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Computational toxicology—a tool for early
safety evaluation
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Although inappropriate pharmacokinetic properties were a major cause of attrition in the 1990s, safety

issues are recognized as today’s single largest cause of drug candidate failure. It is expected that the right

balance of in vivo, in vitro and computational toxicology predictions applied as early as possible in the

discovery process will help to reduce the number of safety issues. This review focuses on recent

developments in computational toxicology. Direct modeling of toxic endpoints has been deceiving and

hampered the wide acceptance of computer predictions. The current trend is to make simpler

predictions, closer to the mechanism of action, and to follow them up with in vitro or in vivo assays as

appropriate.
Introduction
Although in vivo toxicology remains the gold standard for identi-

fying the side effects induced by a drug, it is now considered that

this approach alone cannot help to reduce the large attrition rate

in late clinical development stages. Moreover, there is pressure to

reduce the number of in vivo experiments and, therefore, an

extensive development of new in vivo tests is not an option. Several

initiatives (e.g. parts of the FDA’s Critical Path Initiative or the EU’s

Seventh Research Framework Programme) aim to improve how the

toxicity of new molecules can be evaluated all along the discovery

and development pipelines. A new paradigm for toxicity testing –

combining the strengths of the in vivo, in vitro and in silico worlds –

is sought.

This review focuses on recent developments that try to increase

the reliability of toxicity prediction algorithms that use the struc-

ture only. We also report on the application of these new

approaches in lead optimization projects.

Computational methods to predict side effects of
small molecules
Many computational approaches are available to predict the toxi-

city induced by a small molecule from its chemical drawing [1].

Traditionally, they have been tuned to predict global toxicity
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endpoints, such as carcinogenicity, or mutagenicity [2–5].

Although they are useful in a few cases, the broad application

of such predictions has been hampered by their lack of accuracy

[6]. It is generally deemed that this lack of accuracy is due to the

complexity of the predicted endpoints, rather than to the poor

performance of data analysis methods. The focus, therefore, is on

modeling more simple endpoints, such as off-target activity, to

increase accuracy and to combine the results with experiments

from other fields (e.g. -omics) to try to make a link with potential

modes of action.

Expert systems versus statistical modeling
Of the several approaches to predicting the effects of small mole-

cules from the structure, most algorithms can be put into two

classes: expert systems and statistical modeling.

On the one hand, expert systems, such as Oncologic [7] or Derek

for Windows (http://www.lhasalimited.org), are a repository of

expert knowledge. The computer is there to store, then use on

demand a piece of knowledge that has been formalized and input

by human experts. The power of the system is linked to the

amount of expert time invested in feeding it and to the availability

of reliable and high-quality datasets. Its expansion, therefore, is

limited by the time it takes for humans to collect and digest lots of

information. Although the information contained in these sys-

tems is considered reliable enough, it suffers from a lack of

sensitivity [5]. The direct consequence is that many side effects
ee front matter � 2009 Elsevier Ltd. All rights reserved. doi:10.1016/j.drudis.2009.09.010
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are likely to be missed. Muster et al. [8] reported that medicinal

chemists have to use this tool cautiously because the outcome of

the program requires a deep understanding of the system to

interpret results. Indeed, the use of toxicity prediction software

without a critical review of such predictions can easily lead to

misleading interpretations of the data, resulting in a negative

impact on discovery projects [9].

On the other hand, statistical modeling software – such as Topkat

(http://accelrys.com/products/discovery-studio/toxicology), PASS

[10], TPS–SVM [11] and Multicase (http://www.multicase.com/) –

aims to analyze existing data andautomatically build models, with a

reduced need for human intervention. Just as for expert systems, the

first step consistsof assembling a relevant training set of compounds

with experimental biological data. The system will then perform a

statistical analysis that shall be reviewed by a scientist. These

systems require a lot of attention for the selection of modeling

techniques and structural descriptors. They have several advantages

over expert systems, however: a model can be optimized on internal

data more quickly and objectively than through an expert analysis.

It can also be combined with a quantitative structure–activity

relationship (QSAR) when only a single chemical series is involved.

Although statistical analysis highlights trends in diverse structures

(i.e. all molecules containing a given fragment are flagged as poten-

tially toxic), the QSAR handles the more subtle structural changes

that, in a set of similar compounds, flag some compounds as toxic

and others as less harmful. The combination of statistical analysis

and QSAR, therefore, facilitates lead optimization and the removal

of toxicophores [8].

The most common softwares were cited herein to illustrate the

difference between expert systems and statistical modeling. A

more exhaustive list of computer systems for toxicity prediction

can be found in two reviews [8,12]. The details of the algorithms

have been reviewed [2,3] and their relative performance evaluated

[5,13].

Applicability domain for early safety evaluation
As stated above, evaluating the reliability of a prediction for a

given compound or series of similar compounds is necessary to

make informed decisions [14]. Since the inception of REACH

(registration, evaluation and authorization of chemical sub-

stances), much effort has been devoted to defining the domain

of applicability of computational models, a measure of the degree

of reliability of a prediction. As part of the new procedures, the EU

proposes a framework and list of requirements to develop and

validate QSAR methods for the evaluation of physicochemical

properties or toxic endpoints [15].

One reason for the failure of computational approaches is the

difference in the chemical space covered by compounds used to

train a model and those to which models are applied [16]. It seems

obvious that computational models will work better when test

compounds are close to compounds used to train the model,

provided that an appropriate measure of distance, or measure of

similarity of compounds, is defined. The major issue here is to

define the measure of distance [17] and between which objects said

distance must be measured. In some applications, structures are

described as a set of features (a fingerprint): a large vector is filled

with 1 if the corresponding feature is in the structure and with 0

otherwise. The distance is usually defined as a function of the
number of common features normalized with the number of

(shared) features, using, for example, the Tanimoto distance.

These are referenced as similarity-based applicability domain.

Another example is used in Topkat (http://accelrys.com/

products/discovery-studio/toxicology), which assimilates the

applicability domain to a box containing the training set. Struc-

tures are described by a vector of continuous parameters, and the

distance is calculated as the distance between the position in the

hyperspace of the structure and the space filled by the molecules in

the training set [18,19]. More advanced definitions of an applic-

ability model exist and involve the consensus prediction variance

or the dissimilarity to outlier-free training sets [20].

The concept of applicability domain is useful and efficient for

the prediction of physicochemical properties (e.g. lipophilicity

and aqueous solubility) [16,19]. One reason for this is that these

properties are often calculated by adding the values of local proper-

ties such as atom-based or small fragments, resulting in a small

number of descriptors (typically, a few hundred) to describe all

potential structures.

Defining applicability domains for a method using fragment-

based descriptors is trickier. Fragments of different sizes are used in

Oncologic, Derek, Multicase (from 2 to 10 atoms) and PASS (on

average 6–7 atoms; a fragment is defined by all the neighbors of the

neighbors of a central atom). The numbers of fragments required

to describe all potential structures grows up to billions, and most

test structures, therefore, will be considered as ‘far’ from the

training set because the fragments it contains are not in the

training set. If the test structure is not new, fragments will be

found in the training set and the test structure might be considered

close to the training set. Being at a small distance from the training

set, however, does not mean that the prediction is correct. Off-

target activity prediction is impacted by small changes (steric

hindrance, conformational change, and so on) in the structure,

which can lead to different toxicological responses [21,22].

Defining the domain of applicability, therefore, seems restricted

to endpoints that can be predicted from a few set of descriptors

(e.g. physicochemical properties) for a limited set of chemical

series.

Dissecting complex endpoints for increased coverage
It seems that the complexity (i.e. the number of underlying

mechanisms of action) of a toxicological endpoint is a factor of

prime importance in the quality of predictions [6,23]. The com-

plexity of a biological system to model increases with the number

of histological observations (e.g. cirrhosis, steatosis and fibrosis

with regards to liver toxicity); the number of proteins whose

modulation can potentially induce these observations; and for

each protein, the number of binding sites/modes available. In

other words, the complexity is intrinsically related to the total

number of mechanisms of action. Although there can be some

exceptions, the more complex an endpoint, the more difficult it is

to predict.

Estrogen receptor modulation is a simple endpoint deemed to

be involved, for example, in carcinogenicity [24,25]. It can be

predicted successfully [24,25]. The Ames test (salmonella muta-

genicity assay) is a somewhat more mechanistically complex assay

that measures genetic toxicity—one of the mechanisms by which

compounds can induce cancer. The Ames test is, nevertheless, seen
www.drugdiscoverytoday.com 17
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as a simple assay because it involves a low number of underlying

mechanisms, and many models with respectable accuracy exist

(see below). By contrast, carcinogenicity, liver toxicity and devel-

opmental toxicity are complex endpoints that can be caused by a

wide variety of events, and the prediction of these endpoints is

usually far from acceptable [6,26].

Eventually, the more complex an endpoint, the more data will

be needed to build an accurate model applicable for a diversity of

structures. The Ames test can help us to estimate the number of

data points needed. Because it is a standardized assay, it is expected

that the data will be reproducible in any laboratory. The inter-

laboratory reproducibility is estimated to be 85% [27]. This pro-

vides us with a large, publicly available set of comparable data. It is

possible to assemble a dataset containing approximately 4000

diverse structures (drugs and chemicals) annotated for Ames

[28], half of which are positive. In our own experience, this is

close to the ideal set for building a predictive model. It is then easy

to build a model capable of predicting results of the predominant

mechanism (i.e. chemical alkylation, although the Ames test was

not designed to detect only alkylating agents), and the best pre-

dictive models reach 85% accuracy. This is good in that this is also

the estimated reproducibility of experimental data. This example

shows that a dataset of 4000 annotated compounds can provide

models for the major mechanism(s) of action; however, it will fail

to uncover minor mechanisms.

Provided one can extrapolate these numbers, predicting an

endpoint with many underlying mechanisms (such as carcino-

genicity) requires datasets of hundreds of thousands of annota-

tions for diverse structures. In comparison with what is required,

current datasets of a few hundred structures (http://potency.ber-

keley.edu/chemicalsummary.html) seem too small, and the cover-

age (i.e. the sensitivity) of carcinogenicity models based on these

datasets is questionable [6].

Dissecting complex models into several mechanistically under-

stood events has, therefore, been a focus for several groups. Simon-

Hettich et al. [6] demonstrated that this approach could lead to

more predictive methods. Several groups have also applied this

approach, which will be detailed below. They all attempt to predict

complex endpoints using surrogate, less complex endpoints,

which are simpler to evaluate or to predict.

Predicted safety pharmacological profiling
The prediction of biological activity using structure–activity rela-

tionships has been a major focus of cheminformatics. The litera-

ture abounds with techniques and methods to predict the

biological activity from the chemical structure alone [29] or from

biological profiles either complete [30] or focused on a given class

of target (e.g. kinases [31,11,32] or nuclear receptors [33]). Any of

the methods that have been developed over the years (fragment-

based analysis, QSAR, 3D pharmacophores, docking, and so on)

are applicable virtually [1], although one must take care because

they were developed to increase affinity on a selected target and

not to find all potential liabilities of a structure [34]. However, the

preference seems to be for fragment-based analysis (e.g. Multicase

and PASS [10,35,36]) and QSAR [37,38] (e.g. Topkat), probably

because they are fast to implement and fast to run but still provide

results comparable to those from more time-consuming 3D

approaches [39].
18 www.drugdiscoverytoday.com
The most time-consuming step is the collection of data. All the

computational models employed in the field of toxicity prediction

have in common that they are based on the structure of existing,

annotated ligands. Typically, scientists gather data from different

sources: literature, patents and, when available, in-house data. It is

a common practice in the pharmaceutical industry to prepare a

few datasets around a target of interest. Computational toxicology

platforms, however, have to support many more targets, from 70 at

Novartis [40] to 350 in our own experience [41]. Whereas this is

still a fraction of what would be required to predict complete

activity profiles, it represents a huge amount of work that has, for a

long time, prevented the development of systems.

Thanks to several initiatives aiming to collect information from

legacy, unstructured systems (e.g. NTP reports and literature) and

bring them into structured, open-access databases [42–47], more

and more data are becoming available for the construction of new

models [1]. Today, many databases are freely available [1,48],

providing easy access to public information and fostering the

development of new analysis methods and models. They enable

all research groups to better understand the relations between

pharmacological profiles and toxicity [49,50] and to develop

innovative analysis tools with a broad coverage.

From predicted safety pharmacological profiling to toxicity
prediction
Compound profiles are nice to have as tools; they answer questions

such as ‘Is my compound devoid of off-target activity?’ Drugs,

however, are seldom completely clean. Although on several occa-

sions, their lack of selectivity has improved clinical efficacy [51],

most of the time it gives rise to unwanted side effects. The step after

predicting a profile comprising off-target modulation, genotoxi-

city and other relevant tests, therefore, is to understand the

pharmacological consequences implied by the compound’s pro-

file, in the context of a therapeutic indication, to progress promis-

ing compounds and deprioritize molecules with potential side

effects that might require additional tests in the clinical develop-

ment phase.

Matthews et al. have applied pharmacological profiling to the

prediction of carcinogenicity, reproductive and developmental

toxicity. They have decomposed the process in two phases. First,

surrogate endpoints (in vitro and in vivo assays) are chosen to

predict the toxicological endpoint [52]. Second, computational

models are built to predict these surrogate endpoints [23,53].

In the first study [52], experimental results for gene mutation

tests (e.g. Salmonella assay), clastogenicity tests (e.g. in vitro chro-

mosome aberrations and in vivo micronucleus), DNA damage tests,

cell transformation tests and reprotox tests were evaluated to find a

correlation with carcinogenicity in rodents. Among the 63 in vitro

tests evaluated, 14 were found to be correlated to carcinogenicity

(e.g. gene mutation in Salmonella and in vivo micronucleus),

whereas others were poorly correlated (e.g. mouse lymphoma gene

mutation [MLA] and in vitro chromosome aberration [CA]). In the

second step [53], surrogate endpoints were predicted and used

when no experimental data were available. The results showed

that the correlations between carcinogenicity and the 14 in silico

predicted surrogate endpoints were as good as the correlations

between carcinogenicity and the experimental results. This

demonstrates that computational approaches could be used to
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complement experimental data in the pharmacological profiling

approach.

Several combinations of surrogate assays have been tested to

predict carcinogenicity. Matthews et al. reported results compar-

able to those published by Kirkland et al. [54]: combining an

experimental Salmonella mutation assay with in vitro mammalian

assays achieved high sensitivity (95%) but low specificity (5%)

[52]. This was expected; they report in the same paper that several

of these in vitro mammalian assays (MLA and CA) are poorly

correlated with carcinogenicity. In the companion paper [53],

they report high positive predictive values (76.9%) with high

specificity (76.4%) for another combination of surrogate assays.

Interestingly, complementing experimental results with predicted

values did not decrease the overall performance of predictions

significantly [53].

Fliri et al. [55–57] have extended the pioneering studies of

Weinstein [58]. They based their study on a matrix of biological

activities (target modulation) for 1567 drugs (marketed, with-

drawn or failed) against 92 targets. The compounds were clustered

according to their pharmacological profile (termed ‘biological

spectra analysis’). Biospectra not only aim to predict the affinity

of new compounds [57] but also expect to help to identify how a

small molecule perturbs a host system and, as such, to predict in

vivo effects [59].

Finally, Bender et al. [40] report a method for predicting adverse

reactions across hundreds of categories from the structure only.

The authors built computational models for predicting the biolo-

gical activity of novel structures on 70 targets using data collected

in the Wombat database [60], as well as in-house information.
FIGURE 1

Assay prioritization. The predicted safety pharmacological profile is generated from

functional assays. Biomarkers are then evaluated during early pharmacology stud
Besides, they build computational models for predicting adverse

effects using the World Drug Index (Thomson Scientific). The two

sets of models are then matched with the aim of creating a link

between adverse effects and biological profiles.

Although comparable in essence to the chemical diversity

approach described above, the latter two approaches are new by

their coverage (number of targets and adverse effects).

Applications
Extensive animal toxicity studies will usually not start before the

preclinical candidate stage, and human toxicity studies will start

even later. When one of these studies reveals significant toxicity

and stops a project, a significant amount of time has already been

spent optimizing the potency and the pharmacokinetic profile of

the compound, and huge amounts of money have been invested

in clinical trials. Eventually, all the money and the time invested

are completely lost.

The role of computational toxicology is not to eliminate attri-

tion; rather, it aims to shift attrition earlier in the discovery process

to fail early and fail cheap [61]. The current trend, therefore, is to

‘be aware’ of potential toxicological issues to prioritize chemical

series at the hit discovery stage or to try to fix the proven liabilities

during lead optimization, just as potency and pharmacokinetics

properties are being optimized. By delivering better candidates, it

is hoped that discovery projects will have an increased probability

of success in clinical development. The following sections focus on

several applications of the computational methods described

above to support a project in its early stages (hit discovery and

lead optimization).
the structure. Predictions have to be confirmed in vitro on isolated targets or

ies to monitor in vivo the confirmed in vitro activities.

www.drugdiscoverytoday.com 19
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Predictions to ask the right question
By definition, little is known about new chemical entities and, in

particular, about their toxicity. A straight comparison with other

known chemicals is hardly possible because the structural changes

that are directed at improving on-target potency or pharmacoki-

netics can also substantially modify their off-target profile [21].

Ideally, one would test new compounds as early as possible in

every available in vitro profiling assay to identify potential off-

target activities. Because of cost and practicality aspects, however,

this is not possible, and only a subset of available assays is selected

for a few compounds per project.

Computer predictions do not suffer much from cost and speed

limitations. As soon as a model has been built, any number of

structures can be tested, in a very short time frame. They suffer,

however, from a large number of false positives: they tend to predict

too many side effects for a given structure. Looking at this deficiency

with a positive eye, computer predictions can be used as a pre-screen

and followed up by in vitro or in vivo testing. In other words, they can

help to prioritize in vitro assays [34,62,63] (Figure 1).

Pelletier et al. [64] reported on the use of computer models to

evaluate the need for phospholipidosis testing.This work describes a

process that aims to spend as little time as possible on compounds

that will not be easy to develop (the fail early, fail cheap strategy)

[65]. The authors have tuned their predictive model to increase the

negative predictive value of the model (i.e. the proportion of

compounds that arepredicted negative that are correctly predicted).

Therefore, when a structure is predicted to be negative, it is likely

that it will be devoid of the liability and can be progressed quickly in

the project without testing. The likelihood that this compound will

fail in clinical development because it induces phospholipidosis is

low. Structures that are predicted to be positive can potentially

induce phospholipidosis (although there will be a lot of false posi-
FIGURE 2

Explain in vivo observed toxicity. After an adverse effect has been observed in vivo

validated in vitro on isolated targets or in functional assays to suggest potential

20 www.drugdiscoverytoday.com
tives), and phospholipidosis induction is tested first in vitro and

then, if necessary, in vivo to validate or reject the prediction.

Supporting animal testing
Although the testing of classical endpoints can eliminate major

problems, minor events can remain undetected, simply because

the right biomarker was not evaluated in vivo. One benefit of

employing in silico predictions is to highlight which biomarkers

should be evaluated and in which populations, in addition to the

classical endpoints required by regulatory authorities.

As for in vitro safety pharmacological profiling, it is not practical

to evaluate every biomarker, and only the major potential issues

are studied (e.g. genotoxicity and hERG blockade). In addition, an

unwanted event might not happen in a population selected ran-

domly. Individuals might respond differently when they are

healthy or diseased, or aged, and so on. It is, therefore, not just

necessary to evaluate all biomarkers; they should also be evaluated

in relevant populations.

One use of computer predictions is to provide a predicted profile

that is then validated in vitro (Figure 1). Once the actual profile is

known, it suggests a list of predicted adverse events with their

mechanisms of action. This list helps to design new experiments

(Figure 1). In particular, they help to select appropriate biomarkers

(through systems biology) and to select a population in which an

unwanted side effect is likely to happen. Put in another way, they

give experimentalists some guidance on how to further investigate

and validate predicted effects. These results are then available to

support informed decision in the context of the project.

From observations to new compounds
Conversely, adverse events are sometimes observed in pharmacol-

ogy studies at the discovery stage. They are seldom reported to the
, a predicted safety pharmacological profile is generated; this profile is then

modes of action.
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project team because they are thought to be too general, and most

of the time they can result from many mechanisms of action. Even

if they are reported, they do not alone help to improve compounds

because they do not provide any indication of which part to

modify in the structure.

Computational methods can help to identify the mode of

action, as well as the chemical determinants that are associated

with the observed effect (Figure 2). After an adverse effect has been

observed in vivo, a predicted safety pharmacological profile is

generated; this profile is then validated in vitro on isolated targets

or in functional assays. The role of the predicted safety pharma-

cological profiling (PSPP) is to identify relevant assays in which the

compound has to be tested. Once the predicted mode of action is

validated, PSPP proposes structural modifications to chemists to

help to remove the liability (see case study, below).

Case study
Despite the fact that Genkyotex’s computational toxicology plat-

form is still under construction, we routinely apply predicted

safety pharmacological profiling in our lead optimization pro-

grams. The following example is about the identification, in vivo

confirmation and removal of a potential liability. This case study

illustrates that using predicted safety pharmacological profiles

neither kills valuable leads nor slows down lead optimization.

Indeed, it helped us to identify potential liabilities early and fix

them with a limited impact on the budget.

During lead optimization, the pharmacological profile was

predicted for several compounds in a chemical series. One of

the compounds was predicted active on three targets. The list of

pharmacological effects associated with these three targets was

assembled from the literature, with the constraint that the effects

should be easily observable. A list of four effects was presented to

the project’s pharmacologist. Among the side effects, one had

actually been observed in vivo during the pharmacokinetics study.

A biomarker was developed to further investigate the side effect

observed, and it was monitored in a two-week in vivo experiment.

This biomarker was measured at the end of the experiment, and

changes seemed to be significant with a p-value of 5.10�4 (n = 14).

The prediction also provided us with the chemical moieties and

structural requirements for the inhibition of the target we pre-

dicted associated to this effect. These features were removed from
new compounds, either by removing the chemical moieties or

by introducing steric hindrance. The biomarker is still used to

monitor the side effect. Interestingly, the new compounds do not

induce a change in the biomarker level of treated animals versus

control animals, which demonstrates that we removed the liability

by altering the structure.

Without the predictions, the side effect would probably have

remained hidden until clinical development. Depending on the

intended indication, this could have forced us to stop the project,

which is not the best scenario for a start-up company. Predictions

helped us to identify the liability early in the process, and in this

particular case, the liability has probably been removed. This

example shows that, contrary to a common thought, predictions

do not kill valuable leads; instead, they help turn them into better

candidates.

Outlook
The relevance of in silico and in vitro profiling combined with

toxicogenomics studies to predict toxic events is increasing

[66,67]. It can be more predictive than results from animal studies

when there are significant genetic differences between human

and rodent [68]. For example, human and rodent bradykinin

receptors B1 and B2 are inhibited by different types of molecules

[69,70]. If a molecule inhibits human bradykinin receptors, tox-

icology in rodents would be of limited interest because it does not

correlate with human data. Instead in silico and in vitro pharma-

cological profiling would suggest testing on human recombinant

protein and, therefore, point out the need for monitoring noci-

ception, inflammation, vasodilation and cough in human clinical

studies [68]. Put in another way, in vivo results obtained from

animal studies might not be of relevance for humans, but in silico

and in vitro profiling can help to identify and then correct those

issues [1].

Exploiting today’s structure–activity relationships could pre-

vent scientists from repeating errors of the past. One should

remember, of course, that no statistical or data mining method

is able to extract relationships from information that was not

provided to it [37]. However, a lot of information is available

today. Systematic analysis of this data and interpretation of pre-

dictions to raise the right questions can participate in the delivery

of safer drugs, more quickly, and at a lower cost.
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