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In recent decades, our knowledge of the genetics and functional genomics of drug-metabolizing

enzymes has increased and a wealth of data on drug-related ‘omics’ has become available. Despite the

availability of large amounts of biological information on xenobiotic biotransformation, the number of

available biotransformation pathway maps that can easily be used for visualization of multiple omics

data is limited. Here, we created integrated biotransformation pathway maps suitable for multiple omics

analysis using PathVisio. The ease of visualizing data on these maps was demonstrated by using

published microarray data from human hepatocyte-like cell models, exemplifying – where a sufficient

capacity for metabolizing chemicals is a prerequisite for a suited model – how the biotransformation

pathway maps can be used for model selection.
Introduction
Over time, drug metabolism has become more and more impor-

tant in pharmaceutical research on drug discovery and develop-

ment [1,2]. Where drug metabolism traditionally investigated the

well-defined aspects of absorption, distribution, metabolism and

excretion (also known as ADME), its focus has shifted towards

areas on the genomics and genetics levels, aiding the early dis-

covery or prediction of adverse effects of new drugs [3]. Advances

from the past decade in fields such as pharmacogenetics, pharma-

cogenomics and toxicogenomics have increased our knowledge of

the genetics and genomics of drug-metabolizing enzymes (DMEs),

resulting – for example – in new insights in induction and inhibi-

tion, substrate specificities and polymorphisms of DMEs [4–6].

This information is useful in the development of novel in vitro

cell models for the purpose of screening drug candidates for their

efficacy and safety because capacity to metabolize chemicals is a

prerequisite for such models [7]. For instance, at present, there is

an increasing interest in the development of stem-cell-derived

models, such as hepatocyte-like cells [8,9], and the metabolic
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competence of such novel models is considered of utmost rele-

vance [10].

Although a large amount of information on the biotransforma-

tion reactions is available in literature (e.g. Refs. [11–15]) and online

pathway database resources, such as the Kyoto Encyclopedia for

Genes and Genomes (KEGG) (http://www.genome.jp/kegg/) [16]

and Reactome (http://www.reactome.org/) [17], the number of

online biotransformation pathway maps suited for evaluating the

metabolic competence of a cell model is limited. Furthermore, these

maps cannot easily be updated or used for visualization of tran-

scriptomics, proteomics and metabolomics data. This paper, there-

fore, will focus not only on the different biotransformation

pathways and their availability from different pathway databases

but also on their applicability in data analysis and visualization.

Recently, biotransformation pathway maps were constructed

using PathVisio (http://www.pathvisio.org/) [18], the pathway

editor of WikiPathways (http://www.wikipathways.org/) [19],

and subsequently made available to the community at WikiPath-

ways [20]. The ease of visualizing data onto these maps in PathVi-

sio will be demonstrated by using previously published microarray

data on baseline gene expression in important human tissues for

biotransformation (i.e. liver, expressing most DMEs, kidney and
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TABLE 1

Overview of availabilitya of biotransformation pathways from some pathway databases

WikiPathwaysb MetaCorec IPAd Reactomee KEGGf SMPDBg MetaCych BioCartai

Phase I biotransformation pathways
Cytochrome P450 FP CP CP R CP – R –

Flavin-monooxygenase catalytic cycle FP – – FP – – R –

Aldo-keto reductase pathway CP – – R – – R –
Epoxide hydrolase pathway CP R CP – CP – R –

Phase II biotransformation pathways
Glutathione conjugation FP FP FP R FP FP R –
Amino acid conjugation CP – – R – – R –

Sulfation/sulfonation FP CP CP R – – R –

Acetylation FP CP – R – – R –

Glucuronidation FP CP CP FP – – R –
Methylation FP CP CP FP – – R –

a The biotransformation pathways are available as FP, full pathway containing all available reaction information; CP, compound-related pathway containing compound specific reaction

information; R, reaction showing information of single reactions.
b http://www.wikipathways.org/ [19].
c http://www.genego.com/.
d http://www.ingenuity.com/.
e http://www.reactome.org/ [17].
f http://www.genome.jp/kegg/ [16].
g http://www.smpdb.ca/ [24].
h http://www.metacyc.org/ [25].
i http://www.biocarta.com/genes/index.asp.
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lung) [21]. In addition, case studies on several human hepatocyte-

like cell models are presented to exemplify how the biotransfor-

mation pathway maps can be used for model selection.

Biotransformation pathways and databases
Biotransformation can be divided into two main phases, phase I

and phase II. Phase I biotransformation reactions include oxida-

tion, reduction, hydrolysis, hydration and other relatively rare

reactions that cause the introduction of reactive and polar func-

tional groups in the compound, making it more suitable for

conjugation reactions. Phase I biotransformation thus functions

as a preparation step for phase II biotransformation. In the phase II

biotransformation reactions, metabolites are conjugated with

(small) endogenous molecules, often resulting in water-soluble

metabolites that can be further metabolized or easily excreted

from the human body [10,15,21,22]. This further metabolization

or excretion is part of the phase III biotransformation reactions

[10,15], which are important reactions in the overall process of

biotransformation. Phase III biotransformation, however, will not

be considered in this paper. In Table 1, pathways of the phase I and

phase II biotransformation reactions are listed with their avail-

ability from two commercial and six freely available online path-

way resources, selected from the online pathway resource list

Pathguide (http://www.pathguide.org/) [23]. Although Pathguide

contains more than 300 resources, each with a short description

and a link to the resource homepage, only a few popular pathway

resources were selected that contain proprietary pathway maps.

Other resources, either commercial or freely available, such as

PathArt (Jubilant Biosys Ltd., Bangalore, India; http://www.

jubilantbiosys.com/pathart.html), Pathway Interaction Database

(http://pid.nci.nih.gov/) or PANTHER (http://www.pantherdb.

org/) make use of the resources listed in Table 1 (e.g. KEGG,

BioCarta or Reactome). Therefore, we will only focus on the

usability of the eight selected pathway databases and their analysis

tools with respect to the biotransformation pathways.
852 www.drugdiscoverytoday.com
From the examined databases, MetaCore (GeneGo, San Diego,

CA; http://www.genego.com/) and Ingenuity Pathway Analysis

(IPA) (Ingenuity Systems, Redwood City, CA, http://www.

ingenuity.com/) require a license, whereas the other databases

are freely available. Six of these pathway resources contain tools

that enable visualization of expression data. This is an important

step during data analysis because it facilitates a better biological

interpretation by directly comparing different conditions and/or

concentrations in relation to a specific biological context. Wiki-

Pathways, MetaCore, IPA and Reactome provide tools for statis-

tical pathway ranking tests to identify significantly altered

pathways by determining whether the changes of the elements

(genes, proteins or metabolites) of a given pathway are higher than

the average change in the complete dataset (P-value or Z-score).

WikiPathways, Metacore and IPA perform better here because they

enable direct visualization of multiple datasets. Data visualization

in Reactome is more limited because it is restricted to a single

dataset and visualization results in a complex image, making it

more difficult to interpret the data. KEGG and The Small Molecule

Pathway Database (SMPDB) (http://www.smpdb.ca/) [24] are also

only capable of visualizing a single dataset but do not perform any

statistical pathway ranking tests. BioCarta (http://www.biocarta.

com/genes/index.asp) provides static images, whereas MetaCyc

(http://www.metacyc.org/) [25] provides links for each element

in its pathways and reactions. The content of the different path-

way resources varies from no or hardly any biotransformation

pathway (i.e. BioCarta, SMPDB and KEGG), through reactions

(i.e. Reactome and MetaCyc), to compound-related and full path-

ways (i.e. WikiPathways, MetaCore and IPA).

IPA, MetaCore and WikiPathways perform equally well in

visualizing expression data, and the latter two have shown to

be an asset to each other [26]. In addition, IPA, MetaCore and

WikiPathways provide tools to create and edit one’s own pathway

maps. For MetaCore, however, an extension of the license with

the MapEditor software is needed. Furthermore, the maps created

http://www.genome.jp/kegg/
http://www.smpdb.ca/
http://www.smpdb.ca/
http://www.metacyc.org/
http://www.biocarta.com/genes/index.asp
http://www.biocarta.com/genes/index.asp
http://www.genego.com/
http://www.ingenuity.com/
http://www.ingenuity.com/
http://www.smpdb.ca/
http://www.biocarta.com/genes/index.asp
http://www.biocarta.com/genes/index.asp
http://www.metacyc.org/
http://www.genome.jp/kegg/
http://www.reactome.org/
http://www.pathvisio.org/
http://www.wikipathways.org/
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http://www.biocarta.com/genes/index.asp


Drug Discovery Today � Volume 15, Numbers 19/20 �October 2010 REVIEWS

F
IG
U
R
E
1

P
at
h
w
a y

o
f (

a
)
th
e
fl
av
in
-m

o
n
o
o
xy
g
en

as
e
(F
M
O
)c
at
al
yt
ic
cy
cl
e
an

d
(b

)
m
et
a
p
at
h
w
ay

fo
r
b
io
tr
an

sf
o
rm

a t
io
n
sh
o
w
in
g
b
as
al
g
en

e
ex
p
re
ss
io
n
d
at
a
fr
o
m

h
u
m
an

ti
ss
u
es
: (
i)
ki
d
n
ey

co
rt
ex
; (
ii)
ki
d
n
e
y
m
e
d
u
lla
; (
iii
)l
iv
e
r

an
d
(i
v)
lu
n
g
.T
h
e
ex
p
r e
ss
io
n
d
at
a
co
n
si
s t
o
f
lo
g
2
d
if
fe
re
n
ce
s
b
et
w
ee
n
ea
ch

ti
ss
u
e
sa
m
p
le
an

d
th
e
co
m
m
o
n
re
f e
re
n
ce

sa
m
p
le
fr
o
m

h
u
m
a n

b
ra
in
, w

h
er
eb

y
o
ve
re
xp

re
ss
io
n
is
sh
o
w
n
in

re
d
an

d
u
n
d
e
re
xp

re
ss
io
n
in

b
lu
e.
G
ra
y
in
d
ic
at
e s

th
at

n
o
d
at
a
w
as

av
ai
la
b
le
.D

if
fe
re
n
t
el
em

en
ts
in
th
e
FM

O
p
at
h
w
ay

ar
e
in
d
ic
at
ed

as
fo
llo
w
s:
(1
) p

at
h
w
ay

in
f o
rm

at
io
n
an

d
lit
er
at
u
re

re
f e
re
n
ce
s ,
(2
)g

en
e
p
ro
d
u
ct
in
fo
rm

a t
io
n
an

d
(3
)m

e
ta
b
o
lit
e

in
fo
rm

a t
io
n
.

R
ev
ie
w
s
�
IN
F
O
R
M
A
T
IC
S

www.drugdiscoverytoday.com 853



REVIEWS Drug Discovery Today � Volume 15, Numbers 19/20 �October 2010

[(Figure_2)TD$FIG]

FIGURE 2

Meta pathway for biotransformation showing basal gene expression data from (i) human liver tissue, (ii) primary human hepatocytes, (iii)HepG2, (iv)HepaRG, (v)
hepatocyte-like cells derived from human embryonic stem cells and (vi) hepatocyte-like cells derived from human induced pluripotent stem cells. The expression

data consist of log2 differences between each liver cell type and the common reference sample from human brain, whereby overexpression is shown in red and

underexpression in blue. Gray indicates that no data was available.
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in MetaCore and IPA can only be added to the local pathway

database.

Thus, based on the comparison between the different pathway

resources and their tools, WikiPathways was chosen for the further

analyses and evaluations presented in this paper because Wiki-

Pathways provides the tools to construct and edit pathway maps,

to visualize expression data for multiple ‘omics’ and to perform

statistical pathway ranking tests and because it is open to the

community.
854 www.drugdiscoverytoday.com
Pathway development in WikiPathways
Human phase I and phase II biotransformation pathway

maps were constructed using PathVisio [18], the pathway editor

of WikiPathways [19]. PathVisio is a tool for editing and dis-

playing biological pathways. It provides a basic palette of objects

and annotations that represent specific biological processes.

Genes, proteins and metabolites can be directly mapped to

biological annotations from multiple public databases through

the identifier synonym database at WikiPathways using the
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BridgeDb identifier mapping framework (http://www.bridgedb.

org/) [27].

The pathway content of the human phase I and phase II

biotransformation pathway maps in various target organs was

generated using information obtained from several resources:

pharmacological and/or toxicological literature; online biological

resources listed in Table 1, such as KEGG [16] and Reactome [17];

and functional databases, such as the gene database GeneCards

(http://www.genecards.org/) [28] and the enzyme database

BRENDA (http://www.brenda-enzymes.org/) [29].

Most of the biotransformation pathway maps in WikiPathways

have been approved by GenMAPP (http://www.genmapp.org/)

[30] and will be included in the curated pathway archive of

GenMAPP. As an example, the small pathway map of the catalytic

cycle of mammalian flavin-monooxygenases (FMOs) is shown in

Figure 1a. A pathway description and literature references are

attached to this pathway. Furthermore, each element, or ‘Data-

Node’, in the pathway is linked to an identifier. As such, each FMO

is directly linked to an Ensembl gene identifier [31]. In addition,

cross-references to other gene identifiers and protein identifiers are

connected using an Ensembl-based derby database mapping in the

BridgeDb framework. Furthermore, metabolites are linked to a

unique identifier, as indicated in Figure 1a. This provides the

possibility of mapping not only gene expression data to this

and other biotransformation pathway maps but also any other

gene-based data set – such as proteomics, DNA methylation and

metabolomics data – thereby enabling multiple omics integration.

In total, the biotransformation pathway maps contain 317 Data-

Nodes representing 187 genes or proteins and 130 metabolites.

Next, the biotransformation pathway maps were combined and

integrated into the meta pathway for biotransformation (Figures

1b and 2), which shows all the genes or proteins involved in

biotransformation. Although the meta pathway can be used for

visualization purposes, it is primarily intended for statistical eva-

luation.

Microarray data pre-processing
For visualization purposes, microarray data from five data sets were

obtained from the online microarray data repository Gene Expres-

sion Omnibus (GEO) of the US National Center for Biotechnology

Information (http://www.ncbi.nlm.nih.gov/geo/) [32] and from

the microarray data repository ArrayExpress of the European

Bioinformatics Institute (http://www.ebi.ac.uk/microarray-as/

ae/) [33].

(i) GEO accession GSE3526 contains baseline gene expression

data from normal human kidney cortex and medulla, liver and

lung (collected post-mortem) obtained from three or four donors

(GSM80686 to GSM80689 for kidney cortex, GSM80731 to

GSM80734 for kidney medulla, GSM80728 to GSM80730 and

GSM80739 for liver, and GSM80710, GSM80707 and GSM80712

for lung) [34]. (ii) GEO accession GSE14897 contains data from

hepatocyte-like cells derived from three independent cultures of

human embryonic stem cells (GSM372147 to GSM372149) and

from hepatocyte-like cells derived from three independent cul-

tures of human induced pluripotent stem cells (GSM372154 to

GSM372156) [9]. (iii) GEO accession GSE11942 contains data from

primary human hepatocytes (PHH) obtained from four donors

(GSM301603 to GSM301606) [35]. (iv) GEO accession GSE5350
contains expression data of the Ambion First Choice Human Brain

Reference RNA collected from one experiment with samples from

five replicates used in the MAQC project (GSM122779 to

GSM122783) [36]. This data set was used as a common reference

for further analysis. (v) ArrayExpress accession E-MEXP-2458 con-

tains data from the hepatoma cell lines HepG2 (48 h solvent

samples) and HepaRG (48 h solvent samples), each from three

independent cultures [37].

All raw data sets were generated on the same microarray plat-

form (i.e. Affymetrix Human Genome U133 Plus 2.0 GeneChip

arrays). These data were re-annotated to the MBNI Custom

CDF-files (http://brainarray.mbni.med.umich.edu/Brainarray/

Database/CustomCDF/genomic_curated_CDF.asp) [38] and RMA

normalized [39] using the NuGOExpressionFileCreator, an

enhanced version of the standard ExpressionFileCreator module

that is present in GenePattern [40]. The resulting 17 788 probe sets

represent 17 726 unique genes and 62 internal controls. For each

gene, the ratio between the mean intensity per tissue or cell type

and the mean intensity of the common reference was calculated;

log2 transformed and, subsequently, visualized on the biotrans-

formation pathway maps using PathVisio.

Microarray data visualization of human organ tissues
The liver is considered the most important organ in drug meta-

bolism because one of its main functions is to break down and

synthesize compounds. Most DMEs are expressed in the liver at

relatively high levels [21,41]. The kidney and the lung also are

important metabolically active organs that, furthermore, play a

part in the excretion of metabolized drugs [41]. Therefore, con-

sidering their major role in drug metabolism, liver, kidney and

lung were selected for microarray data visualization on the bio-

transformation pathway maps. The reference microarray data

originated from the human brain. Although the brain is also

considered to be an important drug-metabolizing organ, it

expresses most DMEs at low levels [21].

The log2 ratios between each tissue sample and the reference

brain sample were visualized on the biotransformation pathway

maps. For kidney, two distinct anatomical regions were used

because these showed unique and highly distinctive patterns of

gene expression [42]. Figure 1 shows the baseline expression of the

FMO pathway and meta pathway for biotransformation for all

tissue samples. FMO1 is highly expressed in the kidney, FMO2 in

the lung, and FMO3 and FMO5 in the liver. FMO4 shows the

lowest expression of all FMOs, but still the highest expression is

found in the kidney, closely followed by the liver. The visualiza-

tion of the basal gene expression in the investigated tissue samples

of the meta pathway for biotransformation shows a clearly higher

expression of most biotransformation-related CYP genes in liver.

CYP1B1 is an exception, however, because it is hardly expressed in

liver, whereas lung demonstrates elevated expression. In addition,

CYP1A1 shows higher expression in lung than in liver and kidney.

Furthermore, in the other biotransformation pathway maps, dif-

ferences in basal gene expression from the examined tissues are

observed, showing overexpression (mainly in liver) of several

phase II genes (e.g. SULT2A1, UGT2B4, AKR1D1 and BAAT).

The baseline expression profiles of each biotransformation gene

from the human tissues were compared with those displayed by

the BioGPS database from the Genomics Institute of the Novartis
www.drugdiscoverytoday.com 855
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Research Foundation (GNF) (http://biogps.gnf.org/) [43]. BioGPS

is a gene portal providing gene and protein information from

different (online) sources, such as Gene Atlas expression profiles

from the GNF [44]. These Gene Atlas basal expression profiles are

displayed for 79 human tissue samples per single gene present on

the Affymetrix Human Genome U133A GeneChip array. The

observations on the biotransformation pathway maps correspond

well with the basal expression profiles of each biotransformation

gene as displayed by the BioGPS database. Indeed, the expression

profiles in BioGPS confirm that FMO1 is specific for kidney, FMO2

[(Figure_3)TD$FIG]

FIGURE 3

Pathway ranking test by PathVisio. (a) A screen shot of the ranking output of the nor

Arrows indicate the biotransformation pathways. (b) The ranking of the meta pathw

level at an absolute log2 ratio of 0.5 or 2.0. PHH, primary human hepatocytes; HE
hepatocyte-like cells derived from human induced pluripotent stem cells. Further

856 www.drugdiscoverytoday.com
for lung and FMO3 and FMO5 for liver, but the expression profile

of FMO4 differs slightly from our analysis. In BioGPS, the highest

expression is also found for kidney, but the expression of FMO4 is

much lower in liver, whereas in our analysis, basal gene expression

in kidney is just slightly higher than in liver. With regard to the

CYP and phase II genes, baseline expression profiles from our

analysis are similar to those from BioGPS. Differences in expres-

sion between our analysis and those from BioGPS might be due to

differences in tissue samples, as well as microarray analysis

approach (e.g. original Affymetrix probe sets versus re-annotated
mal liver tissue sample with an expression level at an absolute log2 ratio>0.5.

ay for biotransformation for the different liver cell models with an expression

SC, hepatocyte-like cells derived from human embryonic stem cells; IPS,
explanation can be found in the main text of the article.

http://biogps.gnf.org/
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probe sets). Although in BioGPS, expression profiles are shown for

79 human tissue samples at once, these profiles are only shown for

a single gene. In PathVisio, by contrast, expression profiles of

multiple genes and their relationship are visualized. It should

be noted that BioGPS has plug-ins for pathway databases including

WikiPathways [43], showing in which pathway the specific genes

are involved; however, in BioGPS, no actual visualization of

expression data is possible.

Microarray data visualization of human liver cell
models
PHH are considered the most relevant in vitro model that resembles

the human liver in situ [45]. The usability of PHH is limited,

however, because of the difficulty of obtaining sufficient donor

material and because of the large variability between the donors.

Hepatocytes derived from human stem cells, by contrast, are

expected to become exceptionally useful as a human in vitro

system for studying drug metabolism and toxicity [7,8]. Other

available in vitro models are the frequently used HepG2 [46–48]

and the more recently developed HepaRG [49,50], which have

both been previously compared to PHH and normal liver tissue

[37,48–55].

Here, we investigate the above cell models (i.e. PHH, HepG2,

HepaRG and stem-cell-derived hepatocytes) for their baseline

expression of the biotransformation genes and compare these

with comparable data from normal human liver. In the analysis,

hepatocyte-like cells derived from two different types of human

progenitor stem cells were used (i.e. H9 human embryonic stem

cells and induced pluripotent stem cells obtained from foreskin

fibroblasts). Both stem cell lines were cultured using ‘standard’

conditions and after differentiation showed hepatocyte-like char-

acteristics (e.g. several hepatic functions, including accumulation

of glycogen, accumulation of lipid, active uptake of low-density

lipoprotein and synthesis of urea, as well as several morphological

characteristics associated with hepatocytes) [9].

In a similar manner to that used for the human tissue samples,

log2 ratios of each liver cell model sample against the reference

brain sample were visualized onto the meta pathway for biotrans-

formation (Figure 2). The expression pattern of the biotransforma-

tion genes from the liver sample and primary hepatocytes seem

comparable. Also for HepaRG, the expression pattern of the phase I

and phase II genes is similar to that of the liver sample, whereas for

HepG2, the pattern is different. These findings correspond well

with our previous analysis, in which a hierarchical clustering

analysis of the basal gene expression showed that PHH and

HepaRG are more closely related to liver tissue than HepG2 is

[37]. In the two stem-cell-derived hepatocytes, however, only a few

biotransformation genes (e.g. FMO4, NAT1, AKR1D1 and several

glutathione transferases) show expression that is comparable with

those from the normal liver sample and primary hepatocytes.

Based on these results, the two stem cell models do not seem to

be applicable in research on drug metabolism and toxicity because

they lack expression of many of the biotransformation genes. The

low expression of these genes might be due to the standard culture

conditions used, however, and could be improved under the right

conditions [9]—as shown in other studies, in which the expres-

sions of CYP1A1 and CYP3A4 in stem-cell-derived hepatocytes

were comparable to those of primary hepatocytes [8].
Pathway ranking
In addition to the direct visualization of the basal expression of the

biotransformation genes from the different liver cell models, a

statistical pathway ranking test was performed using PathVisio.

For this, the performance of each individual liver cell model was

evaluated based on the ranking of the biotransformation pathways

and in particular the meta pathway for biotransformation. A high

ranking of the biotransformation pathways is expected for those

models showing an increase in basal expression levels of the phase

I and phase II genes. In the statistical pathway ranking test,

significantly altered pathways are identified by counting how

many genes on each pathway meet user-defined criteria and

comparing this to the expected number of genes that meet the

criteria to calculate a Z-score. A Z-score >1.65 (1 tail) corresponds

with a significant P-value <0.05. As a criterion for the pathway

ranking test, an absolute log2 ratio of each liver cell model sample

against the reference brain sample >0.5 or >2 was selected.

Figure 3a shows a screenshot of the ranking output of the normal

liver tissue sample with an expression level at an absolute log2

ratio >0.5. The top-ranked pathway is the meta pathway for

biotransformation. It contains 164 genes present in the microarray

data, of which 137 have an absolute log2 ratio >0.5. Most of these

137 genes are overexpressed in liver compared to the reference

brain sample, which is in agreement with what is known from

literature [21,41]. In addition, four more biotransformation path-

ways had a Z-score >1.65 (Figure 3b).

Further statistical pathway ranking for all liver cell models,

using absolute log2 ratios >0.5 or >2 as criteria, shows that the

meta pathway for biotransformation is also ranked number 1 for

PHH and HepaRG (Figure 3b). Next in line would be HepG2

because it shows the meta pathway for biotransformation to be

significant (Z-score >2.83) for the absolute log2 ratio >2. For both

stem cell models, however, the meta pathway for biotransforma-

tion was not significantly ranked.

With respect to the number of overexpressed genes using the

above selection criteria (Figure 3b), the liver cell models can be

placed in the same order as for the ranking of the meta pathway for

biotransformation: liver, PHH, HepaRG > HepG2 > stem cell

models.

Concluding remarks and future perspectives
The usefulness of the presented biotransformation pathway maps

lies in the easy visualization of the expression of multiple genes

and proteins or changed amounts of metabolites in one go. In this

article, we clearly illustrated the use of a meta pathway for bio-

transformation in the analysis and interpretation of microarray

data from various human tissues and in vitro cell models. In this

analysis, the stem cell models underperform and thus further

development is needed for these models to become suitable for

screening drug candidates. This was also indicated by Si-Tayeb

et al. [9].

Furthermore, we emphasize that the pathway maps can be used

to investigate, for example, drug-induced gene expression changes

over time or from different concentrations in an in vitro cell model.

As the elements in the biotransformation pathway maps contain

not only gene identifiers but also protein and metabolite identi-

fiers, their use can be extended towards analysis of proteomics and

metabolomics data. Integration of the different omics will help to
www.drugdiscoverytoday.com 857
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improve the understanding of drug metabolism and aid in the

investigation of new drugs.

Finally, the biotransformation pathway maps are not just avail-

able for human: mouse and rat biotransformation pathway maps

have also been developed. This will be useful for inter-species

comparisons. Recently, the usage of the rat biotransformation
858 www.drugdiscoverytoday.com
pathway maps by visualizing tamoxifen and aflatoxin B1 expres-

sion data from Iconix Biosciences (Entelos, Foster City, CA) [3] has

been presented at the Benelux Bioinformatics Conference (BBC-

09, Liège, Belgium, 14–15 December 2009) [20] and is available at

Nature Precedings (http://precedings.nature.com/documents/

4575/version/1).
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