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Modern drug discovery involves the simultaneous optimization of many physicochemical and

biological properties that transcends the historical focus on bioactivity alone. The process of resolving

many requirements is termed ‘multi-objective optimization’, and here we discuss how this can be used

for drug discovery, focusing on evolutionary molecule design to incorporate optimal predicted

absorption, distribution, metabolism, excretion and toxicity properties. We provide several examples of

how Pareto optimization implemented in Pareto Ligand Designer can be used to make trade-offs

between these different predicted or real molecular properties to result in better predicted compounds.
Introduction
When we think of evolution, we tend to think of the continual

process of gradual change or adaption that an organism under-

goes, overcoming multiple challenges acting on the population to

continue the survival of the fittest, a process of natural selection.

This well-known principle can help us in developing new mole-

cules with optimal physicochemical properties that have survived

filtering and molecular transformation. The awareness has

increased that successful drug discovery increasingly requires

more than just finding a molecule that is highly potent at the

target: it needs to be as close to optimal for these other desired

physicochemical properties too. This is perhaps important for

compounds that have activity against multiple targets or are

promiscuous [1–3], which has enabled molecule repurposing in

some cases [4–6]. The molecule of interest might also need to be

orally available to be absorbed and is required to reach its target

before being cleared from the body. At each step (from absorption

to reaching its target and elimination), the molecule has to cross

multiple membranes. Each of these physical processes requires

different physicochemical properties – for example, moderate

hydrophobicity is good for membrane penetration [7] but not
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for solubility. Pharmaceutical scientists have at their command

an array of real and virtual data on their molecules of interest (e.g.

predicted physicochemical properties alongside measured meta-

bolic stability) and data on published molecules that are structu-

rally similar or active at the same target(s). Drug discovery

scientists, therefore, need to consider the many diverse require-

ments for a molecule alongside its bioactivity, any of which might

in be in conflict with one another. The process of resolving these

conflicting requirements is termed ‘multi-objective optimization’

or ‘multidimensional optimization’. It is not unique in being

applied to drug discovery but has been used previously in such

varied domains as optics, electronics, cancer treatment and pro-

duct development [8–11]. Some have suggested the need for a

simultaneous, multi-objective optimization of various molecular

properties with efficacy data [12–15]. Similarly, we need to opti-

mize the absorption, distribution, metabolism and excretion

(ADME) and toxicity data that are generated for compounds

[16] much earlier in the process using high-throughput screening

(HTS).

With increased compound throughput in drug discovery, we

have seen lead compounds derived from HTS hits frequently

having undesirable properties [17–19], such as increased hydro-

phobicity (log P) and decreased solubility. New leads should be
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more stringently selected in terms of their molecular properties

(MW < 350, log P < 3 and affinity �0.1 mM [20] or other desirable

properties [21], e.g. the rule of five [22]). Marketed drugs that are

inhaled have been found to possess more hydrogen bonds and

have generally lower c log P than drugs that are not inhaled [23]. In

parallel, many companies have instituted computational filters to

remove undesirable molecules from their HTS or from vendor

libraries. Examples include removal of swill (REOS) from Vertex

[24] and filters from GSK [25] and BMS [26]. Abbott reported a

sensitive assay to detect thiol-reactive molecules by NMR (ALARM

NMR) [27,28]. The data from this have also been used to create a

Bayesian classifier model to predict reactivity [29].

The understanding of the importance of structural transforma-

tions that can be made can also facilitate modifications to molecules

that might increase activity [30] or enable the optimization of off-

target activities [31,32]. For example, subtle chemical modifications

can dramatically alterpharmacological and ADME/Tox profiles, and

physicochemical properties can be thought of as driving these

differences (e.g. the slight modification of a clinical candidate for

cancer, tipifarnib, resulted in a potent inhibitor for Chagas disease

active with more predictable drug-like qualities) [33]. Understand-

ing which parts of the molecule are important for activity has led to

measures of ligandefficiency or fitquality that balancepotency with

size or other properties (e.g. molecular weight, number of heavy

atoms or polar surface area). The result is that smaller, more efficient

molecules might have better drug-like properties, and this is parti-

cularly prominent in fragment-based drug design [34–37].

Simultaneous multi-objective drug discovery is clearly neces-

sary [38] to improve drug discovery output and increase efficiency.

The most cost-effective approach for drug discovery is to simulate

as much as possible using computational methods [39–41]. These

have a greater throughput than in vitro and could impact the

quality of the molecules generated by helping to address potential

liabilities that lead to later-stage failures. Now we are seeing

repeatedly that large volumes of in vitro data are being used as

inputs into computational models for oral bioavailability [42],

human ether-a-go-go-related gene (hERG), Cytochrome P450

(CYPs) [43] or other ADME properties using an array of machine

learning algorithms such as support vector machines [44–46],

Bayesian modeling [47], Gaussian processes [48] and others [49].

A wide variety of computational methods (e.g. ligand-based,

structure-based and hybrid methods) can have an immediate

impact on the prediction of metabolic transformations that can

guide synthesis of more metabolically stable compounds [50]

involving many different enzymes and potential sites for meta-

bolism [51–57]. It is, therefore, important to block labile sites but

consider retaining or improving the bioactivity, solubility and

other properties of a molecule.

We and others have indicated the need for integrated simula-

tion tools [39,58] that bring together different types of models to

improve the drug discovery decision-making process. We initially

suggested a system of multidimensional scoring using many

ADME/Tox filters in decision-making [40], which seems to have

also been indicated by others [59]. ADME filters have led to the

derivation of rules for most of these properties, which are heavily

influenced by molecular weight and c log P [60].

When there are multiple endpoints – experimental data, compu-

tational predictions or both – then trade-offs have to occur and,
452 www.drugdiscoverytoday.com
ideally, we should use a method that can consider each variable and

enable the selection of the probable best compounds. Multi-criteria

decision methods [61], which are a type of multi-objective optimi-

zation [62], are one approach to the simultaneous optimization of

several variables [63] based on desirability functions [64] or desir-

ability indexes [65]. In contrast to the prevailing trend focusing on

simple rules to filter or select compounds, we would rather consider

many more variables without hard cut-offs. Previously, we indicated

how such multi-objective optimization approaches could work in

drug discovery simultaneously rather than optimizing single prop-

erties sequentially [13] to derive a set of Pareto-optimal (see descrip-

tion below) compounds. We will now expand greatly on this to

show the developments in the field over nearly a decade and new

ways to apply these technologies to evolve better quality com-

pounds. Although there is some review of the use of multi-objective

optimization in bioinformatics and computational biology [66], our

focus is limited to cheminformatics.

Approaches to multi-objective optimization
Broadly speaking, there are at least two approaches to numerically

solving a multi-objective optimization problem. In the simplest

case, we will assume that there are just two objectives, but all of the

available techniques can be generalized to any number of objec-

tives (with some caveats). We will also assume that we seek to

optimize the properties of individual compounds, as opposed to

properties of compound libraries (such as structural diversity) or

mixtures of compounds. We discuss library optimization in the

next section.

A basic first approach to multi-objective optimization is to

somehow combine all of the objectives into a single objective

function. This allows classical single-objective optimization tech-

niques to be applied to the problem. One variant of this approach

is weighted-sum optimization, in which the overall objective is a

weighted arithmetic mean of values representing the individual

objectives [67]. For example, suppose we have developed models

to predict a specific activity and the toxicity of chemical com-

pounds. To find the compounds that have the greatest activity and

the lowest toxicity, we construct the following objective function:

O ¼ waA

sa
� wtT

st
;

where A is the predicted activity of a compound, T is its predicted

toxicity, wa and wt are positive weighting coefficients whose

values we assign according to the relative importance we place

on maximizing activity versus minimizing toxicity, and sa and st

are scaling factors to correct for possible differences in range for the

A and T values. (A common approach is to use as the scaling

parameter the standard deviation of the variable value over the set

of compounds we are considering.)

Another variant of the single-objective approach to multi-objec-

tive optimization is to use as our objective function a weighted

geometric mean of desirability functions based on the individual

objectives. This approach is known as ‘desirability optimization

methodology’ and has certain advantages over the weighted-sum

approach [63].

Having established an objective function by either means, we

then seek to maximize it (or minimize it, depending on how the

objective is defined). If our optimization is over a fixed set of
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compounds, this simply requires sorting the compounds accord-

ing the value of O. If, instead, we wish to explore a space of

compounds whose structures are not predefined, we need to

iteratively ‘mutate’ the structure, beginning from one or more

seed compounds, until the objective has been maximized. This, of

course, will also require software and a rule base for generating

synthetically and chemically reasonable compounds. In the end,

we are left with a single compound that is ‘best’ according to our

criteria.

The single-objective approach to multi-objective optimization

has two major drawbacks: first, ordinary single-objective optimi-

zation yields only a single ‘best’ solution because suboptimal

solutions are not retained (or if they are, as possible in evolu-

tionary algorithms, there is no guarantee that the extra retained

solutions meet any sort of optimality criterion themselves – e.g. by

being solutions to an objective function defined by different

weights). Information on near-optimal solutions is lacking. Nor

does single-objective optimization provide a way, short of running

multiple optimizations with differing weights, of answering such

questions as, ‘In return for a slight decrease in activity, is it possible

to greatly reduce the toxicity?’

Second, the meaning of the weights is vague. Although their

effect is mathematically well defined, their meaning is hard to

grasp intuitively. For example, what exactly does it mean to say,

‘Low toxicity is twice as important as high activity’? The only way

to see how the weights affect the results is to vary them and run

multiple optimizations.

The second broad approach to multi-objective optimization

does not require the prioritization or weighting of individual

objectives and is a focus of this review. This approach is known

as Pareto or trade-off optimization [67,68] and is an alternative

method to the desirability function approach. One of the advan-

tages of Pareto optimization is that all objectives are put on an

equal footing [69]. Figure 1 illustrates this in practice.
FIGURE 1

Schematic illustration of Pareto optimization with hypothetical data.
The data in this graph are hypothetical but show the typical

pattern found in multi-objective optimization problems. We seek

to maximize both the activity and the nontoxicity of our com-

pounds. (We define nontoxicity here as simply the reciprocal of

toxicity, assuming the latter is always greater than zero.) Each

point on the graph represents a different compound. Ideally, we

would like an activity and toxicity profile corresponding to the red

point in the upper right; however, according to the displayed data,

the most active compounds tend to be the most toxic and the least

toxic compounds tend to have low activity.

Observe, however, that many compounds (those represented by

the magenta points) have relatively high toxicity, yet low activity

compared with other compounds with an equal or even lower

toxicity. Inspection of the graph should convince you that the

only compounds of even tentative interest for this optimization

problem are those represented by the blue points. To be precise, for

every magenta point, at least one blue point is better with regard to

toxicity or activity, while being at least as good with regard to the

other property. (In the jargon of Pareto optimization, we say that

the blue point dominates the magenta point.)

The blue points define the Pareto-optimal curve (with more

than two objectives, this curve becomes a surface or hypersur-

face). These are the points with the best possible trade-off between

the two objectives. Note that we have not yet indicated any

weights for the objectives – that is, any preference for lower

toxicity over greater activity or vice versa (e.g. a preference for

greater activity would have us focus on points toward the upper

left of the curve).

Pareto optimization is the process of generating a set of points

on the Pareto-optimal curve or surface. This accomplishes two

things. First, it eliminates from consideration the vast number of

compounds that are not of interest, irrespective of any weighting

or priority of one objective over another. Second, it retains multi-

ple compounds that might be of interest, enabling one to visually

inspect the trade-offs involved in improving some properties at the

expense of others and to choose the best Pareto-optimal com-

pound accordingly. Because Pareto optimization generates multi-

ple solutions, this visual analysis is a key follow-up step to the

optimization.

Running a single Pareto optimization is equivalent to running

multiple weighted-sum optimizations with varying weights.

Under certain conditions, the equivalence is exact. That is, under

certain conditions, every Pareto-optimal point is equivalent to the

solution of a weighted-sum optimization with a different (unspe-

cified) set of weights [70]. Thus, a weighted-sum single-objective

optimization yields one of the blue points in Fig. 1. A multi-

objective Pareto optimization yields all of the blue points.

Applications of Pareto multi-objective optimization:
library optimization and beyond
Desirability functions and Pareto optimization [71] have been

applied to numerous problems, including those in the area of

compound and library optimization [72–76]. In library optimiza-

tion, we seek to optimize not only properties of individual com-

pounds in the library (although that might be one component of

the problem) but also properties of the library as a whole, such as

structural diversity and scaffold coverage to ensure that different

chemotypes are represented [77].
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For example, we might wish to find a subset of 1000 com-

pounds, taken from a library of ten million, that maximizes both

diversity and the degree to which the compounds are drug-like on

average. Here, the unit being optimized is the subset rather than

the individual compound, and the Pareto curve is defined by a

group of these subsets. Some subsets along the Pareto curve will be

more diverse and less drug-like on average, and others will be less

diverse and more drug-like on average. The Pareto approach has

been used by others to solve this and similar problems [72,78,79].

One drawback of the Pareto approach is that as the number of

properties to be optimized increases, the number of samples on the

Pareto-optimal surface tends to increase exponentially. The reason

for this can be seen by considering that this ‘surface’ is a one-

dimensional curve for two optimization properties, a two-dimen-

sional surface for three properties, a three-dimensional hypersur-

face for four properties, and so on. This implies a great increase in

the required memory and computation time with the number of

properties to be optimized. It also suggests that the researcher can

be faced with hundreds or thousands of optimal samples to choose

from at the end. To mitigate these problems and reduce the

number of properties to be optimized, it makes sense to combine

correlated properties into composite properties and then Pareto-

optimize the composite properties (e.g. multiple measures of

toxicity might be combined into an overall toxicity property

and multiple ADME properties might be combined). The approach

then becomes a hybrid of the single-objective and Pareto methods.

Such an approach has been described recently with a case study for

automated drug design for estrogen receptor antagonists using

desirability indexes to reduce the number of objectives [80].

A recent review has summarized many computational multi-

objective methods for molecule optimization [81], some of which

are discussed below. Desirability-based multi-objective optimiza-

tion (MOOP-DESIRE) was proposed for filtering combinatorial

libraries [82] and global QSAR studies studying NSAIDS with analge-

sic, anti-inflammatory and ulcerogenic properties, which all needed

optimization [83]. The multi-objective evolutionary graph algo-

rithm (MEGA) is a new method for de novo design of molecules

that bind a target. MEGA uses multi-objective optimization to trade

off between conflicting objectives (e.g. selectivity of one protein

versus another, such as estrogen receptor beta over alpha selectivity)

[84]. Similarly, this approachhas been used tooptimize compounds’

antifungal profiles [85]. Multi-objective genetic QSAR uses the

Pareto ranking to produce a family of models representing a differ-

ent compromise in the objectives [86]. Multi-objective optimization

has also been used in pharmacophore identification to explore

conformational space for multiple ligands simultaneously and align

them using a genetic algorithm [87]. Another pharmacophore

method uses hierarchical multiple objective ranking, which trades

off internal strain, pharmacophoric overlap and steric overlap [88].

Variants of Pareto optimization have also been used in protein

design [89] and in docking-based virtual screening [90], docking

with EADock [91], fragment-based de novo ligand design by multi-

objective evolutionary optimization [92], the inverse quantitative

structure property relationship (QSPR) problem [93] and evolving

interpretable SAR [94].

This is in addition to bioinformatics applications, such as the use

of a multi-objective genetic algorithm followed by support vector

machine (SVM) used with microarray data to better find clusters of
454 www.drugdiscoverytoday.com
co-expressed genes that were biologically relevant [95]. Multi-objec-

tive approaches have also been used for sequence analysis [96],

optimization of 2D-GC/MS data in metabolomics [97] and evolu-

tionary search using multiple optimization algorithms [98].

One commercially available set of software tools for performing

Pareto optimization of compounds and compound libraries is

found in the Accelrys Pipeline PilotTM and Discovery Studio1

programs (http://www.accelrys.com). These can be used to opti-

mize a set of compound libraries to be both maximally drug-like

and maximally diverse (Supplementary Fig. S1). The first objective

is to maximize the mean value of the ‘drug-like’ property, which is

the prediction of a Bayesian model trained to distinguish drug-like

from baseline compounds. The second objective is to maximize

structural diversity. As a measure of diversity, we use the number of

distinct structural features found within a subset, based on the

FCFP_4 molecular fingerprint [99], but any other diversity measure

could be used instead. To begin, the optimizer randomly assigns

100 compounds to each of 40 subsets. Then, using the NSGA-II

algorithm for Pareto optimization [100], the population of subsets

evolves over several hundred generations. The subsets that are

most diverse and most drug-like are the ones that tend to survive.

Figure 2 shows the progress of the optimization.

The graph displays the population of subsets every 25 genera-

tions, with a different color for each generation. The initial ran-

dom population at the lower left has both low diversity and low

drug-like character. As the optimization proceeds, both quantities

increase, until the optimized subsets begin to converge at the

upper right of the figure. Once convergence has occurred, one

can choose one or more subsets considered best from the final

optimal population.

Another commercial implementation of Pareto optimization is

found in SAS (http://support.sas.com/documentation/cdl/en/

orlsoug/59688/HTML/default/ga_sect65.htm). Desirability-based

multi-objective optimization is implemented in the commercial

packages JMP (http://www.jmp.com), Minitab (http://www.mini-

tab.com), STATISTICA (http://www.statsoft.com) and Stat-Ease

(http://www.statease.com). The ‘desirability’ package [101] for

performing desirability-based optimization is available for the

open-source R statistics program. Some other tools incorporate

Pareto optimization as part of their functionality, including the

incremental molecule construction method OptDesign [102] and

the pharmacophore method GALAHAD [88,103] (http://www.tri-

pos.com). It is probable that as Pareto optimization increases in

popularity, we will see it implemented in more software tools used

in drug discovery and data mining.

Pareto Ligand Designer in practice
There have been numerous methods published for de novo mole-

cule design, including genetic algorithms that mimic to a great

extent Darwinian evolution [104–107] and particle swarm opti-

mization methods [108] with various fitness functions to direct the

design of further molecules (e.g. physicochemical properties,

docking, similarity and QSAR).

To illustrate how Pareto optimization could be applied in de

novo molecule design, as a ‘proof of concept’, a Pipeline Pilot

protocol has been constructed at Abbott utilizing the Pareto Sort

component to perform simultaneous, multi-objective optimiza-

tions of a known, active CCK antagonist, 1 (Fig. 3a), reported by

http://www.accelrys.com/
http://support.sas.com/documentation/cdl/en/orlsoug/59688/HTML/default/ga_sect65.htm
http://support.sas.com/documentation/cdl/en/orlsoug/59688/HTML/default/ga_sect65.htm
http://www.jmp.com/
http://www.minitab.com/
http://www.minitab.com/
http://www.statsoft.com/
http://www.statease.com/
http://www.tripos.com/
http://www.tripos.com/
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FIGURE 2

A graph showing the progress of Pareto optimization. The graph displays the population of subsets every 25 generations, with a different color for each

generation. The initial random population at the lower left has both low diversity and low drug-like character.
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Evans et al. [109]. Although the CCK antagonist has measured

biological activity (IC50 = 0.30 mM), the compound is predicted to

have poor blood brain barrier (BBB) penetration, poor aqueous

solubility, medium CYP2D6 binding probability and a high hepa-

totoxicity probability using models available in the Pipeline Pilot

ADMET component package [110–113]. The Accelrys Pipeline Pilot

ADMET BBB model has not yet been published, yet the product

notes indicate that the regression model was derived from a

training set of 102 compounds and applied to a test set of 86

compounds (RMSE for the training set was 0.36, and root mean

square error (RMSE) for the test set was 0.31). The optimizations

were performed as three separate ‘scenarios’ in which the goals

were to simultaneously improve the predicted values of two, three

and four variables, while maintaining biological activity. Tani-

moto similarity calculated using Accelrys ECFP_6 fingerprints

calibrated using Belief Theory was used as a surrogate predictor

for maintaining biological activity [114].

It should be emphasized that only the initial compound had

measured activity, whereas the activities and properties of all

molecules generated by the algorithm were not experimentally

measured. It is assumed that the various models employed during

the optimization had sufficient accuracy and domain applicabil-

ity to drive the optimization toward sets of molecules with a

reasonable probability of having the desired composite set of

improved activities and properties; however, one might want

to consider in future that measures of domain applicability could

be included in the optimization (e.g. a distance from model

training set).

In each of the optimization scenarios described next, a Pipeline

Pilot protocol was created that performs the following operations:
Initialization. i = 0. An initial set of one or more seed molecules

are read in. The initial molecules can be assigned as reference

molecules for the computation of Tanimoto similarity (Belief

Theory). The ligand properties for the set are computed and the

values are written to an overall statistics file, which is used to keep

track of the progress of the optimization.

Main loop. i = i + 1. The ligands are then passed into a Pipeline

Pilot Pareto Sort component where optimal compounds along the

Pareto front are identified and stored in a file. (The Pareto Sort

component performs only the fast nondominated sort from the

NSGA-II algorithm [100].) The optimal and nonoptimal com-

pounds are then subjected to an extensive set of molecular trans-

formations, some of which are included in the Drug Guru program

[30]. Compounds resulting from the molecular transformations

are then passed through several property and structure filters,

including ‘orange alerts’ [29]. Molecules that survive the filters

are then assigned to the next iteration number and passed into the

Pareto Sort component, statistics are computed, and the cycle

begins again (top of main loop).

Optimal Pareto compounds are recycled back into the transfor-

mation/optimization selection process. They are not completely

removed from the optimization loop. If a previously optimized

molecule generates a new molecule with even better properties,

the molecule will probably be retained in the next generation of

optimized molecules. If the previously optimized molecule gen-

erates a new molecule with poorer properties, it will probably be

removed because it will not be along the Pareto front. If the

previously optimized molecule generates a new molecule that

has already been generated (a duplicate), the new molecule will

be removed.
www.drugdiscoverytoday.com 455
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FIGURE 3

(a) Molecule 1 used in scenario 1 and associated properties. (b) Iteration number versus the mean value of the objective function for scenario 1. (c) Iteration
number versus the mean value of BBB for scenario 1. (d) Iteration number versus the mean value of solubility for scenario 1. (e) Compound 2 from scenario 1,

iteration number 8.
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Table 1 in Ref. [30] lists ten examples of transformations from

Drug Guru. Some of the transformations from Drug Guru have

been included in Pareto Ligand Designer (kindly provided by Dr

Kent Stewart). It should be noted that some of the Drug Guru

transformations implemented in Pareto Ligand Designer (PLD)

give identical results to Drug Guru, whereas other transformations

give different results. PLD, however, incorporates several hundred

additional transformation rules that generate novel molecules

beyond the capabilities of Drug Guru. Additional transformations

are added as optimized molecules are found in the literature that

cannot be generated in a few iterations by PLD.

BBB and solubility optimization
In the first scenario, the optimization goals are to begin with the

known, active CCK antagonist, 1, and generate a set of optimized
456 www.drugdiscoverytoday.com
molecules with the following properties: (i) maintain or improve

the biological activity, (ii) maintain or decrease the molecular

weight, (iii) maintain A log P within a reasonable range, (iv)

improve (increase) the BBB partitioning and (v) improve (increase)

the aqueous solubility.

Biological activity was maintained using a minimum ECFP_6

fingerprint Tanimoto similarity filter of 0.35, corresponding to an

activity belief of 16.6% [114]. The molecular weight was main-

tained or decreased using a filter set to 500 Da. Log P was main-

tained in the range of 0.00–5.00 using minimum and maximum

A log P filters. BBB partitioning was calculated using the Accelrys

ADMET BBB component. The component calculates the value

of log10([brain concentration]/[blood concentration]). Aqueous

solubility was calculated using the Accelrys ADMET solubility

component. The component calculates the value of log10(molar
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solubility). Compounds with Pareto-optimal maximum values of

BBB and solubility were saved and written to files at each iteration.

Figure 3b shows the iteration number versus the overall objec-

tive function. At each iteration, the Pareto optimizer generates five

sets of compounds. The number of Pareto sets is a user-defined

parameter. We then compute the mean value of the objective

function over all the compounds in all five Pareto sets. Structure

(e.g. ‘orange alerts’ [29]) and property filters are turned on at

various iterations during the optimization to guide the algorithm

toward the creation of new chemical matter that is likely to be of

interest to practicing organic chemists. This can cause an abrupt

increase in the objective function, which then – typically – starts to

decrease after a few additional iterations. It should be noted that

the objective function tends toward zero as the properties become

optimized. Clearly, the overall objective function improves dra-

matically within the first five iterations and then begins to level off

at about ten iterations. Figure 3c shows the iteration number

versus the mean BBB value. The BBB improves for the first five
FIGURE 4

(a) Iteration number versus the mean value of the objective function for scenario 2.

number versus the mean value solubility for scenario 2. (d) Iteration number versu

scenario 2, iteration number 8.
iterations and then shows no further improvement after about ten

iterations. Figure 3d shows the iteration number versus the mean

solubility value. The solubility increases and then begins to level

off at about ten iterations.

Structure 2 (Fig. 3e) is an example of a compound generated at

iteration number 8. The values of the properties, including the

Pareto-optimized BBB and solubility, are listed below the structure.

For the sake of consistency, an example structure has been taken

from iteration number 8 from each optimization scenario. Note

that comparisons between scenarios are not entirely valid because

the optimization conditions were not identical for each scenario.

BBB, solubility and ADMET CYP2D6 binding optimization
In the second scenario, the optimization goals are to begin with

known, active CCK antagonist 1 (Fig. 3a) and generate a set of

optimized molecules with the following properties: (i) maintain or

improve the biological activity, (ii) maintain or decrease the

molecular weight, (iii) maintain A log P within a reasonable range,
(b) Iteration number versus the mean value of BBB for scenario 2. (c) Iteration
s the mean CYP2D6 binding probability for scenario 2. (e) Compound 3 from
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(iv) improve (increase) the BBB partitioning, (v) improve (increase)

the aqueous solubility and (vi) decrease the CYP2D6 binding

probability. The CYP2D6 binding probability was calculated using

the CYP2D6 binding model in the Pipeline Pilot ADMET compo-

nent. The component calculates the probability that a compound

will be an inhibitor (probability = 1.0) or not (probability = 0.0).

The CYP2D6 binding probability of compound 1 was 0.5, suggest-

ing an intermediate probability of CYP2D6 binding.

Figure 4a shows the iteration number versus the mean value of

the objective function. The objective function has sharply

decreased after five iterations and continues a more gradual

decrease beyond ten iterations, implying slower, gradual improve-

ments in the desired qualities of the Pareto-optimized molecules.

Figure 4b shows the iteration number versus the mean value of

BBB. The BBB has increased at about five iterations but does not

show a consistent improvement afterwards. This suggests that BBB

optimization in combination with solubility and reduction of

CYP2D6 binding might be difficult to achieve. Figure 4c shows

the iteration number versus the mean value of the solubility. There

is a sharp increase in solubility near iteration 5, followed by

another increase of solubility at a slower rate. Figure 4d shows

the CYP2D6 binding probability, which begins near 0.5 and slowly

decreases to 0.2 but does not decrease much further. Compound 3

(Fig. 4e) is an example of a Pareto-optimized ligand from iteration

number 8.

Current practical issues and challenges of PLD
The technology presented demonstrates that multi-objective opti-

mization of calculated ligand properties is clearly possible, result-

ing in ligands of reasonable quality based on predicted properties.

There are several remaining challenges to be addressed, in addition

to actually validating the predictions experimentally.
(i) D
458
evelopment of additional transformation reactions that

can potentially get around problems of either slow con-

vergence or poor optimization. This might require continual

surveying of the medicinal chemistry literature to ensure

that structures that have undergone lead optimization, as

well as known optimized structures, can be readily generated

by PLD. This might be possible using a test set of known drugs

with known ADME/Tox properties, for example.
(ii) A
s has been suggested by others [108], it will be desirable to

replace the chemical transformations with high-yielding

‘real’ chemical reactions and track the complete synthetic

pathway or the least costly reactions. There are several

approaches for evaluating synthetic accessibility, including

methods that use a combined scoring method incorporating

structural complexity, similarity to available starting materi-

als (e.g. SYLVIA [115]) or relative atomic electronegativity

and bond parameters (SMCM [116]).
(iii) C
onditions for parallel processing will need to be optimized

for maximum throughput.
(iv) I
t will be important to continue to develop and test structure

filters to remove compounds that are undesirable to

practicing organic chemists for a variety of reasons (e.g.

reactivity).
(v) T
he optimization process relies on the existence of accurate

predictive models with a sufficient applicability domain to

cover the structures that are generated in the transformation
www.drugdiscoverytoday.com
reactions. Hence, there will need to be development and use

of accurate predictive models with broad applicability

domains or some use of tools for navigating chemical space

when the SAR is limited [117].
(vi) W
e could imagine using approaches to ensure that molecules

suggested by PLD look more like endogenous metabolites

than commercially available chemicals [118] to bias the

physicochemical properties to those that are likely to have

improved absorption.
Discussion
For well over 20 years, we have seen the dramatic increase in costs

for the discovery and development of new drugs [119,120] – a

trend that seems likely to continue. Drug discovery increasingly

requires the simultaneous optimization of many measured and

calculated properties. As we suggest in this overview (and many

others are also showing with their various studies described

above), it is possible to achieve such optimizations in principle

using methods such as Pareto optimization. One challenge is that

as the number of properties to be optimized increases, the required

calculation time greatly increases, such that efforts to combine

properties into composites (e.g. as desirability functions) [64,65]

should be made to decrease the number of properties undergoing

Pareto optimization. In the examples we have suggested above, all

of the predictions are ADME related, but one could also imagine

optimizing other non-ADME related properties such as costs and

molecular complexity alongside predicted properties.

Tools like the PLD suggested here, MEGA [84] and other meth-

ods [108] represent new approaches to de novo design that have the

potential to consider many properties (e.g. ADME/Tox) besides

bioactivity (or bioactivity at multiple targets), while rapidly gen-

erating ideas for potentially synthesizable molecules. This builds

on the research in predictive models for ADME/Tox properties [13]

and other areas. Ultimately, such approaches might represent an

additional source of molecule ideas for lead discovery or, as we

have indicated, they might assist in lead optimization and beyond.

Evolving molecules with more ideal properties (using Pareto

optimization) alone is not a panacea and might not ensure the

survival of companies focused solely on small-molecule drug

discovery; however, its use alongside other methods (such as

genetic algorithms) could help suggest some nonobvious mole-

cules that have bioactivity balanced with other properties of

interest. As a consequence, the development of future software

that learns from the molecules it suggests and their properties

might represent another example of the ‘survival of the fittest’.
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