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This review focuses on the thermodynamic basis of the unfavorable changes
observed in physicochemical properties in lead discovery and optimization

programs and suggests that monitoring binding thermodynamics could
contribute to an improvement in the quality of compounds identified.
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The documented unfavorable changes of physicochemical properties

during lead discovery and optimization prompted us to investigate the

present practice of medicinal chemistry optimization from a

thermodynamic perspective. Basic principles of binding thermodynamics

suggest that discriminating between enthalpy-driven and entropy-driven

optimizations could be beneficial. We hypothesize that entropy-driven

optimizations might be responsible for the undesirable trend observed in

physicochemical properties. Consequently, we suggest that enthalpy-

driven optimizations are preferred because they provide better quality

compounds. Monitoring binding thermodynamics during optimization

programs initiated from thermodynamically characterized hits or leads,

therefore, could improve the success of discovery programs. Here, we

summarize common industry practices for tackling optimization

challenges and review how the assessment of binding thermodynamics

could support medicinal chemistry efforts.
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Introduction
More than a decade ago, Teague et al. [1] investigated the physicochemical profile of screening

compounds and concluded that polar and low molecular weight (MW) starting points were more

easily converted to leads than lipophilic and higher MW hits. They proposed that a suitable

screening library should consist of compounds with a MW range between 100 and 350 and

clogP = 1–3. It was suggested that hits from such lead-like libraries would provide a wider chemistry

space during the optimization of potency, physicochemical and absorption, distribution, meta-

bolism and excretion (ADME) properties. The effect of lead optimization on physicochemical

properties has been analyzed in comparative studies between leads and corresponding drugs [1,2].

These studies demonstrated that leads are typically less complex (with lower MW, fewer rings and

rotatable bonds) and less hydrophobic (lower clogP) than drugs and suggest that the lead optimiza-

tion process results in more complex structures. Although there might be notable differences in the

physicochemical profile of compounds optimized against different target families, Morphy showed

[3] that property shifts associated with optimization vary only slightly across target families. Thus,

we can conclude that lead optimization is a major contributor to the unfavorable change in

properties of clinical candidates.
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Attempts to control property shifts
MW and lipophilicity have a major impact on compound quality

because – in addition to physicochemical properties – these para-

meters have a considerable impact on drug metabolism and phar-

macokinetics (DMPK) and safety profile. MW increases in parallel

with complexity, yielding large and complex molecules that are

more likely to form suboptimal or repulsive interactions upon

binding to proteins, as demonstrated by Hann et al. [4]. Moreover,

highly lipophilic compounds have a greater chance of being pro-

miscuous [5,6]; they typically have limited solubility and ADME/

DMPK problems [7]. Because these properties have a direct impact

on clinical success rates [8], two strategic improvements have been

introduced to the practice of lead optimization. First, compounds

prepared in optimization programs are now screened extensively in

physicochemical and in vitro ADME assays to evaluate their property

profile. Second, following the original idea of Teague et al. [1], it was

concluded that less complex, polar, low MW hits serve as better

starting points for optimization. Fragment-based drug discovery

(FBDD) straightforwardly realizes this concept. Restricted size and
[(Figure_1)TD$FIG]

FIGURE 1

Average properties of fragment (FR) and HTS hits and leads.
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complexity of fragments results in low binding affinity; therefore,

identification of fragment hits requires high concentration screen-

ing and, consequently, high solubility for fragments. The fragment

space defined by the ‘rule of three’ [9] typically fulfills these criteria.

FBDD reviews frequently claim that physical properties could be

more easily controlled in optimizing fragments than starting from

higher affinity high throughput screening (HTS) hits (see, for exam-

ple, Ref. [10]). The hope that unfavorable property shifts could be

avoided by using FBDD strategies has generated considerable inter-

est in the medicinal chemistry community. Investigating whether

fragments could really help reduce property shifts, we collected

fragment hit-lead pairs from the literature [11–14] and compared

their physicochemical profiles to those of recent HTS hits and HTS

leads. Our hit-to-lead database consists of 59 HTS [15] and 34

fragment hits and leads, respectively, which were all screened

against the same set of targets, including proteases, kinases and

GPCRs (Supplementary Data).

HTS hits typically showed micromolar affinity with a mean

pPotency of 6.01 (Fig. 1a), which was higher than the pPotency
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obtained for less complex fragment hits (pPotency = 4.41), as

expected. Hit-to-lead optimization from HTS hits resulted in

HTS leads with a median pPotency of 7.60, representing an

increase in affinity of approximately one order of magnitude. In

the case of fragment hits, the mean pPotency of leads reached 7.20,

revealing that fragment hits could be effectively optimized to leads

having similar affinity to that of HTS leads. In addition to the

significant increase in affinity, the average of Tanimoto similarities

calculated between corresponding hit and lead pairs (Fig. 1b)

suggests that hit-to-lead optimization of fragment hits led to

structurally dissimilar leads. The larger chemistry space and the

increased freedom of operation associated with fragment hits seem

to be reflected in Tanimoto indices obtained for fragment- (0.53)

and HTS-based (0.72) optimizations.

Next, we investigated ligand efficiency measures, including

original ligand efficiency (LE) [16] and size-independent ligand

efficiency (SILE) [17]. Contrary to the frequently cited phenomena

of the high LE of fragments [10], we found that HTS hits and leads

have LE similar to that of fragment pairs (Fig. 1c). It seems that the

high potency of HTS hits compensates for their more complex

nature, resulting in high LE for those HTS hits that could be

followed up and optimized to leads. It was interesting to see,

however, that the initial LEs did not improve for either fragment-

or HTS-based optimizations. Because the size dependency of LE

became obvious recently, we also compared SILE for fragment and

HTS hits and leads (Fig. 1d). SILE of HTS hits and leads was higher

than that of the fragments, although their difference became

marginal for leads. Comparing lipophilic efficiencies, we found

that the better lipophylic ligand efficiency (LLE) [15] of fragment

hits disappeared for leads having virtually identical LLE to that of

HTS leads (Fig. 1e). Recently, we introduced a new metric – LELP,

defined as the ratio of logP and LE [15] – to depict the price of LE

paid in logP (i.e. a lower absolute value of LELP is better). The

present analysis revealed that LELP does not improve during the

optimization of HTS hits to leads. More importantly, increasing

LELP values associated with hit-to-lead optimizations of fragments

suggests that improved affinity of fragment leads was primarily

achieved by adding lipophilicity (Fig. 1f). Although LELP indicates

that lipophilic efficiency deteriorates during hit-to-lead optimiza-

tions, SILE values demonstrate that ligand efficiency improves for

both fragment and HTS hits and, furthermore, that this improve-
[(Figure_2)TD$FIG]

FIGURE 2

Median molecular weights and logP calculated for fragment (FR) and HTS hits an
representing the present medicinal chemistry practice (MedChem) [5] are depicte
ment seems to be more significant for fragment hits. The signifi-

cant increase in affinity combined with large structural changes

during hit-to-lead optimization underlines the advantage of frag-

ment-based approaches over conventional HTS-based optimiza-

tion because the former provides diverse lead chemotypes with

almost the same affinity for leads as HTS leads. Although these

advantages made fragment-based approaches popular in early-

phase discovery, analyzing the basic properties of fragment hits

and leads highlighted that, like HTS hits, the properties of frag-

ments are also shifted unfavorably (Fig. 2).

At the hit-identification phase, fragment hits are notably less

complex and lipophilic than HTS hits, as described in most case

studies reporting fragment-based hit discovery [11–14]. This is one

of the conceptual advantages of fragment screening: we can pick

up a less complex and more soluble starting point for hit-to-lead

studies. Unfortunately, our most important finding is that these

good-quality fragment hits are optimized to leads with high MW

and logP. Contrary to previous hopes of fragment-based

approaches, this observation suggests that maintaining or improv-

ing LE or SILE alone is not a guarantee for high-quality leads.

Fragment leads have a MW almost identical to that of HTS leads,

and both groups have a similarly high logP that is in line with

present medicinal chemistry practice [5]. Although most of the

HTS-based optimizations do start from hits of higher MW and

lipophilicity, this seems to be under control, as suggested by

average changes detected during their optimization (DMW

75.63, DlogP 0.49). Fragment optimization, however, increased

MW and lipophilicity more significantly (DMW 173.33, DlogP

0.93) as compared to their HTS-based counterparts, indicating

that efficient optimization of fragments to potent leads is challen-

ging (i.e. physicochemical properties could not be controlled

easily, despite the attractive initial properties). These data indicate

that present medicinal chemistry practice optimizes both HTS and

fragment hits to leads that end up in the center of drug-like space.

Consequently, further optimization with the same practice would

shift the resulting candidate to the edge of the Lipinski zone with

suboptimal physicochemical properties.

The impact of lead optimization on undesired property changes

has been well documented. Analysis of a large number of hit and

lead pairs identified by different strategies, including high-

throughput screening, fragment screening, natural product
d leads. Corresponding values of historical leads (HL) [15] and compounds
d for comparison.

www.drugdiscoverytoday.com 921
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screening and virtual screening, has demonstrated [15,18] that this

unfavorable shift in physicochemical properties can be traced back

to lead discovery. We concluded that the increase in logP and MW

during hit-to-lead optimization is independent of the nature of the

library screened, the detection technology applied and the lead

discovery strategy used. Here, we show that fragment-based

approaches cannot avoid unfavorable property shifts per se. These

observations suggest that it is the optimization practice that is a

major contributor to property shifts, which prompted us to inves-

tigate the thermodynamic basis of optimization.

Thermodynamics of optimization
The most important objective of hit or lead optimizations is

improving ligand binding. The logarithm of binding affinity –

usually quantified by Kd or Ki values – is proportional to the Gibbs

binding free energy (DGbind, Eq. (1)).

DGbind ¼ RT ln Kd�RT ln Ki (1)

where R is the gas constant, T is the absolute temperature, Kd is the

apparent equilibrium dissociation constant and Ki is the inhibition

constant defined by the Cheng–Prusoff equation [19]. DG is a

function of the binding enthalpy (DH) and the binding entropy

(DS).

DGbind ¼ DHbind � TDSbind (2)

From a thermodynamic point of view, Eq. (2) suggests that the real

challenge of medicinal chemistry optimization is to overcome

enthalpy–entropy compensation [20]. There are two alternatives

to achieve this goal: enthalpy-driven optimizations are character-

ized by decreasing DH that dominates over disfavored DS changes,

and entropy-driven optimizations could be realized by increasing

DS to compensate for DH penalties.

Ligand binding is a multistep process that involves the confor-

mational rearrangement and desolvation of both the ligand and the

binding site and that is followed by the formation of the ligand–

receptor complex. Assuming equilibrium thermodynamics, each of

these elemental steps contributes to the binding thermodynamics

of the ligand. Ligand binding is usually accompanied by conforma-

tional rearrangement of both the ligand and the receptor, and this

typically represents an enthalpic penalty. Desolvation restructures

organized water clusters around the ligand, which results in a

significant entropic reward. Replacement of water from the binding

site might be both enthalpic and entropic, depending on the bind-

ing interactions of the replaced waters. H-bonds broken upon

desolvation, however, are responsible for an additional enthalpic

penalty. Formation of the ligand–receptor complex is typically

coupled to forming new interactions between the ligand and its

binding site that are enthalpically beneficial. Molecular recognition

of the ligand, however, limits its external rotational and transla-

tional freedom (as well as ligand and protein flexibility) and, there-

fore, represents an entropic penalty. Although the thermodynamic

impact of long-range effects is usually neglected, they could also

contribute to ligand binding. The net effect of these enthalpy and

entropycomponents determineswhether the binding is enthalpy or

entropy dominated; thus, the optimization can be enthalpy or

entropy driven, depending on which component contributes more

significantly to the affinity improvement.

Considering the enthalpic and entropic components of ligand

binding, it was concluded that enthalpy-driven optimization is
922 www.drugdiscoverytoday.com
challenging [21]. Significant gain in binding enthalpy is associated

with the formation of new contacts with optimal geometry that

require new interaction partners such as charged groups, donors

and/or acceptors at the ligand side. These new heteroatoms dis-

favor desolvation of the ligand and result in an enthalpic penalty.

Because the new interactions formed upon binding reduce ligand

and protein flexibility, they also contribute to the decrease of

conformational entropy. Consequently, the gain in binding

enthalpy could be easily compensated by enthalpic and entropic

penalties caused by disfavored changes in desolvation and con-

formational entropy. In the case of entropy-driven optimizations,

the gain in binding entropy could be realized by the increased

lipophilicity of the ligand. More lipophilic compounds desolvate

more easily, resulting in a significant reward in desolvation

entropy. In addition, medicinal chemistry efforts reducing ligand

flexibility – which usually increase MW and complexity – decrease

the penalty arising from conformational entropy changes. Signif-

icant gain in desolvation entropy in conjunction with decreased

penalty from conformational entropy is hardly compensated by

enthalpic penalties. Because the optimization of specific interac-

tions is far more difficult than increasing lipophilicity and com-

plexity, entropy-driven optimization [21] seems to be a

straightforward approach for medicinal chemistry teams working

with strict timelines. In fact, entropy-driven optimization by

adding lipophilic moieties and applying chain-ring strategies are

successful tools routinely used in medicinal chemistry programs.

Most of these optimizations, therefore, have significant entropy

components, giving a thermodynamic rationale for undesirable

property shifts. A recent article by Ladbury et al. [22] supports this

hypothesis. The authors analyzed more than 400 isothermal

calorimetry data obtained on more than 250 protein–ligand com-

plexes and found a correlation between binding free energy and

apolar surface burial upon complex formation. This finding is in

accordance with the general medicinal chemistry observation that

lipophilic interactions have a crucial role in binding affinity.

Although the correlation between �TDS and apolar surface burial

was less remarkable, they identified a statistically significant trend

indicating that increasing apolar surface burial is entropically

favored. This result gives additional support to the notion that

entropic optimization would be a major source of increasing

lipophilicity and complexity documented in the medicinal chem-

istry literature.

Guidelines for thermodynamics-driven optimization
Resolution of the binding free energy into entropy and enthalpy

components goes beyond the usual characterization by affinity

and it might be found useful at various stages of the hit to drug

candidate process.

A major challenge in optimization is that it is easier to achieve

improved binding by increased hydrophobicity than by optimized

polar interactions. Although it is a general assumption that

improved polar interactions lead to more favorable binding

enthalpy, we cannot fully control the enthalpy by simply engi-

neering interactions. For this reason, it is advantageous to measure

the binding free energy components at an early stage of drug

discovery to guarantee advantageous polar interactions and to

monitor them in the course of optimization. At decision points,

such as hit or lead selection, the enthalpy content of binding is an
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important piece of information to consider when one compares

the potential of compound series (i.e. to assess whether an affinity

gain together with a favorable physicochemical profile can be

achieved upon optimization). In this respect, thermodynamic

signature shows similarity to metrics that define LE and, in parti-

cular, to LLE [5] and LELP [15]. Compound characterization by LLE

and LELP aims to support the optimization of affinity without

increasing lipophilicity. Importantly, compound polarity does not

necessarily correlate directly to the enthalpic component of bind-

ing. It is not the presence of the polar groups but their favorable

interactions with the protein that contribute to the increase of

binding enthalpy. This explains why no correlation was observed

between the binding enthalpy and polarity-related Lipinski para-

meters for oral bioavailability [20]. The presence of polar groups is,

however, a prerequisite for high binding enthalpy.

A measure of the enthalpic content of the binding is enthalpic

efficiency (EE) [23], which is defined as DH/Nhv, where Nhv is the

number of non-hydrogen atoms. (An alternative called ‘specific

EE’ and defined as DH/Npolar, with Npolar being the number of polar

atoms, has also been proposed [23].) EE is similar to LE, but DH in

EE replaces pKi in LE. It is well documented, however, that LE

depends on the number of heavy atoms [17,24] and the SILE was

defined as pKi/Nhv
0.3 [17]. SILE enables an unbiased comparison of

ligands of different sizes. Concerning EE, we have shown else-

where [25] that it strongly depends on the number of atoms and

that this dependence is different from that found for LE. The

maximal observed DH increases (i.e. becomes less favorable) with

increasing atom number and so does the maximal EE (EEmax).

Nevertheless, the trend between Nhv and EEmax agrees with that

found between Nhv and LEmax [17], although the parameters are

different. The size dependency of EE would, therefore, potentially

mislead chemists when compounds based on different scaffolds

and sizes are compared. To avoid such size-biased prioritizations,

we introduced [25] the size-independent enthalpic efficiency

(SIHE), defined as SIHE = 0.018 � DH � N0.3 if DH is obtained at

300 K and is expressed in kcal/mol units. SIHE is a meaningful

measure of the optimization potential of compounds helping

series selection and optimization monitoring before late optimiza-

tion.

An optimal scenario of the optimization achieves affinity

increase with only a modest growth in MW and lipophilicity.

This can be realized by increasing the enthalpy content of the

binding via the introduction of optimized polar interactions.

Unfortunately, engineering of such interactions is a challenging

task for several reasons. Polar interactions are highly sensitive to

the relative positions of the interacting partners; in most cases,

this sensitivity exceeds the precision our predictive tools can

reach. Furthermore, the additivity of the free energy or its com-

ponents is an approximation that also represents a hurdle in

compound design [26]. Although it is reasonable to assume the

additivity of the enthalpy of pairwise non-bonded interactions,

the same cannot generally be assumed for the entropy and the free

energy. This is due to the new or lost specific interactions that will

change the number and population of available states for the

system [27]. This issue is also related to the ubiquitous phenom-

enon of enthalpy–entropy compensation when, for example, the

creation of a strong H-bond results in a favorable enthalpy gain

that is largely compensated by an unfavorable entropy loss caused
by the decrease of the available states for the system. These

limitations of ligand design call for the experimental monitoring

of the optimization by both structural studies and binding

enthalpy measurements. Whereas X-ray or nuclear magnetic

resonance (NMR) structures give a basically qualitative picture

of the ligand–protein binding, thermodynamic data enable a

quantification of the interactions. Thermodynamic data can

come from the measurement of Kd at different temperatures

followed by the application of the van’t Hoff equation to derive

DH and TDS [28] or from isothermal titration calorimetry (ITC)

experiments [29,30]. Both of the techniques provide the net

thermodynamics of ligand binding that makes the structural

interpretation of these data challenging. The former approach

requires that enthalpy shows no temperature dependence

(DCp � 0), which is less typical for systems other than membrane

proteins [31]. The ability to spot curvature in the plot caused by

experimental error in Kd further complicates deriving thermo-

dynamic parameters by the van’t Hoff equation. Steady-state

measurements over a broad temperature range and rigorous cur-

vature analysis, therefore, are suggested to obtain confident data-

sets. Finally, interdependency of DH and TDS impacts the

interpretation of enthalpic and entropic components of ligand

binding. ITC has the advantage of measuring DH directly, but its

principal limitations are high protein requirement and low

throughput. It should be noted that enthalpy values can change

dramatically depending upon such conditions as temperature,

pH, buffer, and so on. On one hand, enthalpy data should be

corrected for superimposed protonation steps [26] and ion bind-

ing and release [32] if necessary. On the other hand, because

enthalpy is an integral function of the heat capacity change, it

might be important to measure DCp as well. Recent efforts with

enthalpy arrays and automated ITC instruments promise to alle-

viate limitations in throughput [33,34]. Considering all of the

limitations associated with the experimental evaluation of bind-

ing thermodynamics, carefully checked data generated for a series

of compounds in unified conditions (a case typical in pharma

optimizations) can be directly compared and analyzed.

In most cases, quantitative structure–activity relationships

(QSAR) use Kd or IC50, which are directly related to DG. A beneficial

alternative is DH [35,36] because it better reflects the interactions

between the ligand and the target. With accurate DH values made

available by ITC, this avenue can readily be explored. Although DH

is not the ultimate function we might want to optimize, a quanti-

tative determination of DH enables us to have a better under-

standing of the interactions and to control the enthalpy content of

binding.

Although thermodynamic and structural studies are mutually

corroborating and are best used together, in cases in which struc-

tural information is not available, thermodynamic experiments

can provide us with information on the binding interactions and

thus also with quantitative experimental feedback on the success

of compound design.

The thermodynamic analysis of ligand–receptor binding can, in

some cases, also provide us with information on the agonist or

antagonist nature of ligands. Agonists and antagonists can bind to

the same receptor with different thermodynamic signatures. After

the pioneering work of Weiland et al. [37], it turned out that the

relative enthalpy and entropy components of agonist versus
www.drugdiscoverytoday.com 923
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antagonist binding are receptor dependent [38–42]. Furthermore,

it was demonstrated that the discrimination depends on the

experimental conditions applied [43,44]. This could suggest that

the interactions of agonists and antagonists do differ, but this

might not necessarily be manifested in the outcome of thermo-

dynamic experiments because various contributions might cancel

each other out. Appropriately chosen experimental conditions

could perhaps affect the thermodynamic signatures of agonists

and antagonists differently and, thus, a functional discrimination

by thermodynamic experiments might become possible.

Because DH affords a quantitative measure of the interactions, it

can contribute to the localization of enthalpy hot spots of the

active site and the identification of the crucial binding motifs of

ligands. Structural changes in the ligand and its protein complex

that are associated with significant favorable binding enthalpy are

signs of new or optimized interactions. In this way, groups respon-

sible for these advantageous interactions can be identified [44].

Thus, these interactions might be kept in the optimization of the

compounds or they could serve as templates to introduce similar

interactions in other compounds.

Overcoming enthalpy–entropy compensation by designing spe-

cific new interactions is extremely difficult, making elimination of

entropy-driven optimization unrealistic. Furthermore, the com-

plexity of the binding event prevents delineating quantitative

structure–thermodynamic relationships. We argue, however, that

based on the evaluation of thermodynamic signatures, the practice

of medicinal chemistry optimization could be thermodynamically

more balanced. Basically, there are two strategies towards this goal.

The first option is monitoring binding thermodynamics continu-

ously during optimizations to support the design of thermodyna-

mically balanced compounds in each round of the optimization

cycle for follow-up [45]. The other option is the thermodynamic

characterization of all available starting points and the selection of

the enthalpically most favored ones for subsequent entropy-dri-

ven optimization. In addition, a combination of these strategies

might also provide more viable leads. Balanced optimization can

be achieved with favorable enthalpy and entropy contributions,

which could give a limit on the desired entropy change. Indepen-

dent of the approach used, the increasing enthalpic contributions

to binding affinity would improve the quality of compounds

optimized.

Case studies
In this section, we discuss the practical utility of thermodynamic

characterization used in early- and late-phase optimizations. Case

studies of early optimization involve both HTS-based and frag-

ment-based approaches (renin inhibitors and carbonic anhydrase,

respectively). Late-stage optimizations are exemplified by HMG-

CoA and renin inhibitors.

Early-phase optimizations
Renin inhibitors

Renin is an aspartic protease of the renin–angiotensin system that

cleaves its natural substrate, angiotensinogen, to angiotensin I.

Angiotensin-converting enzyme processes angiotensin I further to

the vasoconstrictor angiotensin II. The cleavage of angiotensino-

gen is the rate-determining step in the production of angiotensin

II, suggesting that renin inhibitors are a promising therapy for
924 www.drugdiscoverytoday.com
hypertension. The efficacy of Aliskiren, the first-in-class drug,

provided clinical proof of concept for the development of non-

peptidic renin inhibitors. Although the first attempts to identify

potent, orally active renin inhibitors were initiated almost 30 years

ago, most of the peptidic or peptidomimetic compounds failed

because of dissolution-limited absorption, high metabolic clear-

ance and low oral bioavailability. Consequently, the identification

and optimization of potent, non-peptidic, low MW, orally active

renin inhibitors is desirable.

Diaminopyrimidine-type renin inhibitors were discovered by

an HTS campaign at Pfizer identifying 1 with double-digit micro-

molar affinity [46] (Fig. 3). Parallel synthesis of a 450-membered

focused library around the diaminopyrimidine core resulted in 2, a

low micromolar renin inhibitor. The X-ray structure of the renin-2

complex revealed that the diaminopyrimidine part of the mole-

cule is stabilized by five hydrogen bonds; however, this analysis

identified that the large S2 hydrophobic pocket and the smaller

hydrophobic S3 subpocket were unoccupied. Because preliminary

studies to fill the S2 pocket failed, 2 was first tethered by a

tetrahydroisoquinoline (3) and a benzoxazinone (4) ring system,

which were extended by a methoxypropyl side-chain toward the

S3 subpocket [47,48].

X-ray analysis of the renin-3 complex showed that all hydrogen

bonds stayed intact around the diaminopyrimidine core and that

the methoxypropyl side-chain reached the S3 subpocket.

Although this optimization increased the SILE significantly, there

was only a small improvement in the SIHE and a marginal change

in the LELP. The thermodynamic signature of 3 was recorded and

compared to that of 2 (Fig. 4). New hydrophobic van der Waals

contacts resulted in a moderate gain in DH that was less than

1 kcal/mol. Displacing ordered water molecules from the hydro-

phobic S3 subpocket, however, was entropically favored and

compensated for the entropy loss associated with the decreased

flexibility, as indicated by the almost 2 kcal/mol gain in TDS.

These significant entropy effects identify the optimization of 2 to

3 as being basically entropy driven, as indicated by the marginal

improvement detected in SIHE.

Although the X-ray structure of the renin-4 complex is not

publicly available, the complex of its 2,2-dimethyl-benzoxazinone

analog was crystallized and showed that all the hydrogen bonds

identified for 2 exist and that the S3 subpocket was filled by

the methoxypropyl side-chain. This optimization increased both

SILE and SIHE significantly and largely improved LELP simulta-

neously. Thermodynamic profiling of 4 revealed that in addition to

the entropy gain caused by filling S3, significant enthalpic compo-

nents are present (Fig. 4). The methyl group in position 2 formed

favored vanderWaals contacts and it is probable the benzoxazinone

group was involved in new polar contacts within the active site.

These new interactions yielded a significant gain in enthalpy

(DH � 4 kcal/mol) that was only partially compensated by the

entropic penalty (TDS � 2 kcal/mol) caused by the decreased flex-

ibility and desolvation entropy. The significant enthalpy effects

detected here mark this optimization as being enthalpy driven, as

indicated by the significant improvement detected in SIHE.

Comparing these two outcomes of the early-phase optimiza-

tion, the entropically optimized compound (3) is somewhat more

potent than that obtained by enthalpy-driven optimization (4).

Compound 3, however, has a significantly higher MW and higher
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FIGURE 3

Early-phase optimization of diaminopyrimidine-type renin inhibitors.
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lipophilicity than compound 4. This finding is in line with the

expectation that enthalpy-driven optimizations generate much

less unfavorable shifts in physicochemical properties. SILEs are

almost identical for both compounds, making the ranking difficult

on this basis. The lipophilic efficiency defined by LELP [15] is,

again, much better for compound 4. Comparison of the thermo-

dynamic signatures shows that enthalpic components are much

larger for compound 4 than for compound 3, as indicated by the

corresponding SIHE values. Although the IC50 of compound 3 is

half of that of compound 4, physicochemical and thermodynamic
data suggest the selection of compound 4 for further optimization.

In fact, optimized compounds reported from these laboratories

typically have benzoxazinone rather than tetrahydroisoquinoline

rings [49].

Fragment-like carbonic anhydrase inhibitors

Carbonic anhydrase (CA) is a Zn-containing metallo-enzyme that

catalyzes the hydration of CO2 and the dehydration of bicarbo-

nate. The human enzyme exists in several isoforms and is abun-

dant in various tissues and cellular compartments. It plays a key
www.drugdiscoverytoday.com 925
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FIGURE 4

Thermodynamic profile of renin inhibitors.
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part in the regulation of pH and fluid balance in different parts of

the body, and its inhibitors are used in various therapies. CA

inhibitors are applied as diuretics, as antiglaucoma agents, in

the management of mountain sickness and for the improvement

of the arterial oxygenation in chronic obstructive pulmonary

disease.

CA is an ideal model system; its catalytic mechanism and

structure are thoroughly studied and well characterized [35].

Furthermore, it binds benzene sulfonamides – small, fragment-

like compounds (MW < 250 Da) with low flexibility and high

affinity to CA. The binding of benzene sulfonamides to CA occurs

without gross conformational change of the enzyme. Recently,

Scott and Jones reported the thermodynamic optimization of

benzene sulfonamide (BSA)-type CA fragment inhibitors sup-

ported by ITC experiments and X-ray structure determinations

[50,51] (Fig. 5). Their binding to CA is dominated by the interac-

tions of the sulfonamide group. The binding free energies have

favorable enthalpy and for the majority of the compounds a

smaller favorable entropy component.
[(Figure_5)TD$FIG]

FIGURE 5

Fragment-like sulfonamide-type carbonic anhydrase inhibitors.
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Substitutions on the benzene ring result in small changes in the

binding affinity and thermodynamic signature of the ligands. To

make meaningful comparisons of the binding free energies and

their enthalpic and entropic components, the changes in DG, DH

and DS with respect to the unsubstituted BSA (5) were investigated.

The DD values enabled the tracking of subtle changes in the

thermodynamics of binding (Fig. 6). m-Cl, m-CN and m-OMe

(compounds 6–8) have similar thermodynamic signatures with

large negative �D(TDS) and smaller – but still large – positive DDH

values that result in a small DDG that is either positive or negative.

The o-Cl compound 9 shows a basically similar thermodynamic

signature by having�D(TDS) and DDH values with the same sign as

those of the previous compounds but with lower absolute values.

All four compounds have binding thermodynamics inferior to the

reference BSA because the entropy content of their binding was

increased at the expense of enthalpy loss. The m-F compound 10 is

different in having a smaller favorable entropic and an almost

absent enthalpic component. The o-F derivative 11 differs from all

previously discussed compounds because it has a large favorable
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FIGURE 6

Thermodynamic profile of carbonic anhydrase inhibitors of Figure 5. DDG, DDH and �DTDS values relative to unsubstituted benzene sulfonamide 5.
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enthalpic and a smaller, but still important, unfavorable entropic

component.

An analysis of the X-ray structures of the o-Cl (9), m-F (10) and o-F

(11) complexes supports the interpretation of the different thermo-

dynamic signatures. The fluorine atom of the o-F derivative points

towards the main chain amide NH of Thr200 and this interaction

presumably contributes to the enthalpy of binding. By contrast, the

fluorine atom of the m-F derivative points in the opposite direction

towards a dominantly hydrophobic surface of the enzyme. The

aromatic ring of the o-Cl derivative is twisted with respect to the

position of fluorine derivatives and places the Cl-atom in a hydro-

phobic pocket. These structural differences rationalize why m-F and

o-Cl derivatives have decreased enthalpy and increased entropy

content and explain the privileged binding thermodynamics of

the o-F derivative. The SILE of the BSA derivatives 5–11 has a

maximum at the m-F derivative 10, and the SIHE of these com-

pounds has a maximum at the o-F BSA 11. The high SIHE of 11

accompanied with a reasonable SILE value suggests this compound

as being a more appropriate starting point for further optimization

owing to its more important enthalpy component.

Compounds 12–14 include a p-benzylamide group (Fig. 5).

Whereas 12 contains no further substituents, 13 and 14 are

substituted by fluorine in the meta and ortho positions, to the

sulfonamide group, respectively. Thus, within the pairs of 5 and

12, 10 and 13, and 11 and 14, either the absence of or the position

of the F-substituent relative to the sulfonamide group is the same.

The addition of the benzylamide group significantly improves

binding in all three pairs, but the change in the binding free

energy and its enthalpy and entropy components varies. This

can be attributed to the varying intra- and intermolecular inter-

actions in these compounds and in their CA complexes. Although
no experimental structure for these complexes is available, the

binding features can be assumed from the X-ray structures of BSA

derivatives and para-substituted benzylamide derivatives. The car-

boxamide group H-bonded to a water molecule that, in turn, is H-

bonded to the enzyme. The F-substitution has a position-depen-

dent effect on the H-bond acceptor ability of this carboxamide

group. In addition, both the carboxamide and the sulfonamide

groups can directly interact with an adjacent fluorine atom. Com-

pound 14 shows the highest affinity and the highest enthalpy

component, and its superiority is readily shown by its favorable

SILE and SIHE values (Fig. 5). Although the most favorable

enthalpy component among BSA derivatives 5–11 was already

identified for o-F BSA 11, the addition of the p-benzylamide group

not only increased the enthalpy content of binding but also

resulted in the highest affinity compound. Thus, F-substitution

ortho to the sulfonamide group has privileged properties in the BSA

series, and this suggests that o-F BSA derivatives are particularly

well suited for further investigations. In spite of this finding, a

search in Prous Science Integrity1 [49] resulted in 15 m-F BSA

derivatives associated with CA activity and no o-F BSA derivatives,

as reported by Scott and Jones [50,51].

Late-phase optimizations
Renin inhibitors

Diaminopyrimidine-type renin inhibitors were next optimized

toward the large hydrophobic S2 pocket (Fig. 7). NMR auxiliary

screens identified an N-aryl-benzamide that binds to the S2 pocket.

Inter-ligand nuclear Overhauser- effect (NOE) data suggested that

the N-aryl-benzamide can be linked to the amino group located in

position 4 of the diaminopyrimidine core. Compound 15 identified

inthisway showedsomewhat lessaffinity (IC50 = 336 nM),probably
www.drugdiscoverytoday.com 927
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FIGURE 7

Late-phase optimization of diaminopyrimidine-type renin inhibitors.
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because of the suboptimal contacts formed within the S2 pocket.

Thermodynamic profiling of this compound (Fig. 4) indicated a

significant loss in binding enthalpy and a large gain in entropy.

Disfavored binding enthalpy suggested that polar groups in the aryl

benzamide moiety could not form H-bonds in the S2 pocket and,

thus, the penalty in desolvation could not be compensated by

enthalpic factors. A huge gain in binding entropy could be ratio-

nalized by the displacement of ordered water molecules from the

large hydrophobic S2 pocket. Based on these data, the team con-

cluded that affinity could be improved by positioning substituents

to interact with the negatively and positively polarized areas in the

S2 pocket. Extensive optimization of S2 substituents led to the

identification of 16. The thermodynamic signature of this com-

pound nicely justified its design concept (Fig. 4) because significant

gain in binding enthalpy was detected; however, new polar inter-

actions decreased the flexibility of the inhibitor and the protein

backbone, resulting in a less favored binding entropy. Conse-

quently, the binding affinity of 16 was found to be more than 10

times higher than that of compound 15.

An alternative optimization scheme focused on the central

region and the S3 subpocket. Introducing the previously identified

difluorophenyl moiety into position 2 of the benzoxazinone ring

resulted in 17, with improved affinity. Although the S2 pocket

remained empty in this case, the thermodynamic signature of this

compound was similar to that of compound 16. Further optimiza-

tion of the side-chain that fills the S3 subpocket finally led to

compound 18, having somewhat less affinity but improved ADME
928 www.drugdiscoverytoday.com
properties. 18 showed good bioavailability both in rat (74%) and

dog (19%), triggering its selection for preclinical development as

identified from Prous Science Integrity1 [49].

HMG-CoA reductase inhibitors

HMG-CoA reductase (HMGR) is an integral protein of endoplasmic

reticulum membranes. HMGR catalyzes production of mevalonate

from HMG-CoA, which is the rate-limiting step in cholesterol

biosynthesis. HMGR inhibitors – such as statins – therefore effec-

tively lower serum cholesterol levels. Statins prevent cardiovascu-

lar diseases and, although they are generally well tolerated,

myalgia is a reported side-effect. This can be reduced by targeting

hepatic tissues, and it has been shown that hydrophilic statins

tend to be more hepatoselective [52].

Novel inhibitors of HMGR with improved preclinical efficacy

and hepatoselectivity were sought [53]. Six series of analogs of

earlier statins were investigated. They contain a central hetero-

aromatic ring substituted by 3,5-dihydroxyheptanoic acid and in

most cases an adjacent aromatic group. Series 1 and 2 have

imidazole cores and differ in the N-atom positions in the core.

Series 3 contains pyrrole-based bicyclic compounds, and series 4–6

have pyrrole cores with different N positions. Fig. 8 shows the

highest affinity compound from each series together with rosu-

vastatin (25), which is shown for reference.

Biochemical assay, crystallography and ITC were used to char-

acterize the compounds, the majority of which are in the nano-

molar potency range. The most potent compounds in each series
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FIGURE 8

HMG-CoA reductase inhibitors. Highest affinity compounds from each series and rosuvastatin.
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have single-digit nanomolar activity. By contrast, enthalpy and

entropy components vary considerably among the different series,

although much less variation was observed within the series. Fig. 9

shows the thermodynamic signature of the highest affinity com-

pound from each series.

Series 1 and 2 have highly favorable binding free energy and the

highest enthalpy component among all series. Unique structural

features in series 1 and 2 include N-benzyl rather than N-phenyl
substitution of the amide group and the unsubstituted core N-

atom adjacent to the amide substituent. The authors proposed

that these two factors are responsible for the favorable thermo-

dynamic profile of these compounds. An analysis of the X-ray

structure of 19 suggests that the phenyl to benzyl replacement has

the advantage that the increased flexibility of the latter promotes

the phenyl ring into an advantageous position and preserves the

H-bond between the amide carbonyl and Ser565. These optimized
www.drugdiscoverytoday.com 929
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FIGURE 9

Thermodynamic profile of HMG-CoA reductase inhibitors.
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interactions contribute to an increased binding enthalpy. The

absence of the substituent ortho to the carboxamide group is

also advantageous for the thermodynamic profile. In the com-

plexes of other series, the partially solvent exposed substituents in

this position result in an entropy gain at the expense of an

enthalpy loss.

Series 3 compounds have considerably lower binding enthalpy

than compounds in series 1 and 2. The X-ray structure of 21 from

series 3 reveals that the protein undergoes significant conforma-

tional movements that complicate the thermodynamic analysis of

these complexes.

The thermodynamic signatures of series 4, 5 and 6 are also

inferior to those of series 1 and 2. This is rationalized by the

replacement of the preferred N-benzyl by N-phenyl substituents

and by the unfavorable substitution of the core N-atom (c.f.

analysis of series 1 and 2). Series 4 and 5 are similar in structure

and in terms of binding energy components. The change in the N

position is not crucial for the interactions in accordance with the
[(Figure_10)TD$FIG]

FIGURE 10

HMG-CoA reductase inhibitors of series 1.
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observed similarity between series 1 and 2. Series 6 compounds

contain a sulfonamide in position 4. Apparently, the replacement

of carboxamide by sulfonamide has no significant effect on the

binding, in line with the partial water exposure of these moieties.

The conclusion of this analysis is that although the different

series show similar affinities, they can be distinguished by their

thermodynamic profiles. The high enthalpic content of binding of

series 1 and 2 favors these series. Because series 1 is more hepa-

toselective than series 2 [53], the former is the most appropriate

starting point for further development. It is also noteworthy that

series 1 has a thermodynamic signature superior to rosuvastatin

that was shown to bind with the highest enthalpy content among

marketed statins [21,54].

Compounds from series 1 are shown in Fig. 10, and their

thermodynamic signatures are in Fig. 11. With the exception of

30, they are characterized by high enthalpy that overcompensates

for their unfavorable entropy. The best affinity was measured for

26, 27 and 29, although compound 19, with slightly lower
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FIGURE 11

Thermodynamic profile of series 1 HMG-CoA reductase inhibitors.
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affinity, has higher binding enthalpy. Owing to its advantageous

balance of properties – including HMGR affinity, binding

enthalpy, biological potency, and hepatoselectivity – 19 was

selected for preclinical development [49,53].

Concluding remarks
Although the undesirable shift in physicochemical properties of

leads was first reported more than a decade ago, the current practice

of drug discovery still tends to generate complex and apolar struc-

tures that are not ideally suited for clinical development. Recently,

we showed that this phenomenon could be traced back to lead

discovery (i.e. hit-to-lead optimization is responsible for an unfa-

vorable shift of physicochemical properties). Comparing fragment

and HTS hit and lead pairs screened against exactly the same set of

targets, we demonstrated that fragment-based optimizations are

also affected. Because unfavorable changes in properties seem to

be independent of the lead discovery technology applied, we

hypothesized that the optimization strategy should have a major

impact on compound quality. Analyzing the thermodynamic basis

of affinity optimizations, we concluded that entropy-driven opti-

mization strategies contribute significantly to this undesired trend.
We argue that thermodynamically more balanced strategies might

provide better quality leads and clinical candidates. Comparative

thermodynamic analysis of lead candidates could help identify

enthalpically favored starting points. Monitoring thermodynamic

profiles along optimization pathways mightenablea proper balance

between entropic and enthalpic contributions. Promoting enthal-

pic optimizations, we introduce a size-independent measure of

enthalpic efficiency (SIHE) thatmakesunbiasedcomparison of leads

and the progression of compounds in discovery programs possible.

Early case studies discussed here show that the concept of thermo-

dynamics guided lead discovery and optimization could contribute

to the success of both fragment-based and traditional medicinal

chemistry programs.
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