Latest News

  • New insights in genetic defect allow prevention of fatal illnesses in children
    A team of scientists led by prof. Adrian Liston (VIB–KU Leuven) and prof. Isabelle Meyts (UZ Leuven – KU Leuven) were able to characterize a new genetic immunodeficiency resulting from a mutation in a gene named STAT2. This mutation causes patients to be extremely vulnerable to normally mild childhood illnesses such as rotavirus and enterovirus. Prof. Liston’s comprehensive analysis of the genetic defect allows clinicians to provide children with the proper therapies before illnesses prove fatal. The findings of the research have been published in the Journal of Allergy and Clinical Immunology.
  • Janssen’s next-generation biologic Guselkumab shows promise in the treatment of psoriatic arthritis in phase 2 trial
    Following positive phase 3 results in moderate to severe plaque psoriasis, guselkumab represents the first specific anti-interleukin-23 monoclonal antibody to demonstrate significant improvement in signs and symptoms of active psoriatic arthritis
  • South Tees bio-incubator officially launched
    The 9th August 2016 saw the official launch of the South Tees Bio-Incubator. Located at James Cook University Hospital in Middlesbrough, the Bio-Incubator space will give early stage biotechnology and life sciences companies access to facilities and expertise to support innovations in biomedical research.
  • Harnessing Nature’s Vast Array of Venoms for Drug Discovery
    There are lessons to be learned from venoms.Scorpions, snakes, snails, frogs and other creatures are thought to produce tens or even hundreds of millions of distinct venoms. These venoms have been honed to strike specific targets in the body.For victims of a scorpion’s sting, that spells doom. For scientists, however, the potent molecules in venoms hold the potential to be adapted into medicines. But venoms are difficult to isolate and analyze using traditional methods, so only a handful have been turned into drugs.
  • Perfecting a Viral Pack Mule
    TSRI Study Shows That New Forms of a Plant Virus Are Useful in Human Therapeutics
view more

Podcasts

view more

Webinars

  • The Promise of Epigenetics in Early Stage Drug Discovery
    Epigenetic targets are exciting to drug discovery scientists because they hold great potential across a wide spectrum of therapeutic areas. The field of epigenetics focuses on the investigation of enzymes that alter gene expression through modification of their target substrates, usually through the addition or removal of methyl or acetyl groups. High-throughput assays to identify agents capable of modifying the action of such enzyme targets has, in the past, proven to be challenging due to the relatively small molecular alterations in addition to the possibility of sequential modifications, leading to multiple end products. As such, high-throughput bioassays that allow the direct, concurrent quantification of multiple modification states are attractive. The RapidFire platform enables high-throughput mass spectrometric analysis of native molecules from in vitro reactions by performing on-line desalting in seconds, as opposed to HPLC, which requires minutes. Moreover, the RapidFire system can be connected to any mass spectrometer providing unparalleled versatility in reaction detection.
  • Integrated Quant / Qual for In-vivo Discovery Bioanalysis using Hybrid Quadrupole-Time-of-Flight Mass Spectrometry
    Ultra high performance liquid chromatography (UHPLC) coupled with orthogonal acceleration hybrid quadrupole-time-of-flight (QqTOF) mass spectrometry is an emerging technique offering new strategies for the efficient screening of new chemical entities (NCE) and related molecules at the early discovery stage within the pharmaceutical industry.
  • Drug Delivery: enabling technology for discovery and development
    The integration of pharmacodynamic and pharmacokinetic parameters in non clinical pharmacology studies is a key aspect in drug discovery for efficacy and safety assessment, in the particular for the translation from the non clinical to the clinical field. Modeling the profile of plasma exposure achieved with the intended therapeutic route often requires the use of intravenous infusion. In addition, in most cases infusion parameters (infusion rate, volume, duration and sequences) need to be customized to achieve the appropriate pattern of plasma drug exposure. When pharmacodynamic parameters are recorded by telemetry, the use of implantable pumps rather than external pumps is necessary to preserve the improvement in physiological data recording offered by telemetry.
  • Part 2: How has HR-MS technology fundamentally changed the way we study drug biotransformation and disposition?
    AB SCIEX is proud to present the 2nd installment of a Global 4-Part Live Webinar Series exploring novel and dynamic workflows for Metabolite Identification & Drug Metabolism solutions as it pertains to the 4 main stages of the drug discovery and development paradigm, Lead Discovery, Late Stage Discovery, Early Development and Late Stage Development. Part 2 of this webinar series will focus on how HRMS technology has fundamentally changed the way metabolite biotransformations are investigated in Lead Discovery.
view more

Features

view more

Downloads

view more

25 Hottest Articles

view more