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3D Pharmacophore Elucidation and Virtual Screening
The parallel use of multiple pharmacophore models

representing different pharmacological targets

emerges as an in silico tool for compound activity profil-

ing. This technology allows for the prediction of desired

bioactivities together with potential adverse effects of a

drug candidate. In thefield of ethnopharmacology,activ-

ity profiling can guide the rationalization of traditional

drug uses and the discovery of their active principle. This

article highlights the concept, recent applications and

caveats of pharmacophore-based activity profiling.

Introduction

Pharmacophore-based virtual screening is an established in

silico tool used for filtering large compound libraries in the

search for novel lead compounds [1]. A pharmacophore

model may represent a target-ligand binding site that triggers

a desired pharmacological effect. Alternatively, such a model

may also hold information of chemical features that can lead

to adverse drug reactions or drug–drug interactions. Thus,

when screening a compound against a panel of models

representing multiple pharmacological targets, an activity

profile including desired and unwanted actions of the com-

pound can be predicted (Fig. 1). Subsequent in vitro and in vivo

experiments verify or falsify the in silico prediction. Activity

profiling is therefore a means of selecting the most promising

compounds from a database for biological testing. Applica-

tions range from screening for lead compounds over natural

product profiling to environmental chemicals assessment.
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Set-up of a pharmacophore model collection

The heart of pharmacophore-based activity profiling consists

of numerous pharmacophore models representing a set of

pharmacologically relevant targets, the so-called pharmaco-

phore model collection (PMC). As the quality of any method

is heavily dependent on the quality of its single components,

each of these pharmacophore models needs to have good

predictive power. True/false positive hit rates, true/false nega-

tive hit rates, enrichment factor, goodness of hits, or the

receiver operating characteristic curve–area under the curve

(ROC–AUC) are among the most common quality parameters

used in model evaluation experiments [2]. As another aspect,

the purpose of each pharmacophore model has to be defined.

A model that is intended for cherry-picking of promising

candidates for biological testing may require a higher enrich-

ment of actives in the hitlist than a model for potential

adverse drug reactions, which aims to broadly identify suspi-

cious compounds. In the first case, the model is not supposed

to cover all active compounds from a database; however, it is

required that the model does not return too many false

positive hits from a database search. In the second case,

models can be more general in order not to miss any com-

pounds that might trigger undesired effects. Thus, false nega-

tive hits are to be avoided. As a consequence, when a PMC is

aimed at broad and multi-purpose activity profiling, hun-

dreds of models of different qualities are required. One phar-

macological target may be represented by several models
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Glossary

Enrichment: enrichment of active compounds in the virtual screening

hitlist in comparison to the non-filtered database.

Enrichment factor (EF): EF = (number of true positives/number of

hits in hitlist)/(actives in database/database size).

False negative hit: bioactive compound that is not recognized by a

model.

False positive hit: inactive compound that fits into a model.

Hit: a compound that maps the chemical features of a pharmacophore

model.

Target: pharmacologically relevant protein or nucleid acid which

function can be altered by small molecule binding.

True negative hit: inactive compound that does not fit into a model.

True positive hit: bioactive compound that is correctly recognized by

a model
covering different binding sites (e.g. active site vs. allosteric

site), different binding modes to the same binding site,

restrictive models for cherry-picking and general models

for scaffold hopping and antitarget profiling. It is therefore

helpful to have a PMC database in which the respective

models are categorized and available for selection. Model

categorization may be accomplished according to pharma-

cological target, model purpose or medical indication, to

name a few. For example, a model for cytochrome P450

(CYP) 3A4 inhibitors could be categorized using the following

pharmacological target ontology: enzymes! EC1.-(oxidore-

ductases)!monooxygenases! CYP 3A4.

The practical generation of a pharmacophore model set for

one target can be set up as described for cyclooxygenase

(COX) inhibitors [3]. First, structure-based pharmacophore

models are designed using data on protein–ligand complexes
Figure 1. The concept of pharmacophore-based activity profiling is

based on the consecutive fitting of compounds into multiple

pharmacophore models that represent several different targets.
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from the Protein Data Bank (PDB) [4] or from proprietary

sources. These models are evaluated against a data set of

active and inactive ligands or decoys for the respective target,

for example, a literature data set, the ChEMBL database [5],

the DUD database [6], or the PubChem database [7]. Highly

active ligands that are not correctly recognized by this model

set may then be used for ligand-based modeling to cover all

important compound classes for this target. Fully automated

ligand-based pharmacophore model generation using chemi-

cally diverse compounds is not recommended, because

experts with knowledge about ligands and the protein bind-

ing site usually develop models of better quality [8]. The aim

of this modeling process is to establish a PMC that correctly

identifies a high fraction of active compounds (about 90%).

The advantage of using multiple models of sufficient restric-

tivity, so-called local models, in comparison to employing

one more general (global) model is higher specificity, that is, a

lower false positive hit rate. To maintain this advantage, it is

also important to exclude models with redundant informa-

tion, that is, models which retrieve the same active com-

pounds as other models. For example, the overall enrichment

factor (EF) for a COX PMC of 39 structure-based models was

2.70 on the DUD COX active and decoy data sets. After the

removal of redundant models, the 5 remaining pharmaco-

phores had an improved EF of 10.55 [3].

Evaluation studies

The evaluation of a PMC is crucial before its application for

virtual activity profiling. Steindl et al. reported virtual screen-

ing of 100 antiviral compounds against respective pharma-

cophore models representing five pharmacologically

unrelated antiviral targets [9]. They report 88% correct activ-

ity predictions for this data set. In another study, this group

evaluated the performance of their PMC for related targets by

screening different protease inhibitor data sets against HIV

protease inhibitor pharmacophore models [10]. Furthermore,

this group compiled models for inhibitors and substrates of

several CYP enzymes and evaluated them on the biologically

determined CYP activity profile of 17 drugs [11]. Finally,

broad activity profiling of PPAR ligands against a PMC con-

sisting of 1537 models for 181 pharmacological targets was

performed to determine how well the correct target was

predicted [12]. All these evaluation studies aimed at the

identification of potential gaps and caveats when using the

PMC in a prospective screening. Additionally, they high-

lighted several unspecific models that would lead to false

activity predictions in many cases and should therefore be

removed from the PMC. In other cases, prediction gaps were

discovered where active ligands were not correctly recog-

nized, pointing out that the PMC needed to be extended

by respective models. A summary of these examples is given

in Table 1.
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Table 1. Exemplary PMC evaluation studies and their lessons for in silico profiling

Evaluation study Focus Profiling Setup Results Ref.

Antiviral

compounds

First pharmacophore-based

activity profiling application

on unrelated targets

100 antiviral ligands screened against

50 pharmacophore models for five

unrelated antiviral targets

88% correct predictions, some models

for HIV reverse transcriptase

turned out to be too global

[9]

HIV protease

inhibitors

Discrimination of ligands

for related targets

HIV protease inhibitor models used

to screen HIV protease inhibitors,

inactive compounds, random (virtual)

compounds, and other protease inhibitors

Pronounced higher retrieval of

HIV protease inhibitors compared

to other data sets

[10]

CYP inhibitors Correct identification of

actives for safety profiling

16 models for substrates and inhibitors

of five CYPs used to profile 17 drugs

with known CYP activity

92% predictions correct or false

positive, 8% false negative,

mainly CYP3A4

[11]

PPAR inhibitors Target ranking 1537 models for 181 pharmacological

targets used to profile 321 PPAR agonists

For 54% of the 321 PPAR agonists,

the PPAR target was ranked

1st or 2nd. Other targets involved

in metabolism were also highly ranked.

[12]
Software solutions

The immense number of models needed for building a PMC

applicable to broad activity profiling needs suitable software

solutions enabling rapid pharmacophore model building and

evaluation. Models may be generated using popular software

packages such as DiscoveryStudio (http://www.accelrys.-

com), MOE (http://www.chemcomp.com) and Phase

(http://www.schrodinger.com), or LigandScout (http://

www.inteligand.com). When working with different software

packages, it has to be considered that they handle pharma-

cophoric features and exclusion volume spheres in different
Figure 2. (a) Pharmacophore model classification and selection tree implement

report – the so-called heat map – mapping the models (x-axis) against the compo

are color-coded from low fit (blue) to high fit (red). Non-fitting compounds a
ways, so that one cannot expect that the same model finds

the same hits in all these programs [13]. Although employing

different pharmacophore modeling and screening software

can therefore lead to a better coverage of chemical space, it is

not recommended for pharmacophore-based activity profil-

ing, because PMC evaluation studies are even more difficult

to handle in a multi-program environment.

Automated pharmacophoric profiling is readily available

in DiscoveryStudio. In the ‘Ligand Profiler’ protocol, the user

can directly select several pharmacophore models for con-

comitant screening, although without the possibility to add
ed in the Ligand Profiler protocol of DiscoveryStudio. (b) Activity profiling

unds (y-axis). The geometric fit values of the compounds into the models

re displayed in black.
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background information for each model. Alternatively, mod-

els can be compiled into the user’s own Ligand Profiler

database, where for each model classification information

can be indicated. For the profiling using this Ligand Profiler

database, a classification tree is available from which the

individual models can be selected (Fig. 2a). Along with Dis-

coveryStudio, the so-called HypoDB, a proprietary PMC

(http://www.inteligand.com) can be licensed which consists

of over 2500 pharmacophore models representing about 300

pharmacological targets. Although DiscoveryStudio is so far

the only software offering automated pharmacophore-based

activity profiling and reporting (Fig. 2b), data pipelining

software such as PipelinePilot (http://www.scitegic.com) or

KNIME (http://www.symyx.com) facilitate the setup of par-

allel screening and reporting for practically all virtual screen-

ing methods.

Application fields for pharmacophore-based activity

profiling

Although using more than one pharmacophore model for

virtual screening has been exemplified before (e.g. [14,15]),

the upscaling of this concept to hundreds or thousands of

models deserves special attention. Such broad pharmaco-

phore-based activity profiling is a quite recently established

approach which required some studies how to deal with such

a great amount of prediction data. Since its introduction in

2006, several successful examples with different applications

have been reported. The most attractive potential of in silico

activity profiling in general is to identify multiple pharma-

cological targets for the screened compounds, which is fre-

quently termed target fishing. This feature can be exploited

into several directions.

Scenario 1: drug repositioning

Besides the classical drug discovery and development work-

flow based on virtual screening of chemical libraries, high

throughput screening, lead validation and optimization, stu-

dies are ongoing that search for new uses of already estab-

lished drugs. For example, the teratogenic compound

thalidomide (Contergan) shows good activity against

erythema nodosum leprosum, a complication of leprosy,

and is an effective treatment for multiple myeloma and

related plasma cell disorders [16]. In silico profiling of old

drugs can help to reposition such old drugs for new uses [17].

For example, Dubus et al. reported a 2D pharmacophoric

fingerprints-based similarity search method to identify novel

targets for already used drugs [18]. Basis of their predictions

was a database of about 650,000 ligands associated with over

2 million biological activities. From a search, bioactivities of

the query compound (highest rank) and similar compounds

are reported. For each of their query drugs, already known as

well as novel targets were reported by their screening plat-

form, thereby offering new ideas for biological experiments.
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Scenario 2: natural product profiling

Pharmacophore-based activity profiling of natural products

offers several possibilities to the research community. On the

one hand, the mode of action of ethnopharmacologically

used drugs and their single constituents can be predicted to

guide pharmacological activity rationalization experiments.

On the other hand, novel natural products with interesting

chemical scaffolds and unknown bioactivity can be profiled,

which may accelerate the discovery of a valuable lead com-

pound for drug development.

One example for natural product-focused activity profiling

is the application of a COX inhibitors pharmacophore model

collection [3] to constituents of the Thai traditional medicine

Prasaplai, which consists of ten plants (mainly spices), cam-

phor and sodium chloride [19]. The analysis of the predic-

tions and a comparison with literature data confirmed COX

inhibition as one mode of action for this medicine. A broader

activity profiling study has been reported by Ehrman et al.

[20]. The group built multiple pharmacophore models for

COX-1 and -2, p38 MAP kinase a, Jun kinases 1 and 3 as well

as phosphodiesterases 4B and 4D, which are all known targets

for anti-inflammatory drugs. Compounds from their in-

house Chinese herbal constituent database were profiled

against all models, followed by hit ranking using docking.

Thereby, several herbs which could exert their effects via one

or more than one of these targets were identified. Rollinger

et al. went a step further and profiled 16 previously isolated

main constituents from the aerial parts of Ruta graveolens L.

against 2208 pharmacophore models covering over 280

unique pharmacological targets from various indications

[21]. Selected compounds were tested against acetylcholines-

terase, human rhinovirus coat protein, and the cannabinoid

receptor 2. 14 out of 18 (77.8%) biologically evaluated pre-

dictions were correct, one compound was even confirmed as a

multi-target inhibitor. Especially in the natural product field,

where a lot of effort is put into the isolation and structure

elucidation of compounds and where the amounts of avail-

able substance is often limited, in silico activity profiling can

aid in the discovery of exciting bioactivities [22].

Scenario 3: multitarget approach

As mentioned above, many drugs and natural products are

already known to act via more than one target. The idea of

multi-targeting is that mild interventions with several targets

will add up their effects while avoiding toxicity mediated by a

total knock out of a single target. Especially pharmacological

targets with baseline activity, that can be induced in patho-

logic conditions, shall not be completely inhibited [23]. It can

be favorable to mildly modulate several targets associated

with one pharmacological pathway, for example, the arachi-

donic acid cascade, or from complementary mechanisms

involved in a disease, as is often the case for anti-cancer

treatment [24]. The pharmacophore-based search for multi-

http://www.inteligand.com/
http://www.scitegic.com/
http://www.symyx.com/
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target compounds is still in its infancy. Apart from the natural

product-focused studies described above, no pharmacophoric

profiling-based multitarget screening has been reported until

now. Current projects in our and other groups promise more

reports on multitarget-oriented activity profiling studies in

the near future.

Scenario 4: safety profiling

The concomitant and early prediction of desired activities

and adverse effects of a compound mainly aims at reducing

dropout rates in late stages of drug development. In general,

in silico profiling can guide the selection of lead compounds

for drug development programs when several candidates are

available. Interactions with so-called antitargets can occur via

ion channels, most prominently the hERG potassium chan-

nel, G protein-coupled receptors such as the adrenergic a1A

receptor, enzymes like the CYP family, nuclear receptors such

as the pregnane X receptor, and others. For many antitarget

ligands, pharmacophore models have successfully been

established and reviewed recently [25,26]. For example, a

PMC consisting of models for CYP 1A2, 2C9, 2C19, 2D6

and 3A4 inhibitors and substrates, respectively, could predict

the interactions of 17 drugs and drug candidates with these

enzymes with an accuracy of 64% [11]. This success rate may

seem very modest. However, antitarget profiling usually

requires more general models in order not to miss potentially

toxic compounds. In the respective study, 27% of all predic-

tions were false positive ones, meaning that these predictions

would have triggered false alarm signals in the profiling.

Finally, only 8% of all predictions were false negative ones,
Comparison Summary Table.

Drug repositioning Natural product

profiling

Activity profiling of

already known drugs.

Drugs can be optimized

for another therapeutic

application

Activity profiling of

natural products

Pros Advantageous

ADMET properties

Expensive or rare natural product ma

Mode of action rationalization of

ethnopharmacologically used

drugs enables their

use in Western medicine

Cons Limited to targets

which are represented

by respective

pharmacophore models

Patentability issues

possible

Natural product databases or already

and structurally defined compounds n

starting points

Limited to targets which are represen

respective pharmacophore models

References [17] [22,39]
most of them by CYP 3A4 models. Accordingly, for the

designated application, this PMC performed sufficiently well.

The amount of data returning from activity profiling can be

an issue. There are sometimes ‘frequent hitting targets’ in the

activity profile, especially drug-metabolizing enzymes and

transporters, which can indeed bind many chemically diverse

compounds. The simplest way to avoid data overflow is to

only use models for targets that the user is most interested in.

That may be proteins for which biological testing is available

in-house or other criteria such as indication areas. Another

possibility is to tag or weight all models from the PMC and use

this information to interpret the predicted activity profile.

Other in silico activity profiling approaches

In silico bioactivity profiling can be performed using basically

any virtual screening method. Not only the interaction with

specific targets can be predicted – from a compound’s solu-

bility to its bioavailability and distribution in the human

body, followed by its biotransformation and excretion, every

step can be put into mathematical models and therefore

computationally predicted [27]. One of the most prominent

and publicly available screening tools is the Similarity Ensem-

ble Approach (SEA) approach [28], available at http://

www.sea.docking.org. Predictions in SEA are based on ligand

similarity, where the query ligand is compared to compounds

with known bioactivities from databases. Other reported

activity profiling studies used support vector machines

[29,30], docking [31–33], structural clustering [34], binding

site shape [35], and ligand-based descriptor models [36,37].

The 2D descriptor based program PASS and its success stories

have recently been reviewed [38].
Multitarget

activity profiling

Safety profiling

Systematic search for

compounds with several targets

Activity profiling using

antitarget models

terial is saved Compounds with synergistic

actions on several targets

may enhance therapeutic

value and reduce side effects

Fast identification of the

most probable toxic

compounds

Prioritization among

several drug candidates

facilitated

isolated

eeded as

ted by

Usually relatively low activity

on individual targets

In silico safety profiling

cannot replace

biological testing

[23] [40]
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Although the compilation of a high quality PMC is a time-

intensive endeavor which requires good modeling skills, the

so-far published applications from the literature give an

insight into the high potential of pharmacophore-based

activity profiling, thereby rewarding the initial model build-

ing efforts. In comparison to other in silico activity profiling

technologies, it does not require structural information on

the pharmacological targets such as docking-based

approaches, because ligand-based pharmacophore models

can be employed. Unlike similarity based methods, pharma-

cophore-based profiling does not depend on already reported

structurally similar and active compounds for comparison.

Therefore, especially activity predictions for compounds

from a non-drug like chemical space, for example, environ-

mental chemicals, may be facilitated. In terms of speed,

pharmacophore-based activity profiling lies between the

computationally expensive docking approach and the fast

2D similarity search method. One of the most interesting

questions for the near future will be the assessment of what

advantages a combination of complimentary in silico activity

profiling techniques could bring. The different in silico activ-

ity profiling approaches are summarized in the Comparison

Summary Table.

Conclusion

From the featured applications it becomes clear that the

described scenarios cannot be strictly divided. The readout

of an in silico activity profiling run always returns predictions

on modes of action, probably via multitarget activity, as well as

potential adverse drug reactions or drug–drug interactions, if

such models are included in the PMC. The researchers may

then decide in which direction to interpret the results. In

comparison with some other activity profiling technologies,

pharmacophore-based activity profiling offers several advan-

tages. In brief, pharmacophore models are more universal

because they are not dependent on the 3D structure of a target

and can be applied to scaffold hopping. Additionally, the

results can be visually inspected by fitting the compounds

into the respective hitting pharmacophore models or directly

into the 3D structure of the protein, whenever structure-based

models were used. With the availability of commercial soft-

ware that can handle pharmacophore-based activity profiling

and result reporting, much is to be expected from this tech-

nology in terms of lead identification and safety profiling.
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