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The impact of P-glycoprotein (P-gp) on the multidrug resistance and pharmacokinetics of clinically

important drugs has been widely recognized. Here, we review in silico approaches and computational

models for identifying substrates or inhibitors of P-gp. The advances in the datasets for model building

and available computational models are summarized and the advantages and drawbacks of these models

are outlined. We also discuss the impact of the recently reported crystal structures of P-gp on potential

breakthroughs in the computational modeling of P-gp substrates. Finally, the challenges of developing

reliable prediction models for P-gp inhibitors or substrates, as well as the strategies to surmount these

challenges, are reviewed.
Introduction
P-glycoprotein (P-gp), a member of ATP-binding cassette (ABC)

transporter family, significantly impacts the multidrug resistance

(MDR) phenomenon and absorption, distribution, metabolism and

elimination (ADME) properties of drugs [1–7]. It is normally

expressed at many physiological barriers, including the intestinal

epithelium, hepatocytes, renal proximal tubular cells, the adrenal

gland and endothelial capillaries of the brain comprising the blood–

brain barrier (BBB) [8], as well as being commonly over-expressed in

tumor cell lines [9]. It is now clear that P-gp can transport many

chemically and structurally unrelated drugs and agents [10], result-

ing in the MDR phenomenon that accounts for chemotherapeutic

failure in the treatment of cancers. Moreover, P-gp functions as an

energy-dependent hydrophobic efflux pump that exports a large

number of hydrophobic compounds from cells [11]. It is observed

that apical expression of P-gp in many human organs results in

reduced drug intestinal absorption, and enhanced elimination into

bile (liver) and urine (kidney) [3,12,13]. Therefore, P-gp has a great

impact on the ADME properties of a variety of drugs [14].

P-gp can interact with large numbers of structurally diverse

compounds, which suggests its multiple binding sites of different

chemical environments. According to the interactions, these com-

pounds can be classified into three categories: substrates, inhibitors
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and modulators [15]. Compounds actively transported by P-gp are

classified as substrates, whereas those that compromise the trans-

porting function of P-gp are classified as inhibitors. Modulators

interact with the binding sites distinct from those of substrates,

therefore reducing substrate binding through a negative allosteric

interaction. Modulators and inhibitors exert the same final biolo-

gical effect, restoring cell sensitivity to chemotherapeutic agents.

Therefore, the term of inhibitor is often used synonymously with

that of modulator [16].

Owing to the importance of P-gp on MDR and ADME, exten-

sive studies have been carried out to identify P-gp substrates or

develop more-potent, -selective and -specific P-gp inhibitors [6].

The polyspecificity (i.e. promiscuity) of P-gp in substrate and

inhibitor recognition makes designing effective candidate com-

pounds difficult [17]. Traditionally, experimental assays were

used to assess the interactions and transport of new chemical

entities with P-gp [6]. However, these experimental assays are

expensive, laborious and time-consuming. Therefore, in silico

models that provide rapid and cheap screening platforms for

identifying P-gp inhibitors or substrates have been recognized to

be valuable tools [18–20]. Numerous computational approaches

or models based on quantitative structure–activity relationship

(QSAR) analyses, pharmacophore modeling and molecular

docking were developed to predict P-gp inhibitors or substrates

[21–41]. The transporting mechanism, substrate properties and
 substrates or inhibitors of P-glycoprotein, Drug Discov Today (2011), doi:10.1016/

www.drugdiscoverytoday.com 1

http://dx.doi.org/10.1016/j.drudis.2011.11.003
http://dx.doi.org/10.1016/j.drudis.2011.11.003
mailto:tingjunhou@hotmail.com
mailto:tjhou@suda.edu.cn
http://dx.doi.org/10.1016/j.drudis.2011.11.003


REVIEWS Drug Discovery Today � Volume 00, Number 00 �November 2011

DRUDIS-928; No of Pages 9

R
eview

s
�IN

F
O
R
M
A
T
IC
S

computational models for ABC transporters have been discussed

in several reviews [42–46].

In this review, we survey the recent advances in computational

approaches developed for the prediction of P-gp inhibitors or

substrates. First, the structural characteristics of P-gp and the

mechanism of the P-gp efflux pump are briefly introduced. Then,

two fundamental aspects for the in silico predictions of P-gp

inhibitors or substrates are systematically summarized, including

the available datasets of P-gp inhibitors or substrates and the

published computational models. In addition, we discuss the

benefits of using the P-gp crystal structure and molecular docking

approach for predicting P-gp substrates. Unfortunately, it was

found that the docking scores could not distinguish substrates

from non-substrates, suggesting that current molecular docking

techniques could not deal effectively with the complex nature and

the weak and unspecific ligand-binding properties of P-gp.

The structure of P-gp and the mechanism of P-gp
transport
Throughout the past decade, the structure of P-gp has usually been

characterized by homology modeling techniques [47–49]. How-

ever, earlier attempts to model the 3D structure of P-gp suffered

from low sequence identity to the template protein, a prime

example being the bacterial ABC transporter MsbA [48,49]. The

lack of a reliable crystal structure becomes a major obstacle to

design anti-MDR inhibitors. Encouragingly, in 2009, the X-ray

structure of apo murine P-gp (PDB entry: 3G5U; resolution: 3.8 Å)

and two additional P-gp X-ray structures in complex with two

cyclopeptidic inhibitors (PDB entries: 3G60 and 3G61; resolution:

4.40 Å and 4.35 Å) were reported by Aller et al. [50]. The murine P-

gp shares 87% sequence identity with the human homology. P-gp

is a pseudo-symmetrical heterodimer with each monomer con-

sisting of two bundles of six transmembrane (TM) helices (TMs 1–

3, 6, 10, 11 and TMs 4, 5, 7–9, 12) and two nucleotide-binding

domains (NBDs) separated by �30 Å (Fig. 1). The function of NBDs

is to bind ATP, thus providing energy for substrate binding. Two

bundles of six TM helices form the inward-facing conformation
Please cite this article in press as: L. Chen, et al., Computational models for predicting
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FIGURE 1

(a) Transport cycle for substrate efflux pumped by P-glycoprotein. Substrates are c

conformation of human P-glycoprotein. The cyclopeptidic inhibitor RRR-QZ59 is c
modeled based on the crystal structure of murine P-gp (PDB entry: 3G60) using 
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that results in a large internal cavity open to the cytoplasm and the

inner leaflet. TMs 4, 6 and TMs 10, 12 form two portals that provide

access for the entry of hydrophobic molecules directly from the

membrane. The crystal structures of P-gp in complex with QZ59

show that RRR- and SSS-QZ59 have different binding locations and

orientations: RRR-QZ59 binds to one site per transporter whereas

SSS-QZ59 binds to two sites, confirming the polyspecificity of P-gp.

To date, the mechanism for P-gp transporting substrates out of

cells is still subject to considerable controversy [51–54]. One classic

hypothesis was proposed to interpret the mechanism of the

energy-driven drug transporter: (i) the inward-facing region of

P-gp has high affinity to substrates and binds substrates using

the energy provided by NBD dimerization; (ii) P-gp undergoes

large structural changes from an inward-facing to an outward-

facing conformation during the catalytic cycle; (iii) substrates are

released as a consequence of decreased binding affinity caused by

the changes in specific residue contacts or, alternatively, facilitated

by ATP hydrolysis, which could disrupt NBD dimerization and

reset the system back to inward-facing and reinitiate the transport

cycle (Fig. 1) [55,56].

The fact that large numbers of structurally diverse compounds

interact with P-gp suggests that multiple binding sites could be

involved in substrate and/or inhibitor binding [16]. The type and

number of binding sites is still not clear [56,57]. Two ‘functional’

drug-binding sites have been identified within P-gp, based on their

mutual interactions in the transport process; the H-site, which

binds Hoechst 33342, and the R-site, which binds rhodamine 123

(R123) [57]. The X-ray crystallographic studies of P-gp showed that

two drugs can bind to different ‘small’ binding sites in a single

large flexible binding pocket [50]. Another regulatory site was also

found in P-gp, and the binding to this site led to a dramatic change

in the properties of the transported substrate-binding site [58].

In silico predictions of P-gp inhibitors or substrates
Rather than developing computational models based on compli-

cated statistical techniques, earlier attempts have been made to

find a set of simple rules based on structural and functional
 substrates or inhibitors of P-glycoprotein, Drug Discov Today (2011), doi:10.1016/
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olored red and ATP is magenta. (b) Ligand-binding site on the inward facing

o-crystallized and shown in magenta. The human P-glycoprotein (P-gp) was
the Modeller program in Discovery Studio (version 2.5).
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TABLE 1

The theoretical models for predicting P-glycoprotein substrates and inhibitors

Refs Method Model Descriptors Dataset Performance

Training Test

Penzotti [29] CONAN Classification Pharmacophore-based
descriptors

144 45 Traininga: accuracy = 80%; testb:
accuracy = 63%

Gombar [24] LDA Classification Electrotopological state

values, shape indices

and molecular

properties

95 58 Training: SEc = 100%, SPd = 90.6%

test: accuracy = 86.2%

Xue [35] SVM Classification 159 descriptors 74 25 SE = 84.2%, SP = 66.7%, accuracy = 80%

Crivori [22] PLSD Classification Volsurf descriptors 53 272 Training: accuracy = 88.7%;

test: accuracy=72.4%

Sun [31] Bayes Classification Atom typing descriptors

and fingerprints

424 185 Test: accuracy=82.2%

Cabrera [36] TOPS-MODE Classification TOPS-MODE descriptors 163 40 Training: SE = 82.4%, SP = 79.17%,

accuracy = 80.9%; test: accuracy = 77.5%

Wang [32] BRNN Correlation 249 descriptors 43 14 Training: r2 = 0.756, test: r2 = 0.728

Lima [27] SVM, kNN, DT,

binary QSAR

Classification MolconnZ, AP, VolSurf

and MOE Descriptors

144 51 Training: accuracy = 94%; test:

accuracy = 81%

Huang [39] SVM, PS Classification 79 descriptors 163 40 Training: 95.5%; test: 90%

Muller [64] PLS Correlation CoMFA and CoMSIA

descriptors

28 30 Training: r2 = 0.82; test: r2 = 0.6

Wu [34] MLR, SVM Correlation 423 CODESSA descriptors 56 14 Training: r2 = 0.85; test: r2 = 0.81

Chen [21] RP, NBC Classification Fingerprints and

molecular properties

973 300 Training: SE = 84.7%, SP = 82.1%,

accuracy = 88.9%; test: SE = 79.2%,
SP = 83.8%, accuracy = 81%

Cianchetta [37] PLS Correlation Almond and Volsurf

descriptors

109 20 Training: r2 = 0.83, LOO q2 = 0.75;

test: r2=0.72

Ekin [23] Pharmacophore 27 19 Training: r2 = 0.77; test: Spearman r = 0.68

21 19 Training: r2 = 0.88; test: Spearman r = 0.7

17 19 Training: r2 = 0.86; test: Spearman r = 0.46

Li [26] DT Classification Pharmacophore models 163 97 Training: accuracy = 87.7%;

test: accuracy = 87.6%

Wang [41] SVM Classification ADRIANA.Code, MOE

and ECFP4 fingerprints

212 120 Training: LOO accuracy = 75%;

test: accuracy = 88%

a Training represents training set.
b Test represents test set.
c SE represents sensitivity.
d SP represents specificity.
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features that can characterize the interactions between a substrate

or inhibitor and P-gp [12,59–61]. For example, Seelig suggested a

set of well-defined structural elements required for an interaction

with P-gp [61]. These recognition elements were formed by two

(type I unit) or three (type II unit) electron donor groups with a

fixed spatial separation. Type I units consisted of two electron

donor groups with a spatial separation of 2.5 � 0.3 Å, and type II

units contained either two electron donor groups with a spatial

separation of 4.6 � 0.6 Å or three electron donor groups with a

spatial separation of the outer two groups of 4.6 � 0.6 Å. All

molecules that contained at least one unit (i.e. type I or type II)

were predicted to be P-gp substrates. These simple rules can be

understood easily and used by laboratory scientists as well as

computational chemists; however, they are too simple to char-

acterize P-gp substrates or inhibitors effectively [26].

Extensive computational models, based on 2D-QSAR, 3D-QSAR,

pharmacophore modeling and molecular docking techniques, have
Please cite this article in press as: L. Chen, et al., Computational models for predicting
j.drudis.2011.11.003
been developed to predict P-gp inhibitors or substrates. The theore-

tical models reported for predicting P-gp inhibitors or substrates are

summarized in Table 1. Moreover, a variety of statistical techniques

as well as machine learning approaches, including multiple linear

regression (MLR) [27], partial least square discriminant analysis

(PLSD) [22], linear discriminant analysis (LDA) [24,36], decision

tree (DT) [21], support vector machine (SVM) [34,35,39,41], Koho-

nen self-organizing map (SOM) [33] and Bayesian classifier [21,31],

have been employed to develop the theoretical models.

Experimental datasets for model developments
The preparation of relevant datasets with high quality and

quantity is the first step toward constructing models with

high confidence. Traditionally, the public datasets only have a

limited number of compounds (less than or close to 200)

[29,32,35,36,39]. Gombar et al. compiled a dataset of 98

molecules, which consists of 32 non-substrates and 66 substrates
 substrates or inhibitors of P-glycoprotein, Drug Discov Today (2011), doi:10.1016/
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identified by in vitro monolayer efflux assays [24]; Penzotti et al.

reported a dataset of 195 compounds, among which are 108 P-gp

substrates and 87 non-substrates [29]; Xue et al. assembled a

dataset of 201 compounds, which includes 116 substrates and

85 non-substrates of P-gp [35]. In 2005, Sun reported an extensive

validated dataset of 609 compounds provided by Dr Klopman

[31]. The reversal factor (RF) was used to measure the ability to

reverse MDR. From the 609 compounds in the dataset, 378

compounds were active, with an RF value greater than 2.0, and

the remaining compounds were inactive. In 2011, Wang et al.

reported a large dataset of 332 compounds, which included 206 P-

gp substrates and 126 non-substrates [41].

Recently, we reported the largest dataset for P-gp inhibitors and

non-inhibitors available to date [21]. This dataset has 1273 struc-

turally diverse molecules, consisting of 797 P-gp inhibitors and

476 non-inhibitors. The two most important sources are the

experimental data of 609 compounds with the multiple drug

resistance reversal (MDRR) activity reported by Bakken and Jurs

[62], and the experimental data of 347 compounds reported by

Ramu and Ramu [63,64]. The experimental MDRR ratio was used as

a criterion to determine whether a compound is an inhibitor or

not: if the MDRR ratio was less than 4 the compound was categor-

ized into the non-inhibitor class; if the MDRR ratio was greater

than 5 the compound was categorized into the inhibitor class; if

the MDRR ratio was �4 and �5 the compound was considered to

be moderately active and not included in the dataset (the dataset is

available at: http://cadd.suda.edu.cn/admet, accessed November

2011). It is worth noting that the assays used for assessing P-gp

inhibition do not truly reflect a direct measure of P-gp inhibition.

However, based on the primary assumption that only the EC50

shift is caused by the inhibition of P-gp, the assay is one of the

classical approaches used within the field of oncology.

The available datasets do not appear to be robust and reliable,

because the data from different experimental protocols are usually

mixed together. The class (i.e. inhibitor or non-inhibitor, and

substrate or non-substrate) of a compound needs to be checked

carefully if it can be found in multiple publications [21].

Theoretical models based on QSAR
In 2004, Gombar et al. employed LDA to construct a classification

model for P-gp substrates [24]. The training set consisting of 95

compounds was classified as 63 substrates and 32 non-substrates

based on the results from in vitro monolayer efflux assays. The LDA

classifier with 27 descriptors gave a sensitivity of 100% and a

specificity of 90.6% in the cross-validation test; moreover, a pre-

diction accuracy of 86.2% was obtained on an external test set of

58 compounds. The analysis of these 27 descriptors in the final

classifier suggested that the ability to partition into membranes,

molecular bulkiness and the counts and electrotopological values

of certain isolated and bonded hydrides were important structural

features of substrates. However, the training set used by Gombar

et al. was not extensive enough; therefore, the chemical space

covered by the current model might be limited.

In 2005, Cabrera et al. developed a linear discriminant model for

a dataset of 163 compounds, which includes 91 substrates and 72

non-substrates [36]. The final model based on nine TOPS-MODE

descriptors achieved a sensitivity of 82.42% and a specificity of

79.17% for the training set. For the external validation set with 40
Please cite this article in press as: L. Chen, et al., Computational models for predicting
j.drudis.2011.11.003

4 www.drugdiscoverytoday.com
compounds (22 substrates and 18 non-substrates), the model gave

a prediction accuracy of 77.5%. Analysis of the descriptors in the

model evidenced that the standard bond distance, the polariz-

ability and the Gasteiger–Marsilli atomic charge affected the inter-

action between P-gp and substrates.

In 2006, Crivori et al. applied PLSD analysis to classify 22 P-gp

substrates and 31 P-gp non-substrates based on the VolSurf

descriptors [22]. The model had an accuracy of 88.7% for the

training set, but it only achieved an accuracy of 72.4% for the

external set of 272 compounds. Then the authors applied PLSD

analysis to construct the classifier to distinguish P-gp substrates

from P-gp inhibitors based on the GRIND descriptors. The classifier

discriminated between 69 substrates and 56 inhibitors with an

average accuracy of 82%.

In 2005, Cianchetta et al. developed a 3D-QSAR model using the

Almond and VolSurf descriptors for a diverse set of 129 compounds,

which were evaluated for P-gp inhibition using the calcein-AM

method assay [37]. These compounds were divided into a training

set of 109 compounds and a test set of 20 molecules. Statistical

analysis showed that after Fractional factorial design (FFD) frac-

tional selection has been implemented the PLSD model with three

latent variables gave the best prediction for the training set:

r2 = 0.8252; leave-one-out (LOO) q2 = 0.7459; leave-two-out (LTO)

q2 = 0.7456; and random grouping (RG) q2 = 0.7400. It is encoura-

ging that this model achieved a square correlation coefficient of

r2 = 0.7160 for the tested molecules. By analyzing the Almond

descriptors in the PLSD model, the authors proposed the following

pharmacophore hypothesis: two hydrophobic groups 16.5 Å apart

and two hydrogen-bond-acceptor groups 11.5 Å apart.

In 2005, Sun built a naive Bayesian classifier to categorize MDRR

agents into active and inactive classes based on atom-type-based

molecular descriptors and fingerprints [31]. The whole dataset was

split into a training set of 424 molecules and a test set of 185

molecules. The classifier built from the training set predicted the

MDRR activities of the tested compounds with a success rate of

82.2%. The author believed that the model based on atom-typing

descriptors and naive Bayesian classification offered extra infor-

mation for the rational design of MDRR agents.

In 2006, Lima et al. [27] developed a set of classification models

for a dataset of 195 diverse substrates and non-substrates by

employing various combinations of optimization methods and

descriptor types [27,29]. In the modeling process, four descriptor

sets were used, including 381 molecular connectivity indices, 173

atom pair (AP) descriptors, 72 VolSurf descriptors and 189 descrip-

tors calculated by Molecular Operating Environment (MOE), and

four modeling techniques were used, including, k-nearest neigh-

bors (kNN) classification QSAR, binary QSAR, DT and SVM. Every

QSAR modeling technique was combined with each descriptor

type to create 16 (4 methods � 4 descriptors) combinatorial QSAR

models. The best models based on SVM and either AP or VolSurf

descriptors achieved high correct classification rates with 94% and

81% for the training and test sets, respectively.

In 2008, Muller et al. developed 3D-QSAR models using Com-

parative Molecular Field Analysis (CoMFA) and Comparative Mole-

cular Similarity Index Analysis (CoMSIA) approaches for 28 P-gp

inhibitors, including 24 structurally related derivatives of tariquidar

and four XR compounds [65]. The best 3D-QSAR models achieved

an internal predictive squared correlation coefficient higher than
 substrates or inhibitors of P-glycoprotein, Drug Discov Today (2011), doi:10.1016/
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0.8. The models were then validated by an external test set of 30 XR

compounds, and the best CoMSIA model gave a predictive squared

correlation coefficient of 0.6. It should be noted that the CoMFA and

CoMSIA models were developed based on a series of homologs;

therefore, they do not have general predictive capability.

In 2009, Wu et al. applied MLR and SVM techniques to construct

the hybrid QSAR models to predict MDR modulating activities for

70 compounds [34]. First, the heuristic method was applied to

select the descriptors using the CODESSATM program, and then the

prediction models were built by MLR, SVM and hybrid QSAR

modeling. The best hybrid model gave root-mean-square (RMS)

errors of 0.33 units for the training set, 0.47 for the test set and 0.36

for the whole set, and the corresponding correlation coefficients

(r2) were 0.85, 0.81 and 0.84, respectively. One big concern regard-

ing Wu’s models is whether the application domain is large

enough for the compounds outside the chemical space covered

by the training set because the dataset used in modeling is small.

Recently, Wang et al. built several classification models to

predict whether a compound is a P-gp substrate or not, based

on a large dataset with 332 distinct structures [41]. Each molecule

was represented by three sets of molecular descriptors, including

ADRIANA.Code, MOE and ECFP_4 fingerprints. The classification

models were constructed by SVM based on a training set, which

includes 131 P-gp substrates and 81 P-gp non-substrates. The best

model gave a Matthews correlation coefficient of 0.73 and a

prediction accuracy of 0.88 on the test set. Examination of the

model based on ECFP_4 fingerprints revealed several substructures

that have significance in separating substrates and non-substrates.

More recently, we developed a set of classification models for a

large dataset of 1273 molecules [21]. The whole dataset was

randomly split into a training set of 973 molecules and a test

set of 300 molecules. First, the DTs were built from the training set

using the recursive partitioning (RP) technique and validated by

an external test set of 300 compounds. The best DT correctly

predicted 83.5% of the P-gp inhibitors and 67% of the P-gp

non-inhibitors in the test set. Second, the naive Bayesian categor-

ization modeling was applied to establish classifiers for the P-gp

inhibitors and non-inhibitors. The Bayesian classifier displayed an

average correct prediction for 81.7% of 973 compounds in the

training set with LOO cross-validation procedure and 81.2% of 300

compounds in the test set. By establishing multiple Bayesian

classifiers with and without molecular fingerprints, the impact

of molecular fingerprints on classification was evaluated by the

prediction accuracy for the test set. We found that the inclusion of

molecular fingerprints could improve the prediction significantly.

Moreover, as an unsupervised learner without tuning parameters,

the Bayesian classifier employing fingerprints highlights the

important structural fragments favorable or unfavorable for P-gp

inhibition. These important fragments predicted by the Bayesian

classifier could be useful for experimental scientists when design-

ing molecules with better P-gp inhibition. The 15 good and 15 bad

fragments ranked by the Bayesian scores are summarized in Fig. 2.

The relationships between important fragments and P-gp inhibi-

tion have been discussed by Chen et al. [21].

Theoretical models based on pharmacophore modeling
In 2002, Ekins et al. proposed a set of pharmacophore models for P-

gp inhibitors [38]. The pharmacophore models generated from the
Please cite this article in press as: L. Chen, et al., Computational models for predicting
j.drudis.2011.11.003
inhibition of digoxin transport in Caco-2 cells, vinblastine and

calcein accumulation in P-gp-expressing LLC-PK1 cells, as well as

vinblastine binding in vesicles derived from CEM/VLB100 cells

were used to rank the experimental data for the inhibition of

verapamil binding in Caco-2 cells. The pharmacophore model

based on 27 inhibitors of digoxin transport in Caco-2 cells con-

sisted of four hydrophobes and one hydrogen-bond acceptor. This

model possessed an observed versus predicted correlation of

r2 = 0.77 for the training set and high prediction accuracy for

the tested molecules. Moreover, the authors found that the

digoxin pharmacophore model could give a good rank for the

data from the inhibition of verapamil binding. All five P-gp

inhibitor pharmacophores were merged to uncover the features

that occupy similar regions in space. This analysis suggested the

presence of at least four distinct groups of features, consisting of

two hydrophobic domains along with a hydrogen-bond acceptor

region and an aromatic ring region, both of which were near one of

the hydrophobic domains [23].

In 2002, Pajeva and Wiese developed a general pharmacophore

model using the GASP program developed by Tripos for 18 struc-

turally diverse MDR substrates and modulators that bind to the

verapamil binding site of P-gp [28]. The pharmacophore model

was composed of two hydrophobic points, three hydrogen-bond

acceptor points and one hydrogen-bond donor point. They pro-

posed a hypothesis to explain the broad structural variety of the P-

gp substrates and inhibitors: (i) the verapamil binding site of P-gp

has several points that are involved in hydrophobic and hydrogen-

bond interactions; (ii) different drugs can interact with different

receptor points in different binding modes.

In 2002, Penzotti et al. developed a multiple-pharmacophore

model, composed of a set of two-to-four-point pharmacophores to

discriminate between P-gp substrates and non-substrates [29]. The

whole dataset of 195 compounds for pharmacophore modeling

was split randomly into a training set of 144 compounds and a test

set of 51 compounds. The final multiple-pharmacophore model

was composed of 100 two-, three- and four-point pharmacophores.

These compounds matching at least 20 of the 100 pharmaco-

phores in the ensemble were likely to be P-gp substrates. The

model offered an overall classification accuracy of 80% for the

training set, but only 63% for the test set.

In 2004, Langer et al. constructed a general pharmacophore

model for inhibitors of P-gp based on a training set of 15 propa-

fenone-type modulators [25]. The pharmacophore model con-

sisted of one hydrogen-bond acceptor, one hydrophobic core,

two aromatic hydrophobic areas and one positive ionizable group.

The model was validated by 105 compounds from an in-house

library. The 105 propafenone-type inhibitors in the test set were

ranked according to their EC50 values. Within the top 30% com-

pounds (n = 35) only three were incorrectly predicted; and within

the bottom 30% compounds (n = 35) 28 substances (80%) were

predicted as being completely inactive.

Similar to Penzotti’s work [29], Li et al. developed multiple

pharmacophore models for differentiating P-gp substrates and

non-substrates [26]. A comprehensive set of four-point pharma-

cophores was generated based on 163 compounds (91 substrates

and 72 non-substrates). Nine significant pharmacophores were

applied to generate a simple classification tree. The analysis of

multiple pharmacophores revealed that hydrogen-bond acceptor,
 substrates or inhibitors of P-glycoprotein, Drug Discov Today (2011), doi:10.1016/
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FIGURE 2

(a) The 15 good and (b) 15 bad fragments for P-glycoprotein inhibition identified by the Bayesian classifier based on molecular properties and the FCFP_4
fingerprint set.
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positive ionizable, aromatic ring and hydrophobic groups were

essential features for substrate activity. The classification tree

achieved an overall accuracy of 87.7% for the training set and

87.6% for the external test set of 97 molecules.

Theoretical models based on molecular docking
In the earlier stages of P-gp study, the QSAR and pharmacophore

modeling techniques were the usual methods used to predict the

P-gp inhibitors or substrates owing to the lack of available crystal
Please cite this article in press as: L. Chen, et al., Computational models for predicting
j.drudis.2011.11.003
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structures for P-gp. In 2009, the X-ray structures of murine P-gp

were reported by Aller et al. [50]. The crystal P-gp structures provide

good starting points for molecular docking studies.

In many studies, the homology models were developed to

characterize the putative ligand-binding sites or investigate the

possible conformations of P-gp in different states [49,66–68].

However, only a few publications showed the P-gp models

were used to dock compounds into the putative ligand-binding

sites [40,69].
 substrates or inhibitors of P-glycoprotein, Drug Discov Today (2011), doi:10.1016/
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In 2009, Becker et al. presented four 3D models of P-gp describ-

ing two different states along the catalytic cycle using the X-ray

structures of Sav1866 and MsbA as the templates in homology

modeling [69]. The inter-residue distances of the theoretical mod-

els correlated well with distances derived from cross-linking data.

One of the nucleotide-free 3D models was used to dock four

different ligands, including verapamil, rhodamine B, colchicines

and vinblastine, into the central binding cavity harbored by the

TM domains. The docked poses for each ligand were found to

interact with the residues that have been experimentally identified

as binding to a specific ligand. Docking studies indicate that no

access route is large enough to allow the entry of one ATP molecule

into the catalytic site of the nucleotide-bound models suggesting

that these structures should undergo changes to accommodate

their ligands. However, the binding poses of the studied ligands

given by theoretical predictions could not be validated by solid

experimental evidence.

Recently, Pajeva et al. tried to dock a series of compounds into

the P-gp-binding cavity based on the recently resolved P-gp struc-

ture [40]. The docked structures confirmed the P-gp pharmaco-

phoric features identified, and revealed the interactions of some

functional groups and atoms in the structures with particular
Please cite this article in press as: L. Chen, et al., Computational models for predicting
j.drudis.2011.11.003
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The distributions of the docking scores for P-glycoprotein substrates and non-su

docking was based on 3G60 and the XP precision mode; (c) docking was based on 

precision mode.
protein residues. However, the accuracy of docking could not be

evaluated because the authors did not compare the docking scores

with the experimental binding affinities.

Is having the crystal structure of P-gp enough to predict
substrate binding?
The polyspecificity of P-gp could be the main obstacle to carrying

out molecular docking studies for P-gp. The cavity formed by P-gp

encloses a volume of �6000 Å3 [50], which provides ample space

for P-gp to bind two or even more small molecules simulta-

neously.

To evaluate the prediction capability of molecular docking, we

docked 245 diverse molecules, comprising 157 P-gp substrates and

88 P-gp non-substrates collected from the literature [24,33,35,61],

into the binding cavity of P-gp. Two crystal structures of P-gp in

complex with RRR-QZ59 and SSS-QZ59 (PDB entries: 3G60 and

3G61 [50]) were used as the receptor models in molecular docking

studies. The molecular docking was accomplished by the Glide

package (Schrödinger, version 2010). All the structures were

docked and scored by two Glide precision modes: SP (standard

precision) and XP (extra precision). For each structure, the binding

pose with the best score was saved.
 substrates or inhibitors of P-glycoprotein, Drug Discov Today (2011), doi:10.1016/

Drug Discovery Today 

20

15

15

10

10

5

5

0
-10 -9 -8 -7 -6 -5 -4 -3

-14 -13 -12 -11 -10 -9 -8 -7 -6 -5 -4 -3 -2
0

Fr
eq

ue
nc

y
Fr

eq
ue

nc
y

Non-substrate

Non-substrate

b)

d)

Substrate

Substrate

Score (kcal mol)

Score (kcal mol)

bstrates. (a) Docking was based on 3G60 and the SP precision mode; (b)
3G61 and the SP precision mode; (d) docking was based on 3G61 and the XP

www.drugdiscoverytoday.com 7

http://dx.doi.org/10.1016/j.drudis.2011.11.003
http://dx.doi.org/10.1016/j.drudis.2011.11.003


REVIEWS Drug Discovery Today � Volume 00, Number 00 �November 2011

DRUDIS-928; No of Pages 9

R
eview

s
�IN

F
O
R
M
A
T
IC
S

The distributions of the molecular docking scores for the sub-

strates and non-substrates are shown in Fig. 3. Although the mean

values of the docking scores for the P-gp substrates are lower than

those for the non-substrates (Fig. 3), the distributions of the

substrates and the non-substrates still overlap greatly, which

obviously shows that, based on the docking scores, the P-gp

substrates and the non-substrates cannot be distinguished clearly.

The failure of the molecular docking study to distinguish the

substrates from the non-substrates might be explained by the poly-

specific nature of substrate binding and only one active binding

pocket used in the same docking environment. We believe that it is

still difficult to use P-gp homology models or X-ray structures

successfully for prospective molecular docking studies. We might

be able to apply the molecular docking to generate more-reliable

predictions with more co-crystallized ligands solved in the future.

Current challenges and future directions
A lot of effort has been dedicated to predict P-gp inhibitors or

substrates and understand the mechanism of action for the P-gp

inhibitors or substrates. Currently, only limited in silico models can

give satisfactory predictions. How to improve the prediction accu-

racy of the models still remains a significant challenge.

The lack of reliable and extensive experimental data is undoubt-

edly a major obstacle to developing accurate computational mod-

els. We have reported the largest dataset for P-gp inhibitors [21].

The dataset includes 1273 structurally diverse molecules, among

which 797 molecules are P-gp inhibitors and 476 molecules are P-

gp non-inhibitors. However, for P-gp substrates, large datasets are

still needed. Even the largest dataset reported by Wang et al. only

contains 332 P-gp substrates and non-substrates [41]. Therefore,

further development on the availability of P-gp data for the public

domain is still necessary.
Please cite this article in press as: L. Chen, et al., Computational models for predicting
j.drudis.2011.11.003
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As mentioned above, the large binding site of P-gp accommo-

dating multiple binding modes and diverse chemical structures

means that it is a demanding proposition for modeling. It is really

difficult to develop a global model for P-gp inhibitors or substrates

that could have different binding mechanisms. It is possible that

the combination of two or more models, based on different

principles, can give higher confidence for predicting P-gp inhi-

bitors or substrates. Li’s work gives us some clues to aid develop-

ment of integrated models [26]. Li and co-workers developed

multiple pharmacophore models for P-gp substrates and inte-

grated them by a classification tree, which achieved high predic-

tion accuracy. In the near future, based on the large datasets, we

will be able to develop multiple prediction models with high

prediction accuracy and integrate them into a single prediction

platform.

The high-resolution structures of P-gp are available now, but

there are limited results for rationally translating this information

into developing prediction models with satisfactory reliability.

Unlike most pharmacological targets, P-gp can recognize a broad

variety of compounds with relatively weak binding affinities. The

weak and unspecific binding properties of P-gp amplify the inher-

ent defects in molecular docking approaches and limit the use of

those protein structures in a broader sense. How to incorporate

the structural information and develop the structure-based pre-

diction models for P-gp inhibitors or substrates remains a serious

problem.
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