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Clinical and biological data integration
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Biomarkers hold promise for increasing success rates of clinical trials. Biomarker discovery requires

searching for associations across a spectrum of data. The field of biomedical data integration has made

strides in developing management and analysis tools for structured biological data, but best practices are

still evolving for the integration of high-throughput data with less structured clinical data. Integrated

repositories are needed to support data analysis, storage and access. We describe a data integration

strategy that implements a clinical and biological database and a wiki interface. We integrated

parameters across clinical trials and associated genetic, gene expression and protein data. We provide

examples to illustrate the utility of data integration to explore disease heterogeneity and develop

predictive biomarkers.
More than 29,000 clinical trials are currently recruiting partici-

pants (http://www.clinicaltrials.gov), and history warns that

many, if not most, of these trials will fail. Despite an early cycle

of hype and then disappointment [1], the use of biomarkers still

holds promise for enrolling and stratifying trials, as well as defin-

ing endpoints (e.g. cholesterol for statins) [2] so that studies might

be more successful [3]. In some cases, biomarker-guided drug

development (e.g. trastuzumab and imatinib in cancer) has also

been scientifically, clinically and commercially successful [4]. The

discovery of human biomarkers requires the association – ideally

both statistical and mechanistic – of biological measurements with

clinical outcomes. To discover new biomarkers that predict treat-

ment effects and disease progression, it is necessary to analyze a

broad spectrum of data from human studies, but there are major

challenges. Genome-wide association (GWA) genetic studies gen-

erate tens or hundreds of thousands of data points from large,

multi-center collaborations. Gene expression studies grapple with

patient, disease, platform and study heterogeneity, necessitating

detailed annotation. Clinical trials capture a variety of biological

samples and hundreds of clinical and laboratory parameters,

including multiple potential endpoints to determine drug efficacy

and under-appreciated confounders, such as environmental expo-

sures and personal behaviors.
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The successful translation of these large, heterogeneous datasets

into new biomarkers will require novel and comprehensive data

integration strategies. Effective integration must ensure data stan-

dardization with similar information from other patients and

studies; data must be annotated, secure and of high quality;

and, optimally, data should be made accessible to multi-disciplin-

ary personnel across academic, industrial and governmental insti-

tutions. The time and cost invested in biomarker and drug

discovery demand that the utility of resulting data be optimized.

Data integration can provide value by providing data together

with metadata and supplementary information, boosting statisti-

cal power, increasing generalizability across populations, replicat-

ing or repudiating findings across studies, and validating results

using independent experiments.

Several tools and databases designed to manage and support

the integrated analysis of large collections of disparate data are

being reported. The data integration field is currently in a state of

rapid evolution, and thus far, no clear standards for cross-trial and

cross-type data storage, integration and analysis methods and

systems have emerged. Although distinctions are often blurred,

systems’ development efforts have typically focused on either

data manipulation applications such as Utopia [5], InforSense [6]

and TAMBIS [7] or data warehousing applications such as

SIMBioMS [8], BioWarehouse [9], caBIG [10] and BioMediator

[11]. In addition, packages developed for the R environment
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(http://www.r-project.org) have proven to be useful for biomar-

ker analysis [12], microarray meta-analysis [13] and integration of

disparate data types [14]. These and other recently described

environments or applications are primarily focused on ‘-omics’

data, and it is becoming clear that the management of clinical

phenotypes has not kept pace. Clinical ontologies such as

SNOMED and Unified Medical Language System (UMLS) have

grown and evolved [15,16] but have not been frequently inte-

grated with omics data. As these tools and datasets become more

complex, they will also require contextual support, so dynamic

systems such as those using web-based wiki technology are being

implemented to support the evolution of content and focus over

time [17].

Here, we discuss strategies to standardize data across clinical

trials, to integrate clinical and biological data and to make data

and supporting information broadly accessible. We also describe,

in detail, efforts at our institution to implement an integrated

database system for the discovery of biomarkers in autoimmune

disease, including examples of analyses performed using the sys-

tem.

Phases of data integration
Because of the diversity of data types, sources, volumes and other

characteristics, there is no single process or solution that can

address all data integration needs for all types of institutions.

Before any technical implementation begins, however, several

common organizational and procedural issues can be addressed,

particularly in large, collaborative settings. These include: identi-

fying senior data integration project sponsors; creating alignment

among collaborating groups’ objectives; creating procedures for

data and metadata acquisition; identifying legal, regulatory, secur-

ity and related requirements for data; agreeing to physical resi-

dence of data and software; and evaluating build, buy, or

repurpose options for data management and analysis software.

Once the organizational aspects of a data integration strategy

have been established, many core activities are commonly exe-

cuted. Here, we describe these activities in general terms and in

terms of how we implemented them at our institution.

Acquisition
The first step of generating or otherwise identifying and obtaining

data is obvious but can be time-consuming, expensive, and logis-

tically challenging. A vast array of public-access omics data is

available via portals such as the National Center for Biotechnology

Information (NCBI; http://www.ncbi.nlm.nih.gov) and the Eur-

opean Bioinformatics Institute (http://www.ebi.ac.uk). Clinical

data are typically less centralized and openly available. It is neces-

sary to identify data sources and formats as early as possible. It is

also useful to obtain primary data annotation and to identify

subject matter experts.

To define a scope for our data integration project, we identified a

‘seed’ dataset of three multi-center, placebo-controlled clinical

trials of anti-CD20 monoclonal antibody therapy in rheumatoid

arthritis (RA): DANCER [18], REFLEX [19] and ACTION [20]. After

working with the data to understand the logistical and contextual

issues, we then identified data from three additional anti-CD20 RA

clinical trials (SUNRISE [21], SERENE [22] and IMAGE [23]). In

total, we obtained clinical and standard lab data for 3032 RA
742 www.drugdiscoverytoday.com
patients. We also identified corresponding, unpublished biological

data that were subsequently generated from experiments con-

ducted using the trial samples and resided in spreadsheets. This

included genetic data, gene expression data by microarray and

PCR, cell population data by flow cytometry, and protein marker

data by array and ELISA from tissue and serum.

Summarization
Clinical data and low-throughput proteomic assays generate data

for parameters numbering in the hundreds (e.g. demographic

characteristics and standard lab test values), whereas gene expres-

sion and genotyping arrays generate data for parameters number-

ing in the tens of thousands. This measure of the dimensionality of

data is referred to as ‘arity’ and defined as the number of attributes,

features or distinct data elements associated with each entity such

as an object, state or record in a dataset [24]. Gorlov et al. [25]

concluded that combining GWA study and microarray data would

be more effective than analyzing individual datasets. Heap et al.

[26] also report that by incorporating genetic variation in co-

expression analyses, functional relationships between genes can

be more reliably detected.

To reconcile differences in dimensionality and combine our

datasets, we summarized gene expression data into whether or not

patients were positive for certain predefined ‘signatures’ by assign-

ing indicators based on the results from hierarchical clustering

analysis (Fig. 1, top left). We reduced genotypic dimensionality by

a priori hypothesis-driven selection of single nucleotide poly-

morphisms (SNPs). We also obtained imaging score data derived

from primary X-ray images.

Transformation
The potential advantages of performing pooled or meta-analyses

across studies and data types are well accepted in the study of

clinical and genetic data [27]. In fact, meta-analysis and imputa-

tion are perhaps the primary tools driving pooled statistical sup-

port of recent GWA studies [28]. Meta-analysis of gene expression

data can be more problematic because of differences in experi-

mental settings. Specific challenges such as analysis across patient

cohorts, species [29], platforms [30] and laboratories [31] have

been investigated.

To compare data across trials, we defined new meta-features.

The creation of these indicator variables was motivated by the

desire to make comparisons across trials with similar but not

identical designs. For example, patients in study arms not given

an investigational therapy were defined as ‘not treated’ regardless

of whether they received placebo, active comparator or other

concomitant medications, and patients in study arms who were

given the investigational therapy were defined as ‘treated’ regard-

less of the drug or dose. We identified needs for other indicator

variables such as whether assay values represented lower or upper

limit caps and whether values recorded on the same day were pre-

versus post-drug treatment.

Standardization
A major challenge of integrating complex information involves

the nuances of the information itself. For example, the same blood

protein can be measured in two separate clinical trials but

using different outsourced lab services that might use different

http://www.r-project.org/
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FIGURE 1

Data summarization, transformation and standardization. Gene expression data were summarized into signatures, specific SNPs were selected by a priori

hypotheses, and imaging data were summarized into numeric scores. Trials varied by design features such as follow-up timepoints and treated versus not treated

study arms. Common timepoints were included in the database for meta-analysis, and metadata were generated for attributes such as study arm descriptions.

Measurement attributes such as C-reactive protein were mapped across trials for consistency, and measurement values were standardized by units. A hybrid
database design with an Entity–Attribute–Value (EAV) measurement table (bold) and related relational tables is shown.
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procedures. Results might be reported in disparate units and with

different confidence intervals. Thus, the technical problem of

relating the two numerical values might be straightforward, but

it would be misleading to directly compare the values in an

analysis.

During our implementation, individual clinical datasets

required standardization with each other before integration

(Fig. 1, bottom). We manually mapped clinical trial data values

across multiple trials to a single label, where possible, and suc-

ceeded in mapping 89 clinical measurements across the six clinical

trials. We also manually standardized data related to lab measure-

ment units and terminology related to patient race and ethnicity,

geographical study regions, and names of drugs and drug families.
Lab-generated data were matched to clinical data using unique, de-

identified patient numbers.

To test how automated annotation performed compared with

manual standardization, UMLS Concept Unique Identifiers (CUIs)

were retrospectively assigned using manually reviewed data from

the Batch SemRep web tool (http://skr.nlm.nih.gov/batch-mode/

semrep.shtml). Among 16 demographic variables, 7 (44%) were

assigned to an unambiguously appropriate CUI, 5 were assigned

ambiguously and 4 were assigned inappropriately. Of the 59 lab

test variables, 32 (54%) were assigned to an unambiguously appro-

priate CUI, 19 were assigned ambiguously and 8 were assigned

inappropriately. Finally, of the 14 efficacy variables, none were

assigned to an unambiguously appropriate CUI, 2 were assigned
www.drugdiscoverytoday.com 743

http://skr.nlm.nih.gov/batch-mode/semrep.shtml
http://skr.nlm.nih.gov/batch-mode/semrep.shtml


REVIEWS Drug Discovery Today � Volume 15, Numbers 17/18 � September 2010

R
eview

s
�IN

F
O
R
M
A
T
IC
S

ambiguously and 12 were assigned inappropriately. We concluded

that UMLS CUIs retrospectively assigned in this automated man-

ner were insufficiently accurate for our purposes, particularly

among disease-specific efficacy variables.

Integrated database design and development
Because of the broad scope and rapidly changing nature of the

measurements captured in clinical trials, traditional relational

database designs might not provide the necessary flexibility and

scalability. Various alternatives exist, including rule-based links,

ad hoc query optimizers and federated middleware frameworks

[32]. The Entity–Attribute–Value (EAV) model has been reported

by Nadkarni and Brandt [33] and implemented in a variety of

applications [34]. Similar to fact tables in data warehousing, EAV

models balance the need to manage large, heterogeneous datasets

with good computing performance and the flexibility to grow the

system.

We reviewed the structures of our selected datasets to define a

mixed traditional and EAV database schema, similar to a snowflake

schema in data warehousing (Fig. 1). The traditional tables in the

schema managed data related to studies, patients, diseases and

other entities. The EAV table primarily managed a broad range of

patient measurement data. We first loaded data from the three

initial trials. Then, after re-evaluating the schema, we made neces-

sary modifications and loaded the next three trials. The process

involved loading metadata, loading and transforming raw data,

running the warehousing stored procedures that generated the

underlying tables, and generating user views. Loading data to the

database was a non-trivial process because of the volume and

complexity of the data and the different file formats and degrees

of normalization in which the raw data were obtained.

Ultimately, our database schema was composed of 21 tables.

The measurements table included 1,303,102 rows representing

50,758 unique visits across all patients. We implemented database

views accessible via a custom web interface that enabled users to

view data online or download it for analysis with their favorite

software. The database view interface provided simple filtering,

searching, sorting and exporting capabilities. The views included

subsets of data focused on specific clinical topics such as radio-

graphic progression, relationships among clinical endpoints and

auto-antibody status.

Web–wiki interface implementation
Research organizations have previously described web-based wiki

implementations and other types of ‘shareware’ [35] to overcome

the obstacles of providing contextual support for data and sub-

mitting new data. For example, ArrayWiki enables searching,

sharing, annotation and meta-analyses of heterogeneous public

microarray data, and it includes automated quality control, visua-

lization and user curation [36]. In other cases, clinical organiza-

tions have implemented low-cost wikis to facilitate the operational

transfer of complex, up-to-date knowledge, to preserve institu-

tional memory, and to improve audit trails and information

retrieval [37]. Such groups also benefit from extended information

access by electronically linking to external publications and data-

bases [38]. Scalability and flexibility are crucial features of an

evolving data system. Although we have discussed data integra-

tion primarily in the context of supporting data analysis, reposi-
744 www.drugdiscoverytoday.com
tories supplemented by wikis can also meet other crucial needs,

including data storage and access. As such, a repository’s value can

be gauged by usage (hits, downloads, among others), storage

(uploads, cost savings versus comparable systems, among others),

scientific discoveries enabled, and so on.

One of our major objectives for enabling cross-trial and cross-

type data analysis was providing contextual information for the

datasets, so we implemented two wiki systems: one to manage the

project and one to serve as a user interface (Fig. 2). The project

management wiki tracked the status of obtaining and standardiz-

ing data sets – including audit trails of data transformation rules

and assumptions – as well as developing the database. The user

wiki contained documents to describe clinical trials individually

and as a group, links to relevant microarray data sets housed in

NCBI’s Gene Expression Omnibus and other information. Tables

on the wiki served as minimum information checklists of docu-

mentation about particular kinds of biological studies or instru-

ment-based assays [39]. The wiki portal included common and

disease-specific data standards, a data measurement dictionary,

processes for merging and loading data, cross-trial study design

comparisons, trial protocols and case report forms, schedules of

clinical assessment, related publications and presentations, ana-

lysis plans and results, and assay specifications.

We used a wiki based on Clearspace (Jive Software, Portland, OR)

for project management, and we implemented a Google Sites wiki

(Google, Inc., Mountain View, CA) as a user interface. We

addressed security requirements by implementing standard Goo-

gle Sites user authentication and by adhering to Health Insurance

Portability and Accountability Act and other regulations. The

project management and user wikis addressed the challenge of

describing complex data and processes with access to hyperlinked

supplementary information. Both wikis were fully manually

curated, unlike other wiki projects that might import large sets

of ‘stub’ pages or use automated scripts to update content [40].

Manual curation by domain experts can enable appropriate data

inclusion, validation of data integrity, identification of exceptions

and addition of supplementary information when needed [41].

Examples of integrated biomarker analysis
Data integration and technology implementation are, of course,

means to an end: that is, performing integrated exploratory ana-

lyses to enable scientific discovery. Here, we present examples of

such analyses. Although the biological and clinical interpretations

of these analyses are beyond the scope of this article, the results

highlight the ability to analyze multiple clinical trials and types of

biological data. First, to illustrate an analysis to characterize

patient subsets, we demonstrate a hierarchical clustering

approach. Next, to illustrate an analysis that might identify pre-

dictive biomarkers to differentiate between treatment responders

and non-responders, we demonstrate a decision tree approach.

Understanding of disease heterogeneity is typically an explora-

tory exercise. Given that high-throughput technologies such as

microarrays generate data on large numbers of potential markers,

we selected a hierarchical clustering analysis approach for this

question. After considering the similarities between gene expres-

sion microarray data sets from patients in the ACTION and DAN-

CER trials – both generated on Agilent Whole Genome arrays from

blood samples – we chose to perform pooled analysis. We removed
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FIGURE 2

Technical architecture and workflow. A project management wiki kept track of database design documents and issues. Once data and associated metadata were

acquired, summarized, transformed and standardized, theywere either loaded to a database accessible from a customweb interface within the user wiki or loaded
directly to the user wiki in a tabular structure. Data and other files could be downloaded to analytical tools to address specific operational tasks and research

questions.
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data for patients who received placebo or for whom there was no

responder status defined by American College of Rheumatology

criteria. Because of a different sample collection schedule in the

ACTION trial, we also removed data for samples taken after base-

line (trial day 1, before therapy). In each of the trials individually,

we identified top differentially expressed probes between respon-

ders and non-responders. In ACTION and DANCER, 2571 and

1644 probes were differentially expressed, respectively. We merged

these two probe lists by matching probe IDs and identified a subset

of 95 probes that were among the top differentially expressed in

both trials. The resulting heatmap (Fig. 3a) showed patient separa-

tion by trial and heterogeneous gene expression clusters. It is

noteworthy that patient populations differed significant between

ACTION and DANCER in demographic characteristics, such as age

and weight, as well as in clinical lab results such as baseline

C-reactive protein, an indicator of systemic inflammation, and

baseline CD19 cell count, a measure for B-cell depletion, which is

the mechanism of action of the investigational therapy. None-

theless, this finite, reproduced probe list formed the basis for

further investigation.

The goal of a predictive biomarker is to differentiate between

patients who will respond better or worse on a placebo-adjusted
basis to a given therapeutic intervention. Because estimates of

these responses are important in assessing clinical trials and in

clinical care, predictive biomarkers have often been small, repro-

ducible sets of analytes, so we selected a decision tree analysis

approach. Specifically, to differentiate between treatment respon-

ders and non-responders, we applied a recursive partitioning

algorithm using the ctree() function [42] in the R package, party,

to analyze patients in the ACTION, DANCER and REFLEX trials.

Tree partitioning parameters were set empirically. In Fig. 3b, we

show results of a decision tree analysis. The example shows a

decision tree indicating that, after treatment arm (i.e. active

therapy versus placebo), the greatest determinant of response in

the pooled analysis was the patient population studied in the

specific trials. Subsequent predictors included serum C-reactive

protein level, a commonly studied marker of inflammation, at a

threshold of 0.734 mg/dl in the ACTION and DANCER trials, and

disease duration, a well-studied demographic characteristic, at a

threshold of 24.1 years in REFLEX. Although these findings might

not be novel, they serve as positive controls that increase con-

fidence in and identify model parameters for subsequent, more in-

depth analysis. These findings also highlight the need to store and

assess metadata and other features about the trial designs and
www.drugdiscoverytoday.com 745
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FIGURE 3

Example analyses for biomarker discovery. (a) Heatmap with results of hierarchical clustering analysis of a subset of probes (horizontal axis), which were among

the top differentially expressed genes in patients (vertical axis) in two clinical trials. The heatmap shows patient separation by trial (left label bar: DANCER patients
in blue, predominantly above white line; ACTION patients in red, exclusively below white line) but also reveals heterogeneous gene expression clusters not tightly

associated with clinical response (right label bar: responders in purple, non-responders in green). A table of demographic and clinical data points to differences in

the study populations. (b) Results of decision tree analysis indicate that in a subset of patients, the greatest determinant of efficacy in a three-trial meta-analysis

was the patient population in a specific trial. Subsequent predictors included serum C-reactive protein level and disease duration. The number of patients (N) and
the branching rules are shown; response rates for subgroups are not shown.
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patient populations to better understand which aspects of the

patient populations are driving the observed differences.

Data integration: opportunities and challenges
In recent years, there has been an explosion in the availability of

biological and, to a lesser extent, clinical data. Yet, by some

accounts, high-throughput research has had ‘disappointing
746 www.drugdiscoverytoday.com
results’ in that the disease risk factors detected account for a small

proportion of total risk, and their diagnostic value has been called

‘negligible’ [43]. Data integration has become increasingly crucial

in the collaborative study of complex human diseases to provide

insights that might not be possible with any single study or

methodology. It has been suggested that ‘scientists would rather

share their toothbrush than their data’ [44], but pragmatism is
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overcoming protectionism. We share the opinion expressed in

recent editorials that a research project’s success can be measured

by the data it makes available [45], and that ‘research institutions

need to ensure that appropriate tools for the management of

research data are available to their scientists’ [46].

Liu et al. [47] discuss the usefulness of integrating evidence from

multiple sources such as genetic, gene expression, proteomic and

molecular or cellular studies, although they emphasize that repli-

cation of findings in GWA studies can be difficult and should not

always be expected. It has also frequently been reported that gene

expression results from one experiment cannot be reliably repro-

duced in another experiment. Predictive biomarkers from these

experiments thus depend heavily on the training sets from which

they were derived; however, many tools, algorithms and databases

have been developed recently to support meta-analysis of micro-

array data [48]. For example, MiMiR, the Microarray data Mining

Resource, addresses challenges in managing, sharing, analyzing

and reusing large amounts of data [49].

It is worth noting distinctions between meta-analyses and

pooled analyses, particularly related to clinical and high-through-

put data. Formal meta-analysis can assess heterogeneity across

clinical studies. Best practices for meta-analysis have been dis-

cussed extensively, including handling sources of bias such as

variable study quality [50] and reporting of outcomes or negative

results [51]. With microarray data, Cahan et al. [52] discuss similar

concerns in a recent review, including biological, experimental,

and technical variations such as the type of microarray used, gene

nomenclatures, analytical methods and extent of reporting study

results. Methods for meta-analysis of microarray data include

Bayesian models [53] and combining gene expression measures

or summaries such as P-values or ranks [54]. Distinct from meta-

analyses, standardized data sets can also enable simpler pooled

analysis where a few datasets are combined and analyzed as a

single dataset without being weighted and with the assumption

that the data are essentially similar. Such analyses might be useful

for long-term follow-up and the study of rare events [55].

The data integration and analyses we describe represent only

one, albeit complex, disease area. There are many potential clinical

confounders of cross-study comparisons, including definition of

disease status, duration of follow-up, definition of outcome mea-

sures, means of outcome assessment, medications allowed and

management of patients [56]. Similarly, Ioannidis et al. [57] com-

ment that biases could also invalidate genetic associations in meta-

analyses because odds ratio estimates might be inflated by popula-

tion heterogeneity and gene–gene and gene–environment inter-

actions. The development of a wiki user interface to annotate data
can address many of these issues, but as a technology, wikis are not

foolproof, in part because pages are independent of each other and

lack database-like mechanisms to check data consistency [58],

although manual curation can compensate for technical limita-

tions and ensure quality. In fact, whereas curation efforts on a

global scale such as those by NCBI can be expensive and arguably

unable to keep pace with rapid increases of information [59], in a

smaller context they are manageable. Wikis also lack complex

means of query but do offer text search facilities, means for

categorizing pages and extensibility [60]. Our system has been

deployed in a production environment to a group of several dozen

scientists, analysts and research associates. The acquisition and

publication of new data has scaled rapidly via the wiki. Likewise,

multiple new analyses and meta-analyses have been performed

using tools not integrated in the wiki. However, retrospective

standardization of new, disparate clinical data remains challen-

ging. In the future, wiki systems like ours could be integrated with

any of the many open source analytical and workflow technologies

currently available.

Concluding remarks
Integration of clinical data with high-dimensionality genotyping

and expression data is currently an intense area of research, and

there are no standard solutions. We have presented procedural and

technical strategies for data integration and examples of potential

benefits. At our institution, we undertook extensive clinical data

standardization and biological data summarization efforts to sup-

port biomarker discovery in RA. We also developed an integrated

database and portal to manage clinical trials and biological data.

Implementation of a hybrid EAV database schema and a wiki

system enabled us to provide users with the flexibility and context

required when analyzing these large, complex data sets. A key

enabler for future integration efforts will be the prospective adop-

tion of standard clinical trial data nomenclature, perhaps using a

controlled vocabulary and ontology. Such standardization could

facilitate future data loading, integration and cross-trial analysis

and, ultimately, biomarker and drug discovery efforts.
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