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3D Pharmacophore Elucidation and Virtual Screening
Several methods have been developed and published

over the past years to generate sets of diverse and

pharmacologically relevant conformations which can

be used within 3D pharmacophore search protocols to

increase the number of meaningful hits of such experi-

ments. This review gives some insights into the general

challenges and problems in the area of 3D structure

and conformation generation and focuses on some

available and recent software technologies and

approaches applicable for this task. The methods, algo-

rithms and philosophies behind the approaches are

briefly described and discussed and some examples

on the performance and results obtained with the

different tools are given.

Introduction

Most molecules of pharmacological interest can adopt more

than one conformation of nearly equal energy by rotation

around single bonds. 3D pharmacophores are very sensitive

toward the data they are searched against, that is the three-

dimensional structures of the database molecules. Therefore,

the success of a 3D pharmacophore search experiment heav-

ily relies not only on the quality and accuracy, but also on the

conformational diversity of the 3D structures stored in the

database. In addition, a single 3D geometry of a molecule may

miss a pharmacophore, although, it is able to exhibit the

appropriate conformation. To avoid such false negative hits
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and to ensure that all molecules that are searched are present

in their bioactive conformation, that is, the preferred confor-

mation in the receptor-bound state, most pharmacophore

methods employ sets of molecular conformations – confor-

mational ensembles – as well as a conformation generation

tool that calculates the different molecular geometries either

before or on-the-fly during the search. By contrast, too many

conformations will not only increase search and computa-

tion times, but, and even more importantly, may dramati-

cally increase the number of false positive hits.

Brief historical background and classification of

methods

The major goal of any conformation generation tool that is

employed in drug design is to generate and identify the

bioactive conformation of a molecule within a reasonable

amount of time. Doubtlessly, this is not possible by generat-

ing a single 3D structure. Therefore, conformational ensem-

bles that are ideally biased toward the conformational space

that is considered to contain the bioactive conformation or at

least geometries that are similar to it have to be calculated.

Clearly, the less conformations have to be generated, the

faster the pharmacophore search is the better the ratio of true

to false positive hits is.

A large number of different approaches have been devel-

oped over the past decades that generate 3D structures and

conformational ensembles starting already in the late eighties

of the past century. Reviews about these developments until

the early 2000s can be found at [1–4].
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In general, conformer generators can be classified into rule-

and data-based systems, systematic (or grid) searches, numer-

ical methods, random approaches and genetic algorithms

(not discussed here). However, most of the more recent

technologies can be regarded as hybrid approaches, as they

employ combinations of the methods named above.

Description of problem

What is so special about the bioactive conformation? The

major issue is that during binding to the biological receptor

the molecule undergoes a transition from the unbound, ‘free’

status in aqueous solution into a bound status exposed to

directed electrostatic and steric forces by the amino acids of

the binding site. Enthalpic and entropic contributions, such

as the loss of water molecules, may stabilize the bound

structure in a different geometry that the ligand exhibits in

solution, in solid state, or in gas phase. Studies have shown

that ligands often bind in more extended conformations to

maximize the interaction surface with the receptor [5]. Dis-

cussions if receptor-bound ligands have energy contents sig-

nificantly above the global energy minima [6,7] or, as a recent

study proposes, if bioactive conformations are closer to

energy minima [8] are matter of an ongoing scientific debate

and a thorough discussion here would break the limitations

of this article.

Another challenge is the fact of molecules that bind to

more than one biological target with acceptable binding

affinities (sometimes also called ‘promiscuous ligands’).

The ligand-bound conformations at the various targets

may significantly differ, but each pharmacophore toward

the molecule that is active should produce a hit. Therefore,

a thorough sampling of the conformational space including

all biologically relevant geometries is a crucial step for suc-

cessful pharmacophore-based virtual screening.

There are several additional issues related to conforma-

tional sampling that are frequently discussed in the literature,

but only two should be mentioned here. One question is

which methods and means are adequate for testing and

evaluating the performance of conformer generation tools

(including reproduction of the bioactive conformations as

well as coverage of the conformational space) and another

topic is the preparation of useful test datasets for such test

runs (see, e.g. [9,10]).

General workflow of a conformational search

The general workflow of a conformational search procedure

can be described as following.

Identification of the rotatable bonds in the molecule

Usually, only single bonds between heavy atoms are consid-

ered as rotatable and often single bonds to terminal groups

(e.g. a methyl group) are excluded. Owing to the ring closure

restriction, cyclic systems are orders of magnitudes more rigid
e246 www.drugdiscoverytoday.com
than the acyclic (open-chain) parts and have to be treated

separately, for example, by pre-calculated, allowed ring con-

formations. Most program systems determine a set of rota-

table bonds and flexible rings purely on the basis of the

molecular graph.

Generation of conformations with the implemented algorithm

At this step, the molecule is expanded into conformational

space starting from the connection table information either

with or without 3D coordinates (starting geometry). Bond

lengths and angles are usually kept fixed and only the tetra-

hedral (or torsion) angles of the rotatable bonds are varied.

Especially systematic searches have to deal with the challenge

of the combinatorial explosion at this step. The total number

of possible conformations N that can be generated in sys-

tematic searches increases exponentially with the number of

rotatable bonds n supposed that for each rotatable bond a

number k of torsion angles (increments) is applied around a

full rotation of 3608 (see Eqn (1)).

N ¼ 360

k

� �n

(1)

Methods and algorithms that identify and prune pathways in

the search tree that lead to unfavorable conformations (e.g.

highly strained ring conformations or atom clashes) at an

early stage speed up the search dramatically. In addition,

intermediate energy or symmetry consideration can reduce

the number of conformations that have to be generated and

further processed. Optionally, the generated ‘raw’ conforma-

tions have to be energy-minimized and geometry-optimized

at this step (e.g. by a force field).

Checking for duplicates and very similar geometries

Redundant information, such as identical conformation or

those that are very similar have to be identified and removed.

This can be done by the calculation of inter-conformational

distances either in the Cartesian space (comparison of the 3D

coordinates of the heavy atoms of two conformations) or by

comparing internal coordinates such as the torsion angle

values. The usually applied metric for this comparison is

the RMSD value (root mean square deviation, see Eqn (2))

which can also be used to calculate the similarity between a

generated conformation and an experimental structure, for

example, the bioactive conformation (Fig. 1).

RMSD ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN
i ðDdÞ2

N

s
(2)

where N is the number of heavy atoms (non-hydrogen atoms)

and Dd is the distance between the ith corresponding atom

pair of the conformations. Dd can be calculated either in

Cartesian space that is, the relative positions of the 3D

coordinates between corresponding atom pairs are used, or
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Figure 1. Four examples of superimpositions of the experimentally determined bioactive conformation with the best-matching conformation obtained

from an automatic conformational search. The RMSDXYZ (root mean square deviation in Cartesian space in [Å]) as well as the PDB code of the receptor–

ligand complex is shown.
by comparing internal coordinates, such as the torsion angle

values of corresponding bonds.

Selection of a set of representative conformations biased toward

area of application

This step can also be embedded and performed in one of the

steps above. The major goal of an exhaustive search in con-

formational space is to retrieve all possible conformations of a

molecule, for example, to identify the global minimum. This

exhaustive but computationally demanding search should

also retrieve the bioactive conformation. However, in phar-

macophore-based screening the goal is to rapidly generate a

relatively small conformational ensemble around the ligand-

bound conformation to be able to screen databases of mil-

lions of compounds in reasonable amounts of time. There-

fore, a subsampling of the entire accessible conformational

space is usually performed.

Available technologies

CatConf, or ConFirm, from Accelrys (http://accelrys.com)

that is part of the Discovery Studio pharmacophore model-

ing protocols and tools (formerly available in the Catalyst

pharmacophore modeling platform) provides two different

search modes, fast and best, which significantly differ in

their methods and implementations [11,12]. The fast mode

applies a modified systematic search (quasi-exhaustive

search) with a fuzzy grid, if atom clashes occur, for the

open chain portions of a molecule whereas for the ring

systems a set of predefined ring conformations is used (ring

templates). In the next step, the conformations are relaxed
in a restricted CHARMm force field [13] that has been

modified to prevent the generation of duplicate geometries

and only conformations within a (user-) defined energy

window compared to the lowest energy conformation are

submitted to the subsequent step. Finally, heuristics are

applied to maximize the conformational diversity of the

subset of conformations and the user can optionally limit

the maximum number of output conformations. The best

mode of ConFirm uses a distance geometry approach, a

relatively time-consuming procedure that can be regarded

as a numerical method. Distance geometry uses a matrix of

internal coordinates of a molecule (bond lengths and higher

distances) with lower and upper bounds. After procedures

that are called triangle smoothing and (energy) embedding, the

method is able to generate a set of conformations with ‘raw’

3D coordinates; however, ring and acyclic portions of the

molecule can be treated together in one step. For refine-

ment, again a modified version of the CHARMm force field

is employed. A method called poling [14] is applied that

biases the sampling of conformations toward geometries

that are far from a local minimum but energetically near to

each other by placing huge, artificial barriers (poles) on the

energy surface. This technique enables the exploration of

the low-energy regions of the conformational space and

produces conformations that do not correspond to a local

energy minimum. The best mode of ConFirm is able to well

reproduce the ligand-bound conformation of molecules

while computation times are significantly higher than in

fast mode. Some performance results of ConFirm in study

[15] are summarized in Table 1.
www.drugdiscoverytoday.com e247
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Table 1. Performance of conformer generators

Program ConFirm/

Catalyst

CEASAR MOE CORINA/ROTATE OMEGA MacroModel ConfGen CONFORT

Version 4.11 (Discovery

Studio 1.7)

2006.08 1.6 2.3 7.0 2.0 3.9

Mode Fast/best – Conformation

import

Automatic Default AMBER, GB/SA Very fast-

comprehensive

Intermediate

energy filter

Dataset 778 drug-like

molecules

from PDB

918 drug-like

molecules

from PDB

256 drug-like

molecules

from PDB

778 drug-like

molecules

from PDB

197 drug-like

molecules

from PDB

32 drug-like

molecules from

PDB

667 drug-like

molecules from

PDB

32 drug-like

molecules

from PDB

Mean RMSD to

bioactive

conformation (Å)

1.18/0.95 0.95 – 0.97 0.67 0.50 – 0.86

Reproduced bioactive

conformations

(RMSD �1.0 Å) (%)

29.0/38.7 61.0 68.0-87.0 62.5 83 91.0 52.0–71.0 66.0

Average number of

generated conformers

per molecule

35/165 100 (maximum) 46-1175 125.5 123.3 154 14.3–146.4 23

CPU times (s/mol) 1.5/155 0.2 6.0 6.5 2.1 1129 0.5–8.0 369

Hardware platform,

operating system

x86 Linux PC,

2.8 GHz

x86 Linux PC,

3.4 GHz

PC, 2.2 GHz x86 Linux PC,

2.8 GHz

x86 Linux PC,

2.8 GHz

SGI IRIX 6.5,

R10000, 250 MHz

x86 Linux PC,

2.4 GHz

SGI IRIX 6.5,

R10000, 250 MHz

Reference [15] [16] [18] [21] [9] [25] [26] [25]

Comment: The statistics on conformation search studies carried out with the different program systems discussed in this review and listed in this table are collected from the individual publications (see References above). Please note that most of the

studies have been performed with different datasets, with different analysis protocols and on different hardware platforms. This table is intended to provide the reader with some general information about the performance of conformation

generation tools and not for a direct comparison of the performance of the different program systems listed in this table. It is highly recommended to read the original publications for a complete overview and further details of the individual studies.
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Figure 2. Tree representation of a hypothetical molecule as used in CAESAR. The root node ‘mol’ represents the entire molecule that is partitioned into

conformational units ‘A’ and ‘B’ (nodes) of approximately equal structural complexity that are connected by rotatable bonds (edges). Then, units ‘A’ and ‘B’

are further dissected into the smallest possible units ‘C’ to ‘G’. Conformational templates are assigned to each node to build up conformational ensemble

(e.g. the terminal unit ‘G’ is a single ring system and different ring conformations are assigned to it).
CEASAR (Conformer Algorithm based on Energy Screen-

ing and Recursive Buildup) [16] that is available for confor-

mation generation in the Accelrys Discovery Studio product

can be regarded as a systematic search. Internally, the pro-

gram represents a molecule as a tree where the nodes are the

smallest conformational units the molecule can be fragmen-

ted into (such as individual ring systems or small rigid frag-

ments, for example, a methylene or ethylene fragment) and

the edges are rotatable bonds linking the units (Fig. 2). This

representation is based purely on the molecular graph (no 3D

information yet). To expand this tree representation into 3D

space and to generate conformations, lists of conformational

templates are assigned to the nodes (conformational units).

For ring systems, the template library method from Catalyst

is used (vide supra). The small rigid fragments can also be used

to generate stereoisomers. Then, the conformations are

assembled recursively according to the tree representation

starting from the smallest fragment. The fragments (nodes)

are linked (edges) by applying a grid of possible torsion angles

values (between six and 12 values). During this stepwise

build-up procedure, precursors of the final molecular con-

formations are already checked if a certain energy threshold

or a certain number of intermediate conformations is

exceeded to control the generation process. Energy calcula-

tions are performed by using the parameters of the Catalyst

force field. Furthermore, a new method that takes into

account symmetries in the molecule prevents the generation

of duplicate conformations at early stages of the build-up

process (symmetry unique torsions). CEASAR performs up to

20 times faster than the fast mode of ConFirm while perform-

ing slightly better in reproducing bioactive conformations.
Some results of conformational searches with CEASAR from

the original paper are summarized in Table 1 [16].

The modeling suite Molecular Operating Environ-

ment, MOE, from Chemical Computing Group (http://

www.chemcomp.com) contains modules for systematic

and stochastic searches [17] as well as a protocol called

Conformational Import. The systematic search applies a grid

search by rotating each rotatable bond by a fixed angle

increment (158 for cyclic, 608 or 1208 for acyclic bonds). After

checking for atom clashes and removal of structures with too

close van-der-Waals contacts, the conformations can option-

ally be energy-minimized. In a final step, only conformations

within a certain energy window (with respect to the lowest

energy conformation) are retained and duplicate geometries

(based on RMSD) are rejected. Systematic searches are usually

slow; however, perform well if a complete sampling of the

conformational space is required. The stochastic search gen-

erates a set of conformations by repetitively and randomly

changing the torsion angles of the rotatable bonds (cyclic and

acyclic portions, perturbation of around 308) and the algo-

rithm is similar to the RIPS (Random Incremental Pulse

Search) method [17]. After an energy minimization step, only

conformations within a certain energy window and which are

not too similar are kept. The entire search process stops if a

certain number of cycles to generate conformations are

reached or if a certain number of conformations have been

generated. These types of stop criterion are typical for sto-

chastic (or random) methods. The stochastic method in MOE

is fast, but the default parameters have to be adjusted by

the user to sample the pharmacologically relevant space

according to [18]. The Conformational Import protocol is a
www.drugdiscoverytoday.com e249
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combination of a rule- and data-based system and a stochastic

search and is recommended for generating multi-conforma-

tions for large datasets (e.g. for 3D pharmacophore search-

ing). Optionally, the molecules can be first submitted to some

filters (e.g. consistent protonation state, removal of mole-

cules with reactive groups, and physicochemical properties).

Then, each molecule is fragmented according to some rules

and matching fragment conformations from a pre-calculated

3D template library are used to build up different geometries.

If a certain fragment cannot be found in the template library,

conformations are generated during run time by the stochas-

tic search described above. By joining the different 3D tem-

plates, a set of conformations is obtained for the molecule

under investigation. Furthermore, the conformations can be

optionally relaxed in a force field (refinement option). The

Conformation Import protocol is well suited for processing

large amounts of molecules. Interestingly, the reproduction

of bioactive conformation performs better without the final

refinement step in study [18], the results of which are briefly

summarized in Table 1.

The program systems CORINA [19] and ROTATE [20]

available from Molecular Networks (http://www.molecular-

networks.com) are rule- and data-based approaches. CORINA

is widely used for generating high-quality, low-energy, single

3D structures (e.g. of corporate databases or huge compound

collections). To identify a single low-energy conformation,

CORINA internally generates a set of different ring geome-

tries of the cyclic parts of a molecule based on a library of

generic ring templates including strain energies (Fig. 3) which

are finally relaxed in a reduced, but extremely fast, force field.

These sets of low-energy ring conformations can optionally

be output. The open-chain portions are extended as much as

possible by setting the torsion angles to anti or trans config-

urations, unless a cis double bond is specified which effec-

tively minimizes non-bonding interactions. In a following

step, ROTATE can vary the torsion angles of the acyclic
Figure 3. Pre-defined generic ring conformations as used in

CORINA for a saturated six-membered ring system (left) and a six-

membered ring system with one double bond (right) sorted by their

symbolic strain energy. The structures on the left side represent the

well-known chair, twisted and boat conformation of six-membered

rings (from bottom up).

e250 www.drugdiscoverytoday.com
portions. The program uses a set of rules that has been derived

by a statistical analysis of the conformational preferences of

small molecule crystal structure taken from the Cambridge

Structural Database. Finally, similar conformations (in Car-

tesian or torsion angle space) are grouped to families and each

family is represented by a single conformation to reduce the

amount of output of conformations. ROTATE offers a fully

automatic mode, but all parameters can also be adjusted by

the user. Both programs perform reliably and robust and are

able to well reproduce the bioactive conformations; however,

the user has to work with two program systems to cover the

cyclic and acyclic portions of a molecule. Results of the

performance of CORINA and ROTATE are given in Table 1

[21].

OMEGA from OpenEye Scientific Software (http://www.

eyesopen.com) is a fast systematic, knowledge-based method

[9]. The program mainly consists of five steps of which the

first two have to be performed only once unless the knowl-

edge-base has to be changed. The first step (fragment database

preparation) fragments a very large collection of commercially

available compounds into ring systems and small open-chain

linkers and for each of these fragments at least one confor-

mation is generated using an approach similar to distance

geometry (embedding) with a subsequent minimization in a

reduced Merck molecular force field (MMFF94) [22]. In the

second step (torsion sampling dictionary), a pre-defined hier-

archical set of torsion angle patterns is populated with dif-

ferent torsion angle values (for each pattern) derived from

experimental or calculated 3D structures. In the third step

(3D structure generation) the fragments from the fragment

database calculated in the first step that match the query

molecule are assembled using geometric and chemical rules.

Thus, for each input molecule at least a single conformation

can be generated. In the forth step (torsion driving), the torsion

angle rules calculated in step two that match to the confor-

mations generated in step three are applied to generate larger

conformational ensembles for each molecule. Conforma-

tions with severe atom clashes and duplicates are removed.

In the final step (sampling), a subset of all generated confor-

mations is sampled using a scoring and ranking scheme until

a fixed number of final conformations is reached or only

conformations below a certain threshold of the score are

remaining. The scoring is based on atom clashes in the

conformations that are assessed using force field calculations

(without a minimization step). OMEGA performs fast and

samples the conformational space well around bioactive

conformations. Table 1 briefly summarizes the results of a

study carried out with OMEGA version 2.3 [9].

MacroModel from Schrödinger (http://www.schrodinger.

com) is a very well-known and widely used force field-based

molecular modeling package and offers a variety of methods

for conformation generation [23]. Besides systematic and sto-

chastic searches, the so-called low-mode conformational

http://www.molecular-networks.com/
http://www.molecular-networks.com/
http://www.eyesopen.com/
http://www.eyesopen.com/
http://www.schrodinger.com/
http://www.schrodinger.com/
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search (LMCS)and large-scale lowmode (LLMOD) areavailable

in MacroModel [24]. These effective and accurate algorithms

explore the conformational space by applying a (vibrational)

mode-following or eigenvector-following technique. In addi-

tion, the program includes hydration and solvent accessible

surface area models. Geometry optimization can be carried out

with a variety of different force field packages, such as MM2,

MM3, MMFFs AMBER, AMBER94 and many more. MacroMo-

del can accurately reproduce bioactive conformations, espe-

cially if solvation models are applied during the calculations.

However, computation times are too high to employ it in

virtual screening experiments with large compound collec-

tions. In Table 1 some results of a conformational search study

with MacroModel are given [25].

More recently, scientists of Schrödinger presented a new

method called ConfGen [26]. The core algorithm of Conf-

Gen can be regarded as rule- and data-based and was origin-

ally developed to generate diverse conformations for the

docking program Glide [27]. In principle, the program per-

forms three steps to generate ensembles of conformations. In

the first step (variable feature identification), rotatable bonds in

acyclic portions of the molecule and ring systems are deter-

mined. For ring systems, ConfGen uses a set of over 1200 pre-

calculated templates including their relative energies that

have been generated by conformational searches using

MacroModel. Several criteria (e.g. an upper limit of the rela-

tive energy of a ring template within the molecule) limit the

total number of generated ring conformations. In the second

step (conformer generation), acyclic bonds that are considered

to be rotatable are treated as individual torsion angle pat-

terns. For each of these patterns a tabulated potential is

calculated using a truncated version of OPLS_2001 including

some corrections due to molecular symmetries or too few

minima. The minima of the resulting potentials are then used

to generate the conformations, whereas for the rotatable

bonds in the inner part of the molecule (molecular core)

all combinations of minima are used and only the lowest

energy geometry is applied to the peripheral groups (i.e. the

terminal groups including one rotatable bond). After an

energy and a steric clash filter, the so-called extension score

(ES) is calculated to rank the generated core conformations

according to their extendedness. This procedure biases the set

of final conformations toward more extended conformations

following the finding that ligands tend to bind to their

biological receptor in a more stretched geometry (vide supra).

Finally, the peripheral groups are sampled again (either one at

a time, rapid mode, or all combinations, thorough mode). The

final step (conformer selection and refinement) includes some

filters to remove conformations with unwanted electrostatic

properties, polar contacts or conformations that have a high

local concentration of heavy atoms. A user-defined number

of conformations is sampled from the ES-ranked list of

conformations generated so far which can then be optimized
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in an OPLS_2005 force field [28]. Duplicates or conformations

that are too similar (RMSD-based) are rejected. Some statistics

of a study performed with ConfGen are summarized in Table

1 [26].

CONFORT was developed by Prof. Pearlman, University of

Texas, Austin and is distributed by Tripos (http://www.tri-

pos.com). CONFORT performs an exhaustive conformational

analysis of a molecule [29]. Two different search modes either

generate a user defined number of conformations or output a

set of maximally diverse conformations. The diversity metric

is based on inter-conformational distances which circum-

vents the generation of duplicate structures. The conforma-

tions are relaxed and optimized by applying only internal

coordinates and analytic gradients as well as by the Tripos

force field package (see Table 1 for some results from [25]).

The technologies described above are summarized in Table

2. Of course, this list of technologies is by far not compre-

hensive and there are many more tools existing, even com-

mercially available or developed by industry or academic

groups for in-house use. The package QXP for structure-based

drug design relies on a random search technique to generate

conformations that are finally relaxed in a force field [30]. The

program MIMUMBA by Klebe and Mietzner from BASF

company is a rule and data-based system using crystallo-

graphic data (similar to ROTATE, vide supra) for exploring

the conformational space of small molecules [31,32]. The

group of Agrafiotis at Johnson & Johnson, Pharmaceutical

R&D developed a conformation generator based on stochas-

tic proximity embedding (SPE) and self-organizing superim-

position (SOS) to generate ‘raw’ 3D coordinates of

conformational ensembles that can be finally relaxed in a

force field [33]. Griewel et al. at the Center of Bioinformatics,

University of Hamburg in the group of Prof. Rarey recently

presented the TCG algorithm (TrixX Conformer Generator)

that fragments a molecule into components and starts build-

ing up the conformation step-wise from the most central

component using pre-computed 3D fragments (components)

and dihedral angles including intermediate energy filtering at

each step [34].

Furthermore, some open source packages, such as Open

Babel (http://openbabel.org) or RDKit (http://www.rdkit.

org), provide means to generate sets of molecular conforma-

tions.

Conclusions

A lot of different methods and approaches for the automatic

generation of conformations have been developed over the

past decades. Although, it is an old discipline with a long

tradition, the ongoing activities in the community and dis-

cussions in the literature show that this field still is an

exciting, important and controversially received topic of

interest and research. Looking back into history, conformer

generators were originally designed and are still used for the
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identification of the global minimum of a molecule. How-

ever, the rapidly growing availability of computer resources,

the explosion of available biological and chemical data and

the development of virtual screening techniques, such as

pharmacophore searches, led to a paradigm shift, or an

extension of the paradigm in this area of research. Relevant

conformations that is, a small conformational ensemble

comprising a maximum of a couple of dozens of structures

around the bioactive one, have to be generated in a minimum

amount of time to make such virtual screening experiments

meaningful, feasible and successful. Most of the technologies

described above perform reasonable well for this task and

there are no clear favorites or significantly superior techni-

ques. Probably, the methods implemented in MacroModel

and CONFORT should be used preferentially if high-quality,

accurate and an exhaustive sampling of the conformational

space is required (e.g. if the global minima of a small series of

molecules is investigated) due to higher computation times.

Also, molecular dynamics calculations that are not discussed

in this brief review are well suitable for these problems [35].

Differences in performance as outlined in Table 1 are also due

to different test datasets, different protocols to analyze the

results and to calculate the statistics of the runs as well as

different hardware platforms and CPU speed. A combined

study with either a unified evaluation protocol (test dataset,

analysis tools and CPU power) or each protocol with all

available conformer generators would gain a better and dee-

per insight into the differences in the performance of the

methods and accomplishing such a study is encouraged at

this point. As in most scientific areas and disciplines, there is

still a room not only for the improvement of the existing

technologies but also for new developments. An accurate

prediction of the bioactive conformation of a ligand by first

principles and by generating a single 3D structure is still not

possible. Further increasing computer power will probably

allow for the generation and screening of larger conforma-

tional ensembles in reasonable amounts of time in the future.

Entirely novel future concepts and ideas, adapted especially

from the rapidly growing area of information technology and

theory, will probably further leverage successes in hunting for

the bioactive conformation.
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