease-specific support
as the starting point for a drug development program to
treat a particular disease. A putative target located on neu-
ronal surfaces could be relevant to a human neurological
or psychiatric disease – but which one? Proof of concept
in humans can only occur on completion of preclinical
testing and Phase I safety studies of an optimized lead can-
didate. A Phase II clinical trial is an extremely costly hur-
dle with which to justify the target choice after many
years of confidence-building research. The situation could
be compounded when a molecule with exceptional drug
qualities, but an unclear clinical indication, is tested in
several clinical trials involving multiple clinical endpoints.

The success of a target is judged after many years – usu-
ally in hindsight by counting marketed products. The suc-
cess rate of efficacy (proof of concept) studies is probably
a much earlier indicator of pipeline health. If the right
target was selected more often and this led to the selection
of effective lead candidates more frequently, then attrition
would be reduced. Shots on goal are good, but center for-
wards who miss 99% of the time (and take all the shots)
are not hired by professional teams. The pharmaceutical

TABLE 1

The pharmaceutical pipeline: definition by milestone

R&D stage (milestone passed) Description

From target identified to screening hit
and/or lead compound

Successa in identifying a compound with the desired pharmacological activity at the desired
molecular, cellular or mechanistic target: this compound might not have all the characteristics
required to be a viable drug

From lead compound to drug candidate Success in identifying a viable drug candidate by optimizing the characteristics of the initial
screening hit and/or lead; typically, this requires appropriate potency, selectivity and efficacy but can
also involve other criteria such as bioavailability, metabolic stability and preliminary safety screening

From drug candidate to FTIH and/or Phase I Success in progressing a drug candidate into initial studies in humans, usually (Phase I) in healthy
volunteers

From Phase I to entry into Phase II Success in progressing a clinical development candidate into small-scale exploratory studies in
patients that have the targeted disease

… to proof of concept Usually considered to be the point at which a drug candidate has demonstrated efficacy in its
intended patient population, typically within Phase II: therefore, project attrition can be measured
for progression to or from this milestone, as well as to or from the more traditional clinical
development milestones (Phases I–III)

From Phase II to entry into Phase III Success in progressing a medicinal candidate into large-scale (pivotal) clinical trials suitable for
registration

From Phase III to regulatory filing Success in progressing a data package into a regulatory submission

From regulatory review to approval Success in gaining regulatory approval

From regulatory approval to launch Success in launching an approved product, added indication and/or label-change
aProject progression can be quoted as attrition (failure) or success. Abbreviation: FTIH, first time in human.
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industry must move away from the numbers game and
strive for specificity and speed at the earliest stages of the
pipeline. Targets for specific diseases that are chosen based
on strongly held beliefs have a significant probability of
being the totally wrong target. Current ‘knowledge’ (sub-
stitute accepted beliefs, strongly held views or reasonably
good ideas, among others) might not define disease-
relevant hypotheses accurately. It is the result – an effec-
tive and safe medicine – that is of importance to the pa-
tients, physicians and industry. Indeed, the mechanisms
of action of many successful medications are still unknown.

Can target molecules be directly associated with human
diseases that have highly statistically significant data? Yes.
Can chemical leads be produced from screening these tar-
gets that can enter the pharmaceutical pipeline? Yes. Will
lead candidates produce a higher rate of future success in
demonstrating efficacy compared with current metrics?
A decision on this aspect has yet to be reached – more
time is needed to study the flow through the pipeline into
human testing. However, when a genetically associated
target gene has already been screened chemically, there
can be a rapid progression from identification of the tar-
get to the entry of lead molecules into clinical development.

Gene-specific target association study design
With the human genome sequenced, it is possible to de-
fine virtually all genes belonging to the known target
classes using analogous sequence regions that define spe-
cific structures or functions. However, there are few real
indications as to which gene might be specifically asso-
ciated with a particular disease. It is possible to test each
gene individually for disease relevance using genetic as-
sociation studies, but only if sufficiently large and well-
characterized patient and control groups are available.
What of high-throughput association studies of many se-
quence variations within all genes of each target class? As
an example hypothesis, assume there is a G-protein-cou-
pled receptor (GPCR, sometimes referred to as a 7-trans-
membrane repeat) target class gene variant that is asso-
ciated pathologically with Alzheimer’s disease. Which
GPCR is it? If there are almost 500 known GPCR genes,
then is the Alzheimer’s disease-specific GPCR the third on
the list? Is it number 222, or maybe number 407? High-
throughput, gene-based single nucleotide polymorphism
(SNP) genotyping technologies provide the opportunity
for the rapid testing of each of the GPCR variants for 
disease association. Genetic association studies provide
an evidence-based opportunity to inform target choice
rapidly and more specifically.

There is an implied crucial assumption when using a
gene-disease association strategy: disease-specific associ-
ations might be identified for genes that are selected sim-
ply because it is known how to screen them against large
chemical libraries. Seven years ago, the scientific com-
munity was reluctant to take such a risk. However, more
recently, retrospective data were published that support

this assumption. Goldstein et al. [34] examined 42 sequence
variants of genes that had been associated with a drug re-
sponse at least twice. These investigators found that 21 of
the 42 variants were in the target or in a known path-
way of the target. It is therefore reasonable to propose that
the probability of identifying a disease-relevant target
would be increased by screening all potential targets for
genetic association with well-defined diseases. That is to
say, there are now data available to support the hypoth-
esis that candidate leads derived from genetically associ-
ated targets can increase the probability of success (de-
crease attrition) at Phase II or Phase III of clinical trials.

Another important scientific contribution to gene-
disease association studies has come from advancements
in the fields of genetic epidemiology and statistical 
genetics. These are specialized disciplines to most of 
the pharmaceutical industry, but the ability to analyze 
rapidly many clinical traits simultaneously in a high-
throughput fashion, and with appropriate methods to de-
fine statistical significance, is probably the most useful
contribution to such studies other than the sequenced
genome template. By 2002, this advancement made it
possible to test therapeutic class genome-wide variants for
statistical associations with particular human diseases.
Additional support for a disease gene-association strategy
can be found in the plethora of recent studies linking spe-
cific gene variants to particular diseases [35–40]. When
the effect of the variant results in expressed clinical dis-
ease, it is generally viewed as a disease mutation. Where
multiple variants of several genes contribute to the ex-
pression of a disease, they are now commonly referred to
as susceptibility genes. The practical problem of solely
studying disease genetics to generate targets is that most
susceptibility genes are not drug targets, and therefore 
the high-throughput methodologies currently available 
cannot be used to screen for the formation of chemical 
interactions [41].

Would the initial identification of high-throughput tar-
gets with human disease-specific associations result in a
more efficient pipeline with less attrition? Because there
was great confidence that the human genome projects
(both public and private) would eventually provide gene
sequencing, and some variant, information, it was an-
ticipated that a large, low-throughput resource would be
needed; that is, prospective, well-phenotyped patient col-
lections and appropriate controls, each of which would
have consent for commercial applications.

The patients define the relevance
To study the association of gene variants with the clini-
cal expression of human diseases, a large number of con-
senting patients and controls must be carefully examined
and the data placed into accessible databases; in addition,
DNA must be collected and stored. Because the clinical
examination of patients is performed one patient at a
time, the generation of large patient collections that are
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suitable for disease association studies using multiple
markers is time- and resource-intensive, and consequently
is not high throughput. Anticipatory clinical research of
this type requires sustained access to clinical expertise,
extensive supporting resources and commitment over a
period of years. Few such prospective collections exist
and, in those academic environments that possess such
databases, informed consent for commercial uses is usu-
ally absent.

In 2005, the genome is sequenced, target class gene
variants are known, rapid genotyping technologies are
available and interactive databases with analytical capa-
bilities have been built. Since 1997, GSK has organized
external clinical specialists, who are expert in more than
a dozen important diseases, and has accumulated more
than 80,000 patients and controls, each examined with a
prospectively standardized protocol, informed consent
and stored DNA samples. Several association experiments
were completed that provided exciting new putative tar-
gets for pipeline consideration. The leading edge of chem-
ical leads has begun to enter the pipeline.

As molecules resulting from insights of HiTDIP reach
the published portfolio of GSK over the next few years,
there will be a relatively straightforward method for 
the comparison of attrition with historical metrics. With 

respect to the gene variants identified for early drug 
discovery, specific disclosure of early targets and leads in
the pipeline could be limited by regulatory and com-
mercial concerns. However, the best and most rapid bio-
logical and genetic validation of gene variants associated
with disease can occur where the data are available for
confirmation by academia and industry. It is therefore
planned that these large association experiments will be
published in scientifically reviewed journals to enable the
full weight of academic and industry disease-specific tar-
get validation to be focused in this area. Furthermore,
pharmaceutical companies principally share many of the
same targets – why not compete on the screening and lead
chemistry of disease-relevant targets and well-designed
drug development?

High-throughput disease-specific target discovery –
the experiment
To perform this experiment for the identification of the
targets associated with human disease, three major com-
ponents are required: (i) selection of the gene targets to
be screened; (ii) well-characterized clinical data; and (iii)
genetic data generation and statistical analyses.

The targets 
Before the sequencing of the human genome, the phar-
maceutical industry knew of perhaps 500 targets [42].
Widely appreciated target classes, for example, nuclear 
receptors, kinases and GPCRs (Figure 2) now constitute
~1200 genes, and there are many additional enzymatic
screens that bring one estimate of the total druggable
genome to over 3000 genes [43]. One method of dealing
with screenable targets is to create knockout or other mod-
ified mice and search for phenotypes. This undoubtedly
provides some additional support, but the phenotypic 
correlation between mouse and man can be difficult to
interpret [17]. It would seem that direct associations with
human disease phenotypes would be a promising and 
efficient point to search for knockout and conditional
knockin models. Kola and Landis [2] listed five places
along the pharmaceutical pipeline where attrition might
be managed. Their first point was that ‘building the need
to get very strong evidence for proof of mechanism into
the discovery paradigm is critical’. In the past, this was
possible because an extensive literature had developed as
scientists concentrated on biochemistry, physiology, phar-
macology and other disciplines before suggesting targets.
If the 100 best-selling drugs are examined retrospectively,
the targets were initially selected because of strong and
confirmed (in the literature) biology, including studies in
man [17]. The prediction that knockout models will have
the same efficiency prospectively as that provided by ret-
rospective analyses will only be possible with extensive
and specific phenotyping of each knockout. Screening the
phenotypes of many knockouts might be much more su-
perficial [16]. Perhaps, the most efficient approach would

FIGURE 2

HiTDIP: genetic associations between ‘tractable’ targets and major diseases.
High-throughput analysis of approximately 7000 polymorphisms in 1800 candidate
genes (numbers of validated SNPs and candidate target genes have increased over
time) are screened for association in common diseases, such as asthma,
schizophrenia, depression, osteoarthritis, Alzheimer’s disease, metabolic syndrome,
hypertension, acute coronary syndrome and others.The approximate numbers of
genes in various target-classes used in these experiments are also indicated.
Genes of marketed products and other target genes such as enzymes and protein
ligands are also included in the target classes. As more target groups become
tractable, they are added to the screen. Between 2002 and 2004, the gene list has
expanded from approximately 1450 genes to >1800. For the NHR and cofactor
column, the yellow color represents the number of NHR cofactor gene targets.
Abbreviations: COPD, chronic obstructive pulmonary disorder; NHR, nuclear 
hormone receptor.
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be to use knockout and conditional knockin mice with
genetic variants as additional target validation for genes
that are statistically associated with the expression of human
diseases.

Industry-initiated partnerships, such as The SNP
Consortium, and efforts to sequence the human genome
rapidly catalyzed SNP discovery [44]; this information was
used to identify validated SNP assays for the ~1800 tar-
gets that constitute, for example, the GPCRs and kinases.
For large-scale, disease-association analyses, the testing of
these variants requires two sets of reagents: (i) validated
SNP assays of each gene; and (ii) DNA from clinically well-
phenotyped patients, appropriate controls and integra-
tion with extensive bioinformatic support systems. The
standard candidate gene association experiment is to test
variations of a specific gene for association to a single de-
fined human disease. For HiTDIP, it is possible to extend
this experiment to hundreds of genes (~1800), using thou-
sands of SNP variations (~7000), and to several diseases
(17+) in independent test and secondary screens.

The clinical data
The rate-limiting step in the HiTDIP program is the ex-
amination, acquisition of consent and collection of DNA
from large collections of well-phenotyped patients and
controls. Over the past decade, the key practical problems
encountered are that the majority of patient collections
of DNA reside in academic laboratories or small countries,
and chemical-screening libraries are located in industry.
Institutional review boards require that patient popula-
tions have specific informed consent for the commercial
use of DNA, thus rendering many collections of patients
enrolled in academic institutions largely unusable for
commercial HTS. Patient and control clinical evaluations
are not high throughput, because they are performed 
on an individual basis. Therefore, even if the technical
screening capacity were generally available, as it is now,
the essential clinical populations with available, consented
DNA samples are not.

Disease phenotype does not simply
depend on a diagnostic label 
Over the past seven years, GSK has spon-
sored an extensive series of disease-spe-
cific clinical collaborations. These net-
works eventually involved ~200 specialist
physician collaborators and currently
comprise at least 17 diseases in several
ethnic populations. Large groups of
highly phenotyped patients and controls
have been collected for these associations:
ten of the case-control or case-control
family studies currently completed
(asthma and type 2 diabetes were the first
in 2003 and 2004, respectively) or sched-
uled to be finalized are summarized in
Table 2. Productivity gains have resulted

in an increase in genotyping capacity, thus six of the listed
diseases are scheduled to be analyzed in 2005, with other
diseases to follow on completion of clinical enrollments.
The lag phase for HiTDIP analyses is the process of regis-
tering subjects (patients and controls). After that, the
process is ‘industrialized’ with planned overlapping pri-
mary, secondary and, in some cases, tertiary screening
blocks.

Unlike more common retrospective patient collections,
where information is gleaned from records, the network
physicians were required to agree on diagnostic criteria
in advance of subject collection. Data are often missing
in retrospective collections, which can give rise to spec-
ulation on the implications of a ‘blank’ answer in the
record of an individual. GSK created a clinical database
that encapsulates the complete clinical and demographic
information about each patient and each control prospec-
tively: a prospective study ensures that data on all indi-
viduals are collected, and the database is as comprehen-
sive as possible.

Each network of clinical experts established a core data-
base of phenotypes with defined clinical descriptions for
each disease, with the added caveat that additional sup-
plementary clinical information that any participating
clinical investigator wanted to collect would also be 
included in the phenotypic database. This resulted in dis-
ease-specific databases encompassing clinical parameters
agreed by all network physicians, in addition to the 
sub-sets collected with respect to the particular research
interests of an investigator.

This database format provides the opportunity to test
genetic associations with more granularity than simply
diagnosis. The data can be analyzed using the physicians’
agreed disease diagnosis, single symptoms or signs or
groups of clinical findings. There can be several con-
tributing pathogenic processes in complex diseases, any
of which might not be expressed concurrently to produce
active disease, but each of which might be associated at
some level with similarly diagnosed patient populations.

TABLE 2

Listing of family and case-control studies ongoing at GSK as of September 2004

Disease No. of
sites

Family or case-control No. of subjects
collected

Target no. of
subjects

Asthma 14 Family 5909 5909

Alzheimer’s disease 9 Case-control 1504 2000

COPD 11 Case-control and family 5121 5460

Schizophrenia 4 Case-control 1317 1953

Metabolic syndrome 6 Case-control and family 4842 4842

Osteoarthritis 8 Case-control and family 4137 5685

Rheumatoid arthritis 1 Case-control 1736 2600

Parkinson’s disease 1 Case-control and family 3039 3039

Unipolar depression 9 Case-control and family 3781 3861

Obesity 2 Case-control 2019 2000
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For example, in studying type 2 diabetes mellitus, inclu-
sion of ophthalmologic examinations, renal function in-
dicators and a defined neurological physical examination
enables specific sub-type association studies. If the asso-
ciation of SNP variants in those patients with peripheral
neuropathy was required, then performing and specifi-
cally recording the presence or absence of ankle jerks on
all patients and controls is more accurate than trying to
select patients with retrospective lack of data. Similarly,
if diabetic retinopathy were an interest, few retrospective-
controlled studies would have this information.

Illustrative study example: asthma
Asthma was the first disease to be analyzed in HiTDIP
against multiple phenotypic variations. The association
of thousands of SNP variants was measured against five
separate but correlated asthma-related traits in large fam-
ily sets including: (i) physicians’ diagnosis of asthma; (ii)
atopy (positive skin prick tests); (iii) atopic asthma (physi-
cians’ diagnosis plus atopy); (iv) strict asthma (two or
more classical symptoms and a positive methacholine
challenge test or bronchodilator test); and (v) bronchial
hyper-responsiveness (positive methacholine response at
or below 10 mg/ml of methacholine) [37]. The subjects
were ascertained prospectively, but retrospectively grouped
for each set of clinical criteria. Association studies using
high-throughput genotyping of SNPs from tractable tar-
gets to define associations with various clinical definitions
have been productive.

When thinking of asthma as a complex disease and/or
syndrome, it is understandable that there might be mul-
tiple genetic and environmental susceptibilities. Certainly,
there should be no expectation that all or most of the phe-
notypic variables would be present in all cases, as might
be expected for a specific genetic mutation in a highly
penetrant, rare inherited disease. A comprehensive approach
that improves this situation would be to test each of the
clinical forms that occur within families for genetic as-
sociation with particular genetic variants. Confirmation
of association could be performed in a subsequent set of
families as well as in series of sporadic cases.

When the initial pilot asthma-screening was performed
in 2001 with ~2700 SNPs from 1244 genes, interesting
patterns of association were observed. Many of the asso-
ciated gene variants were related to three or more of the
selected clinical phenotype definitions. The association
of some genes with physicians’ diagnoses tended to sep-
arate to bronchial sensitivity-related signs and symptoms
and atopy-related phenotypes. These early data regarding
phenotypic criteria seemed to support the convergence
of multiple susceptibility loci for the production of symp-
tomatic complex disease.

In genetic linkage or association literature, there are 
frequently tacit assumptions, for example, that the expert
physicians’ diagnoses are sacrosanct, or that inclusion
and/or exclusion criteria of any sort could often narrow

the disease populations to be non-representative of all 
patients with the disease. Many of the conflicting reports
of associations in the literature, where independent scien-
tists have not ‘confirmed’ published linkage or associa-
tion results with the same ‘disease’, could be the result of
variations in the selected phenotypes or even the critical
controls. With the same corps of physicians collecting the
large prospective patient and control test series, as well as
the subsequent confirmation series, variation between in-
dividual physician diagnostic skills can be minimized and
the phenotype definitions can be stabilized.

Illustrative study example: metabolic syndrome
Metabolic syndrome is usually described as a combina-
tion of obesity, diabetes mellitus, hypertension and dys-
lipidemia – thus providing considerable opportunities for
selection of who might be included in genetic studies.
In 2002, The National Cholesterol Education Program
(NCEP) Expert Panel on Detection, Evaluation and
Treatment of High Blood Cholesterol in Adults, Adult
Treatment Panel III (ATP-III) published criteria f  or a clin-
ical diagnosis of the metabolic syndrome*. However, the
GSK Genetics of Metabolic Syndrome (GEMS) patient 
collections for target association and susceptibility gene
studies were initiated before this ATP-III report was cre-
ated. By comparing the detailed phenotypic definitions
for the collected patient information with those of the
samples, and subsequently contrasting this with the def-
initions provided by a high level, independent expert
panel, it was possible to analyze the relevance of our con-
temporary operational research definitions. In GEMS, two
simple lipid-based criteria were used to define the disease-
affected individuals: low high-density lipoprotein (HDL)-
cholesterol and a concomitant elevation of plasma triglyc-
eride concentrations. These criteria were selected because
they are primary features of atherogenic dyslipidemia, are
closely related to insulin resistance, detectable at an early
stage in the development of metabolic syndrome, highly
heritable and easy to measure. Wyszynski et al. [45] (clin-
ical investigators supporting the GEMS Network) reported
that 86% of individuals greater than 35 years of age met
both the ATP-III and GEMS criteria. Conclusions based
on genetic linkage, genetic association of susceptibility
loci and PGx studies can thus be more accurately inter-
preted across studies. Accurate, interpretable, reproducible
phenotypic definitions, even of complex syndromes mix-
ing several complex diseases, can increase the value of
clinical collections and facilitate analysis. Metabolic syn-

*NCEP criteria for clinical diagnosis of metabolic syndrome requires any
three of the following: fasting plasma glucose of at least 110 mg/dl
(6.10 mmol/l); serum triglycerides of at least 150 mg/dl (1.70 mmol/l);
serum HDL cholesterol of less than 40 mg/dl (1.04 mmol/l) and
50 mg/dl (1.30 mmol/l) for males and females, respectively; and blood
pressure of at least 130 mm Hg systolic and 85 mm Hg diastolic, or
waist circumference (a measure of central adiposity) of more than
102 cm and 88 cm for males and females, respectively.
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drome is an excellent example of variable clinical defini-
tions and hypotheses defining the disease.

Experimental data, analyses and statistical
significance
During the past two years, up to ~1800 tractable genes
represented by up to ~7000 SNPs were genotyped against
several large patient and unrelated control groups for 
disease associations. The SNPs were identified predomi-
nantly from public databases, with focused SNP discov-
ery performed as necessary. The SNPs selected were com-
mon, with 28% average minor allele frequency, and mapped
typically to intergenic and promoter regions. Genotyping
was performed using a multiplexed, bead-based approach
published previously (Figure 2) [46,47]. A bioinformatic
system, called SubjectLand, was designed and implemented
to contain patient data, SNP (and other genetic variation)
data, analyses programs and analytical results, with the
ability to add-on data-mining capabilities. The standard
experiment for each disease was designed to test ~500
well-phenotyped patients and ~500 matched controls in
the initial, primary screen and follow-up with a second-
ary screen using an independent set of patients and con-
trols ascertained by the same group of physicians.

The data were statistically analyzed
using a gene-based approach (Figure 3).
Allelic, genotypic and haplotypic tests of
association were conducted in the pri-
mary and secondary screens. A ‘fast fish-
ers exact’ test in SAS/BASICS® software was
used for the allelic and genotypic tests
[48], whereas the ‘composite haplotype
method’ developed by Zaykin (unpub-
lished results) was used for haplotypic
tests. The use of a gene-based approach for
analysis and replication, as used in HiTDIP,
has recently been championed by Neale
and Sham [49]. Cardon and Bell [50] stress
that incorrectly adjusting for multiple
testing can either unnecessarily reduce
statistical power if too stringent a correc-
tion is applied or increase the false-positive
rate if too weak a correction is used. As a
result of the large number of tests con-
ducted, adjustments for multiple testing
were made using a gene-based permuta-
tion approach (Box 1).

The type 2 diabetes study made use 
of legacy (GlaxoWellcome, Burroughs-
Wellcome, Glaxo, Smith Kline Beecham
or Beecham) in-house collections – ~400
cases and controls were examined in the
primary screen and >1100 cases and con-
trols in the secondary screen. Among the
1405 genes examined in the primary
screen, 256 genes had a p-value of ≤0.05.

Of these 256 genes, 53 also had a p-value of ≤0.05 in the
independent secondary screen but only 21 of the 53 genes
were confirmed by passing the permutation process
(Figure 4, Box 1). As well as conducting further investi-
gations regarding the 21 confirmed genes that passed the
permutation test and the 32 genes that did not, analyses
of the probability that random genes would demonstrate
similar statistical significance were also performed. Of the
21 permutation-confirmed genes, ten could be identified
in pathways directly related to precedented mechanisms
or metabolic pathways associated with disease-specific hy-
potheses. In the case of type 2 diabetes mellitus, four of
the 21 genes had already been chemically screened in
legacy companies and provided several leads. Statistical
analyses of each disease will be submitted for formal peer-
review in specialty journals by the appropriate network
physicians.

In some diseases, such as type 2 diabetes mellitus, there
are reasonable prior hypothesis concerning pathogenesis.
For example, it is generally agreed that glucose metabo-
lism and insulin sensitivity play a role. Among the HiTDIP
type 2 diabetes confirmed genes, several are supported 
by prior published hypotheses and appear in expanded
metabolic pathways. Such coincidences resulting from

FIGURE 3

Experimental design algorithm for HiTDIP analyses. The basic design of the HiTDIP program was to
screen approximately 500 patients and 500 controls, all prospectively examined, with full clinical
information and commercial informed consent obtained.The current gene panel consists of approximately
1800 genes and 7000 validated SNP assays. Although highly significant p-values will be observed for some
genes in the primary screen, the probability for occurrence of false positives is high. A secondary study of
approximately 500 patients and 500 controls (obtained prospectively) is also tested. A gene with a p-value
of ≤0.05 in primary and secondary screens is assessed by permutation (Box 1). Any gene with a
permutation of p ≤0.05 is considered ‘confirmed’. Calculations of random gene association assessed by
permutation were confirmed (Figure 4).
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screening so many hypothesis-independent genes are, at
the very least, interesting. This provides increased prior-
ity for screening specific targets in defined pathways and,
subsequently, for designing relevant clinical trials. In dis-
eases where there is a paucity of information to form the
basis of supposition, for example, schizophrenia, specific
genes and pathways identified in HiTDIP can provide 
insights to new hypotheses. Results for four other sec-
ondary screens (schizophrenia, obesity, migraine and
unipolar depression) will be available in early 2005.

Additional experimental data for the association of
each gene can also be generated by testing whether the

target gene is within a region of extended linkage dise-
quilibrium (LD) [51–53]. This is also important because
the particular SNP used in the HiTDIP analysis might not
be the variant responsible for the disease association, but
has simply evolved concomitantly with the disease-vari-
ant. SNPs that are in LD with the causal variant can pro-
vide positive association data, as is the case for susceptibil-
ity genes for Alzheimer’s disease, migraine, Crohn’s disease
and psoriasis [52–55]. Analyzing for regions of extended
LD is also important to define whether the association
signal is driven by the tested HiTDIP gene – and not by
one of its neighboring genes [51]: documenting extended

BOX 1

The permutation testing process

The objective of this study was to identify tractable genes associated
with disease. Some small genes might have only one or two SNPs
analyzed, whereas 30–40 SNPs could be assessed in the case of some
of the larger genes, such as those encoding ion channels.The greater
the number of SNPs and tests performed on a gene, the greater the
probability that the gene will appear significant than by chance
alone.To account and correct for the variable number of tests
conducted across genes, a gene-based permutation test was applied.
Permutation testing is a standard method used to assess significance
in the statistical analysis of genetic data [57]. Any gene significant at
a p-value of ≤0.05 in the primary and secondary screens was further
assessed by performing this permutation process on the data from
the secondary screen. For each permutation, affection status was
shuffled among the cases and controls.The genetic data for all SNPs
across each subject was not altered.This maintains the underlying
correlation between SNPs within a gene. All the SNPs within the gene
were analyzed using allelic, genotypic and haplotypic association
tests via the same methods used for the observed data.The smallest
p-value across all tests was recorded for each permutation.The
permutations were repeated up to 5000 times per gene.The
empirical p-value is the proportion of minimal p-values from the
permutations that are less than the observed minimal p-value from
the actual data.The empirical p-value is estimated using Equation i.

r+1 [Eqn i]
n+1 

where r is the number of permutation p-values as small as or smaller
than in the actual data and n is the number of permutations [58,59].

A gene with an empirical p-value of ≤0.05 was considered to be
‘confirmed’ with respect to statistical association with disease. For
example, if the smallest p-value of gene A in the observed data was
0.004 and among 5000 permutation (n = 5000) a p-value of ≤0.004
was observed 50 times (r = 50), then the permutation process would
generate an empirical p-value for gene A of 0.01, and it would be
classed as a ‘confirmed’ gene.

For the type 2 diabetes study assessed by permutation, the
minimal p-value from the actual secondary dataset for each of the 
53 genes analyzed and their empirical p-values from the
permutation process are shown in Figure i (observed and gene-
based permutation results). Of the 53 genes assessed, 21 genes had
empirical p-values of ≤0.05 and thus were considered ‘confirmed’.The
observed and empirical p-values for gene 7, a confirmed gene, were
highly similar, differing by only ~0.0001. For gene 27, which was not
confirmed, the corresponding values showed striking differences: the
permutated p-value was approximately 0.33, whereas the observed
p-value was <0.02.

The gene-based permutation process controls for multiple
correlated SNPs and multiple tests performed for each SNP in a gene
in the secondary screen. A related question is – how many of the
1405 genes examined in the type 2 diabetes study would be
expected to confirm under the null hypothesis of no association?
That is, how many genes would have a minimal p-value of <0.05 in
the primary screen and a permutation p-value of <0.05 in the
secondary screen? To address the question of the permutation
p-value, an additional round of 1000 permutations was conducted
using the type 2 diabetes primary screen data. At each permutation,
the affection status of the cases and controls was shuffled and the
number of genes observed to have at least one p-value of ≤0.05 was
recorded and multiplied by 0.05, the α level already enforced by the
gene-based permutation applied to the secondary dataset. Of 1000
permutations performed on 1405 genes, the average number of
genes that was confirmed by chance was 9.8 (95% confidence
interval 8.6–11.0).

FIGURE i

Gene-based results for 53 type 2 diabetes mellitus genes assessed by
permutation. The observed and gene-based permutation results for the 53
genes assessed by permutation in the type 2 diabetes data are rank ordered
according to their observed p-values before permutation.Two of the 53 genes
(genes 7 and 27) are circled to illustrate how the observed and empirical 
p-value can differ. It is useful to note that the first 12 genes were confirmed by
permutation; it was expected – and quite reassuring – that the genes with
consistently the lowest p-values would be confirmed. Permutation assessments
confirmed four of the subsequent ten genes. Of the remaining 31 genes, five
were confirmed. Hirschhorn et al. [18] reported that, by meta-analyses, only six
of 166 genes replicated consistently across studies – again not unexpected in
single-arm experiments, which are many studies with much smaller numbers of
cases and controls and no opportunity to assess permutation (Box 2).
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LD around a HiTDIP gene can increase (or decrease) con-
fidence in its validity.

It is reasonable to expect that a large screen with many
tested variables could be subject to false positives. Although
the same limitations also characterize susceptibility genes
resulting from linkage and association studies, they are
not usually tractable targets for chemical screening.
Susceptibility gene studies provide new insights that are
relevant to disease pathogenesis: we anticipate that the
HiTDIP genes will also generate new theories and provide
support for existing hypotheses. One immediate strategy
could be to provide validation support by concentrating
thorough phenotypic studies on knockout or otherwise
manipulated mice [16]. For the type 2 diabetes example,
this would mean knockouts and conditional knockins 
for ~21 genes and their specific variants associated with 
disease. Each mouse line could be examined with highly
focused and complete biochemical and physiological phe-
notyping in parallel with high-throughput chemical
screening.

There is no documented method for predicting which
HiTDIP genes will point to lead candidates for medicines.
The selection of genes with which to initiate high-through-
put assay development is empirically based on several 
criteria, one of which is the relative ease of creating the
chemical screening assay. A few confirmed genes for type
2 diabetes mellitus were screened previously in GSK legacy
companies because of pre-existing literature rationales for
potential involvement in disease pathogenesis. Enlarging

or repeating the chemical screens with the current GSK
compound libraries is an immediate option, as is re-eval-
uating earlier lead programs. In addition, there are several
genes that the literature indicates are involved in inter-
esting, potentially novel mechanisms. There are other
genes, particularly those for which the design of high-
throughput assays is relatively uncomplicated, that can
be prioritized. In the GSK R&D structure, scientists in the
Centers for Excellence in Drug Discovery (CEDDs), who
are most familiar with the disease, prioritize the targets.

It is particularly pertinent to mention here that GSK
is now dealing with a relatively large, staggered flow of
new target genes for which there is excellent support for
genetic association. If the leads from screened HiTDIP
genes reduce attrition, this will be evidenced in a larger
proportion of positive Phase IIA efficacy studies over the
next 3–5 years. Remember, hits and leads must be opti-
mized and undergo preclinical regulatory testing before
human testing can begin.

HiTDIP provides genetic validation for target selection
to drive the pipeline. The confirmed targets are geneti-
cally associated in some manner with specific human dis-
eases or therapeutic indications that can be encompassed
by the disease diagnostic label. Indeed, genes that are 
associated with specific clinical variables could help to 
define complex disease heterogeneity. A significant dif-
ference in success compared with historical target selec-
tion can be tested against benchmarks. Attrition that is
the result of a lack of relevance to a particular human dis-
ease might only be appreciated when there is an absence
of clinical efficacy many years down the pipeline. Reducing
attrition at the proof of efficacy stage (Phase IIA) will in-
crease the efficiency of the pipeline and could provide a
sustainable stream of effective medicines related to human
diseases. Furthermore, additional hypotheses might be
generated at Phase IIA by the application of efficacy phar-
macogenetics. These hypotheses can be tested reiteratively
in Phases IIB, III and IV. Of course, the consented DNA
samples remain available for testing new target classes
as new chemical synthesis capabilities are developed.

HiTDIP to discovery shunt – some matches are made
in heaven
Trying to decide what to wear for a particular occasion fre-
quently involves a quick scan of your collection of clothes.
Large pharmaceutical companies, particularly those with
legacy compound libraries resulting from long histories of
drug discovery, have a lot of unworn items in their collec-
tions. Many discovery programs are initiated and numer-
ous targets are screened only for leads to be ‘left on the shelf’
(some with the price tags still on!) when times and cir-
cumstances changed. The initial assumption for HiTDIP was
that by screening all the known tractable targets against sev-
eral well-defined diseases, new targets would be identified.
Each would then require the design of a high-throughput
screen and a new screen of the chemical compound library.

FIGURE 4

Type 2 diabetes mellitus HiTDIP results. The type 2 diabetes mellitus HiTDIP
experiment was the first to be performed with two case-control screens.The prior
asthma screens used a family-based series, thus the statistical analyses were
significantly different.The primary screen consisted of 401 cases and 400 controls and
used 4267 validated SNP assay for 1405 genes. A set of 256 genes yielded a p-value of
≤0.05 (a large number illustrating the high false-positive rate that is probable with a
single screen).The secondary screen enrolled 1166 patients and 1260 controls. At the
time that the secondary screen was initiated, the genotyping capacity was limited
and thus only the 256 genes and their 845 SNPs were included. A set of 53 genes
yielded a p-value of ≤0.05, and were assessed by permutation, with 21 genes being
confirmed (Figure i). Estimation of the number of genes being confirmed by chance
in this study yielded a rate of approximately ten genes per 1400 tested (Box 1).
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However, once targets with highly statistically signifi-
cant associations with a particular disease were defined,
another surprisingly rich supply of existing leads, which
required no novel chemical screening, was identified im-
mediately. Indeed, several targets were already screened

against the legacy company chemical libraries, with 
resulting leads left on the shelf because the program was
dropped, or abandoned after a molecule failed for a par-
ticular therapeutic indication. Thus, immediately after
completing confirmation analyses for the initial HiTDIP
programs, several targets were identified for which there
were lead – or better – quality molecules on the shelf. At
present, several molecules have either entered preclinical
testing for Phase I or have already been tested in clinical
trials designed for different therapeutic indications.

The match between the molecule and disease is the key
data gained from confirmed genetic association. Using mol-
ecules for which considerable data and work already exists
will no doubt accelerate pipeline dynamics. More shots on
goal quickly – or better shots at more defined goals – results
from being able to mine data generated from years of pre-
vious drug discovery programs. Occasionally, after con-
siderable prior hard work, serendipity plays a part – which
is indeed food for thought for those who wonder what
the advantages of corporate size could be! Although legacy
company names might disappear, contributions to capa-
bilities, such as prior screens of targets, are maintained.

Whole-genome testing and pathway analyses
Although nothing in science is unanimous, there is a
growing belief that high-density, whole-genome SNP-
screening, using newer statistical methods and powerful
computing capacities, can identify susceptibility genes for
a disease. From a practical viewpoint, and the experience
of studying almost 2000 genes selected solely because they
could be drug targets, it would seem reasonable to per-
form additional genome-wide (all genes) SNP-screening
association studies. Family linkage studies of the past 
two decades have defined large regions of chromosomes
(1–10 Mb) using ‘log of the odds’ scores that successfully
identified disease and susceptibility genes. By narrowing
these large regions using candidate genes, many positive
results were reported. Much smaller regions of extended
LD (50–250 kb) containing disease susceptibility genes
were identified using large patient and control collections
for case-control association studies. The DNA is there, the
methods are increasingly more feasible economically and
there is a growing literature of statistical methods to sup-
port these large studies [56]. From an academic point of
view, whole-genome screening studies might be too ex-
pensive to be readily available, but that does not mean
they will not provide scientifically valid data and disease
insight. Therefore, after the timetable of HiTDIP confirma-
tion screening is completed, whole-genome SNP-screen-
ing will follow. Making the right choice of targets at the
beginning of the pipeline will be the first step down the
long road of creating innovative medicines.

Within three years
The first practical metric that will provide an estimate of
the success of HiTDIP will be comparing Phase II attrition

BOX 2

Learning of the power and statistical significance of
association studies

Hirschhorn et al. [18] conducted an interesting meta-analysis of 166 initial
associations to determine the probability of their being reliably
replicated. A particularly notable finding was that of 166 initial
associations from multiple studies, only six replicated consistently across
investigations (i.e. had p-values <0.05 in 75% or more of the studies
identified), whereas 97 were observed to have at least one significant
replication. Replication rates of 16–30%, depending on the definition of
replication, have been identified in the association literature [20,21].
Replication of an association study has not usually been included in the
experimental design, nor have the numbers of patients and controls been
sufficient to expect replication.

The initial gene-based HiTDIP scans of type 2 diabetes mellitus, using a
large cohort of patients and controls, identified five genes with a
statistical significance of p ≤0.0005, 40 genes with p ≤0.0050 and 211 with
p ≤0.0500 (Table i). Although these data might comprise false negatives,
or undetected genes, the vital question is how to eliminate false positives.
Because of the large number of tests performed, the majority of the
signals identified from the initial, primary test-screen, across all levels of
significance, were expected to be false positives – it is not reasonable to
anticipate that the testing of less than 2000 genes will result in 45 genes
with a p-value of <0.005 being real. It should be emphasized that most
published association studies are performed with much smaller patient
and control groups. Although meta-analyses of small and heterogeneic
studies might have been the best available secondary analysis method in
the past, it was never considered ideal.

The factor that distinguishes the HiTDIP study design is the availability
of an equally powerful set of patients and controls, all of whom have been
examined and clinically characterized by the same physicians, thereby
reducing phenotypic heterogeneity.Thus, the question can be posed –
how many of the genes identified in the initial association studies with
highly significant p-values are actually confirmed by a second
confirmation study using statistical analyses that are appropriate for
complex genome-based association studies? The answer provides a
fascinating insight into the poor track record of association study
confirmations. A significant proportion of the genes from the large initial
association study with a p-value of <0.005 were not confirmed after the
secondary screen of similar size (Table i). However, it is extremely
important to realize that the published association literature undergoing
meta-analyses traditionally use data that are typically much less
significant – and the only confirmation comes from other small studies or
takes the form of the meta-analyses.

TABLE i

Comparison of numbers of confirmed genes from primary and
secondary screens based on p-values (before the permutation
testing process)

Primary screen Secondary screena Permutationa

p-value No. of genes No. of genes No. of genes

 ≤0.0005 5 1 0

 ≤0.0050 40 8 3

 ≤0.0500 211 44 18

Total 256 53 21
a Performed at a p-value of 0.05.
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with historical benchmarks. If the target genes selected
result in more frequent early-phase efficacy successes,
then the ‘quantal step-up in discovery’ described by
Weisberg will be apparent [32]. There will be other par-
allel strategies for selecting targets. However, comparisons
of the success and attrition rates of drug candidates re-
sulting from screens of genetically associated targets can
be compared with benchmarks for other historical or cur-
rent strategies. A retrospective view will be of interest but,
for the present, the first indications will come from de-
creased attrition at Phase II. Along the way, there will be
a stream of lead molecules with which to prime a high-
throughput pipeline. Combining the choice of the right
target and the application of efficacy pharmacogenetics
at proof of concept, when necessary, should result in bet-
ter defined medicines for patients with complex diseases
[3]. The objective of the process is to reduce attrition, cycle
times and expense, as well as provide safe and effective
medicines.
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